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Abstract 
 
The deflection of thin rectangular plates loaded by point loads and stiffened by elastic 
beams is determined using an infinite series approach.  Both bending and torsional beam 
stiffness is included in the formulations.  Solutions are obtained and results presented for 
a variety of plate aspect ratios and beam stiffness values.  Comparisons of the results 
obtained with available solutions demonstrate good agreement, and parametric studies 
show the utility of this approach for various ratios of beam stiffness (bending and 
torisonal) to plate stiffness. 
 
Introduction 
 
Thin plates with beams affixed to the edges with the purpose of stiffening the assembly 
are commonly used in automotive, aerospace, marine, civil, and other practical 
applications.  Theoretical expressions for the deflection of such plates with edge 
stiffening can be found in many classical textbooks such as Timoshenko [1] on plate 
theory.  In general, solutions for thin elastic plates are given in terms of infinite series 
solutions of the governing differential equation.  The solutions for edge stiffened plates 
are obtained by combining the differential equation governing the plate deflection with 
appropriate differential equation governing the beam deflection and enforcing 
compatibility conditions.  In this way, both the bending and torsional stiffness of the 
beams can be included. 
 
Many researchers have investigated stiffened plates, using a variety of approaches.  A 
recent review by Satsangi and Mukhopaadhyay [2] of developments in static analysis of 
stiffened plates listed 104 papers in this area.   They grouped the idealizations into three 
general classes as orthotropic plate theory, grillage theory, and plate beam idealization, 
and reviewed solution procedures.  Concentrically and eccentrically stiffened plates have 
also been studied using a finite element approaches [3,4,5], and by boundary element 
techniques [6,7,8].   
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Although the equations are well known, the actual analytical solution of practical 
problems remains a challenge, due to the complexity of the equations involved.  As such, 
to the knowledge of the authors the details of a complete general solution have not been 
published.  Therefore, in the current paper we present the general solution for the 
displacement of thin elastic plates with arbitrary values for both flexural and torsional 
edge stiffeness under various loading conditions.  In addition, numerical solutions are 
given for edge stiffness values ranging from zero (free) to infinity (completely rigid).   
The symbolic math toolbox in the computer application Matlab is used to facilitate the 
calculations. 
 
The analytical solutions presented in this paper allow calculation of deflection of 
arbitrarily loaded and supported rectangular plates for a wide variety of design and 
analysis situations.  Further, since the limited number of currently available solutions for 
edge stiffened plates have been used in the development of finite element and boundary 
element methods, the solutions presented herein may also be useful in the further 
development of these formulations. 
 
Rectangular Plate Equations 
 
The governing differential equation for the middle surface deflection of a thin, 
homogeneous, isotropic plate is[1]: 
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where: 
 
w=w(x,y)  is the plate deflection as a function of x and y 
q=q(x,y)   is the applied distributed load, also as a function of x and y 
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E    the modulus of elasticity of the plate material 
v     Poisson’s’ ratio for the plate material 
h    the plate thickness 
 
 
This equation is valid for flat plate structures with thickness that is small in relation to the 
width and length dimensions.  In addition, the applied loads and resulting deflection of 
the plate are both assumed to be perpendicular to the plane of the plate.  There are several 
other assumptions underlying equation (1), detailed the reference by Timoshenko and 
Woinowsky-Krieger[1]: 
 

1. Deflections are small compared to the thickness of the plate. 
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2. The edges of the plate are free to move in the plane of the plate. 
3. The midplane of the plate is a plane of zero strain (neutral axis). 
4. The loads are such that the stresses are below the yield strength of the plate 

material, so that the material behaves elastically. 
 
Edge Stiffened Plates 
 
In this paper deflection solutions for rectangular plates with concentric edge stiffening 
beams on two opposite sides, loaded by a concentrated point load are found.  Figure 1 
shows the geometry under consideration. 

 
Figure 1. 

Edge Stiffened Plate 
 
The boundary conditions on the sides of the plate given by x = 0 and x = a are assumed 
to be simply supported.  This condition requires that the vertical deflection and the 
bending moment at any point along these two edges equal zero. 
 
The boundary conditions for the plate edges at y = -b/2 and y = b/2 with attached 
stiffeners are more complex.  The deflection along this edge is obtained from the 
compatibility requirement between the stiffener and the plate.  In other words, the 
deflection of the beam must equal the deflection of the plate, resulting in the following 
boundary condition: 
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with: 
 
(EI)b  equal to the bending stiffness of the beam, given as the product of E, the modulus 
of elasticity of the curb material, and I, the second moment of inertia of the beam cross 
section. 
 
In equation 2, the term of the left-hand side represents the beam deflection (from 
elementary beam theory), and the right hand term is the deflection of the plate at the 
edges where y =  b/2. 
 
The second boundary condition is obtained by considering the twisting of the stiffened 
edge.  Again, compatibility requires that the rotation of the plate equal the twisting of the 
beam.  The resulting boundary condition is: 
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with: 
 
(GJ)b equal to the torsional stiffness of the beam, given as the product of G, the shear 
modulus of the beam material, and J, the polar moment of inertia of the beam cross 
section.  Note that the shear modulus can be expressed in terms of the modulus of 
elasticity and Poisson’s ratio as: 
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In equation 3, the term of the left-hand side represents the beam rotation (from 
elementary beam theory), and the right hand term is the rotation of the plate at the edges 
where y =  b/2. 
 
 
The boundary conditions on the simply supported edge are represented by: 
 

0,0 == axw         equation (4) 
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General Solution 
 
We seek a general solution of equation (1) subject to the boundary conditions given in 
equations (2-5).  This solution can most easily be accomplished by constructing the total 
deflection w as the sum of two parts: 
 
  21 www +=                equation (6) 

Where 1w  is the particular solution, which depends upon the location and distribution of 
the loads applied to the plate, while w2 is the homogeneous solution, selected to satisfy 
the boundary conditions.   
 
Symmetric Case 
 
To illustrate this approach, we consider a rectangular plate with length a, width b, and 
thickness h as shown in Figure 2.  The two edges (at x = 0 and x = a) are simply 
supported and the other two edges (at y = 0 and y = b) are supported by elastic beams. 
For the case of a concentrated load P located by the coordinate ξ on the axis of symmetry 
x as shown in Figure 2, the deflection can be expressed by a single infinite series 
solution[1] as: 
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This displacement solution is valid for y ≥  0, and will be symmetric about the x-axis.  
This expression satisfies the governing differential equation (1), as well as the simply 
supported boundary conditions at x = 0, and x = a  given by equations 4 and 5. 
 
 
 
 
 



Proceedings of The 2006 IJME - INTERTECH Conference 

x

y 

a 

b 
ζ   P 

  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
 

 

 

The solution 2w  must satisfy the homogeneous equation: 
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with: 
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The function w2 evidently satisfies the boundary conditions at x = 0 and x =  a.  We must 
find suitable coefficients Am and Bm such that the boundary conditions on edges at            
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y = -b/2 and y = b/2 given by equations (2) and (3) are satisfied by the total solution, w = 
w1 + w2,  given by: 
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The solution procedure is as follows: 
 

1. Calculate appropriate derivatives of the assumed deflection solution (equation 9) 
and substitute these derivatives into boundary condition equations (2) and (3). 

2. Solve equations (2) and (3) simultaneously for the constants Am and Bm. 
3. Insert Am and Bm back into equation (9) to obtain the infinite series expression for 

plate deflection. 
4. Sum an appropriate number of terms of the series to calculate the desired plate 

displacement. 
 
The above steps represent a significant analytical challenge.  Therefore, the Matlab[9] 
software package, which has the capability to perform symbolic computations,  was used 
to assist with the rather tedious calculations in step one and two.  Complete solutions for 
both Am and Bm  are provided in Appendix A. 
  
Although equation (9) represents an infinite series solution, in practice it converges very 
rapidly so that only the first five or six terms are required for convergence.  Again, 
software was written using the Matlab programming language to perform the 
calculations.  In this way any variety of plate dimensions, beam properties, and loads can 
be investigated. 
 
Examples 
 
By appropriate selection of beam stiffness parameters, the above solution can be used for 
a wide variety of practical situations.  The following two cases, for which established 
solutions exist, are considered:   
 

1. Plate simply supported on all four sides. 
2. Plate simply supported on two parallel sides and fixed on the other two sides. 

 
By comparing existing solutions for these two cases to those obtained from equation 9 
above, the solutions obtained in this work can be verified. 
 
Case 1: Plate Simply Supported on all Four Sides 
The deflection given by equation 9 is required by virtue of the selected functions to have 
zero deflection on the sides given by x = 0 and x = a, representing simple supports.  By 
setting the ratio of beam to plate stiffness as an arbitrarily large number, combined with a 
beam torsional stiffness of zero, the plate effectively becomes simply supported on the 
beam sides as well.  Accordingly, we set the non-dimensional bending and torsional 
stiffness ratios to the following values: 
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Software was written to use equation 9 to calculate the plate deflection over a number of 
points across the plate.  Figure 3 shows the displaced shape obtained a square plate 
subject to a center load. 

 
Figure 3.  Square plate, center load, GJ/Da=0, EI/Da=∞  

 
 
 
The solution for a simply supported rectangular plate subject to a central point load is 
well known.  The maximum deflection at the center of the plate is given in [1] as: 
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For a square plate, the b/a ratio is 1 and the maximum deflection from equation 10 is 
identical to that obtained through the series solution of equation 9.  To further validate the 
solution obtained in this work, the coefficient α is calculated from equation 9 above and 
compared for to the accepted solution from [1] for various values of the ratio b/a  in 
Table 1.  In general there is excellent agreement between the two solutions, with 
maximum differences less than 0.2 percent. 
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Table 1 

Maximum non-Dimensional Deflection for Plate Simply Supported on all Four Sides. 
b/a 1.0 1.1 1.2 1.4 1.6 1.8 2.0 3.0 
Ref [1] 0.01160 0.01265 0.01353 0.01484 0.01570 0.01620 0.01651 0.01690
Eqn 9 0.01160 0.01267 0.01356 0.01487 0.01570 0.01621 0.01652 0.01693
 
Case 2:  Plate simply supported on two parallel sides, fixed on the other two sides 
By setting both the bending and torsional stiffness of the beam to high values, the beams 
in effect become fixed supports.  Thus, setting  
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The maximum deflection of a rectangular plate fixed at y=+/-b/2 and simply supported 
on the other two sides and loaded in the center is given in [1] as: 
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Figure 4 shows the deflected shape obtained from equation 9.  

 
Figure 4.  Square plate, center load, GJ/Da=∞ , EI/Da=∞  
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Rearranging equation 11 so that α  represents the non-dimensional displacement for the 
present case: 
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Table 2 shows the results for the calculation of the coefficient α from equation 9 for 
various values of the ratio b/a.  Once again, excellent agreement with the accepted 
solution is seen. 
 

Table 2 
b/a 2.0 1.0 0.5 0.33 
Ref [1] 0.238 0.436 0.448 0.449 
Eqn 9 0.238 0.437 0.450 0.449 

Maximum non-Dimensional Deflection for Plate simply supported on two parallel sides, 
fixed on the other two sides. 
 
Two other example cases are also illustrated.  Figures 5 shows the displaced shape for a 
square plate with both bending and torsional beam stiffness set to zero, simulating free 
edges.  Figure 6 shows the displaced shape with high torsional stiffness and zero bending 
stiffness, simulating a guided support (no rotation). 

 
Figure 5.  Square plate, center load, GJ/Da=0, EI/Da=0 
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Figure 6.  Square plate, center load, GJ/Da=∞ , EI/Da=0 

 
 
Parametric Studies 
 
The dependence of the deflection on the bending and torsional stiffness of the beams is 
demonstrated through a parametric study in which the ratios of the beam (bending and 
torsional) stiffness to the plate stiffness is varied.  A square plate, 60 inches on a side, 
0.320 inches thick, with a modulus of elasticity of 10e6 psi and poisson’s ratio of 0.33, 
and loaded with a single load in the center, was used for this study.  The twenty two cases 
studied are listed in Table 3, along with the maximum deflection obtained. Figures 7 
through 14 illustrate the dependence of deflection on beam stiffness for this parametric 
study. 
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Table 3 
Results for Parametric Study of Stiffened Plate. 

 
Case Bending Ratio (br) 

EI/Da 
Torsion Ratio (tr) 

GJ/Da 
wmax 

1 0 0 .1748 
2 0.1 0 .1533 
3 1.0 0 .1078 
4 10. 0 .0898 
5 10000. 0 .0872 
6 0 ∞  .1744 
7 0.1 ∞  .1527 
8 1.0 ∞  .0911 
9 10. ∞  .0583 
10 100. ∞  .0535 
11 1000. ∞  .0530 
12 10000. ∞  .0529 
13 0 0 .1748 
14 0 0.1 .1747 
15 0 1.0 .1745 
16 0 10. .1744 
17 ∞  0 .0872 
18 ∞  0.1 .0819 
19 ∞  1.0 .0650 
20 ∞  10. .0547 
21 ∞  100. .0531 
22 ∞  10000. .0529 
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Figure 7.  Centerline deflection (y=0), square plate, center load, GJ/Da=0, various EI/Da 

ratios. 

 
Figure 8.  Centerline deflection (x=a/2), square plate, center load, GJ/Da=0, various 

EI/Da ratios. 
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Figure 9.  Centerline deflection (y=0), square plate, center load, GJ/Da=∞ , various 

EI/Da ratios. 
 

 
Figure 10.  Centerline deflection (x=a/2), square plate, center load, GJ/Da=∞ , various 

EI/Da ratios. 
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Figure 11. Centerline deflection (y=0), square plate, center load, EI/Da=0, various 
GJ/Da ratios. 

 
Figure 12. Centerline deflection (x=a/2), square plate, center load, EI/Da=0, various 
GJ/Da ratios. 



Proceedings of The 2006 IJME - INTERTECH Conference 

 
Figure 13.  Centerline deflection (y=0), square plate, center load, EI/Da=∞ , various 
GJ/Da ratios. 

 
Figure 14.  Centerline deflection (x=a/2), square plate, center load, EI/Da =∞ , various 
GJ/Da ratios. 
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Conclusions 
 
Deflection solutions for edge stiffened plates using an infinite series approach have been 
obtained.  Although previous authors have outlined a solution procedure, in this work 
complete expressions for all terms have been found.  Comparison with available 
analytical solutions show good agreement, and parametric studies reveal the utility of the 
method for arbitrary beam bending and torsional stiffness values.  
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Appendix A 
 
Expressions for Am and Bm 
 
alm=(m*pi*b)/(2*a); 
    c1=1+alm*tanh(alm); 
    c2=alm/b; 
    c3=(sin((m*pi*z)/a)/(m^3*cosh(alm))); 
    c6=(m*pi)/a; 
     
    
    am=2*(-4*c6^2*D*c1*c2^2*G*J*exp(c6*b)*b+12*c6*exp(c6*b)*b*D^2*c2^2-
4*c6*exp(c6*b)*b*D^2*c1*c2^2 ... 
    +4*c6*b*D^2*c1*c2^2+4*c6*exp(c6*b)*b*D^2*c9*c1*c2^2-
12*c6*exp(c6*b)*b*D^2*c9*c2^2-4*c6*b*D^2*c9*c1*c2^2 ... 
    +EB*I*c6^5*b*exp(c6*b)*G*J-EB*I*c6^5*b*exp(c6*b)*G*J*c1-
6*G*J*exp(c6*b)*c6^3*D+6*G*J*c1*exp(c6*b)*c6^3*D ... 
    -16*D^2*exp(c6*b)*c1*c2^2+4*D^2*exp(c6*b)*c8*c6^2*c1+6*G*J*c6^3*D-
6*G*J*c1*c6^3*D-16*D^2*c1*c2^2+48*D^2*c2^2 ... 
    +4*D^2*c8*c6^2*c1+8*G*J*c6*D*c1*c2^2-24*G*J*c6*D*c2^2-
4*D^2*c8*c6^2-8*G*J*c6*exp(c6*b)*D*c1*c2^2+24*G*J*c6*exp(c6*b)*D*c2^2 
... 
    -4*D^2*exp(c6*b)*c8*c6^2+c6^4*D*b*exp(c6*b)*G*J*c1-
c6^4*D*b*exp(c6*b)*G*J-c6^4*D*b*G*J+c6^4*D*b*G*J*c1-c6^3*b*D^2*c8*c1 
... 
    -
c6^3*b*D^2*c9*c8+c6^3*b*D^2*c8+c6^3*b*D^2*c9*c8*c1+12*c6^2*b*G*J*D*c2^2
-4*c6^2*b*G*J*D*c1*c2^2-12*c6*b*D^2*c2^2 ... 
    +12*c6*b*D^2*c9*c2^2 ... 
    -EB*I*c6^5*b*G*J+EB*I*c6^5*b*G*J*c1-c6^3*exp(c6*b)*b*D^2*c9*c8*c1-
c6^3*exp(c6*b)*b*D^2*c8+c6^3*exp(c6*b)*b*D^2*c8*c1 ... 
    
+c6^3*exp(c6*b)*b*D^2*c9*c8+48*D^2*exp(c6*b)*c2^2+12*c6^2*D*c2^2*G*J*ex
p(c6*b)*b)*c3*c2*exp(1/2*c6*b)/c6^3/(2*D*c6*exp(2*c6*b)*EB*I ... 
    +2*D*c6*EB*I-
G*J*c6^2*EB*I+G*J*c6^2*exp(2*c6*b)*EB*I+D^2*exp(2*c6*b)-
2*D^2*exp(c6*b)*c8*c6*b+D^2*exp(2*c6*b)*c8 ... 
    +2*D^2*exp(c6*b)*c6*b+2*G*J*c6*exp(2*c6*b)*D-3*D^2*c9*exp(2*c6*b)-
D^2*c8-D^2+2*G*J*c6^3*exp(c6*b)*EB*I*b+2*G*J*c6*D+3*D^2*c9 ... 
    -
4*G*J*c6*exp(c6*b)*D+2*D^2*c9*exp(c6*b)*c8*c6*b+D^2*c9*exp(2*c6*b)*c8-
2*D^2*c9*exp(c6*b)*c6*b-D^2*c9*c8+4*D*c6*exp(c6*b)*EB*I); 
  
                  
    bm=-4*c3*c2*exp(1/2*c6*b)*(-
G*J*c1*exp(c6*b)*c6^4*EB*I+G*J*exp(c6*b)*c6^4*EB*I-
G*J*exp(c6*b)*c6^3*D+D^2*c9*exp(c6*b)*c8*c6^2 ... 
    -12*D^2*c9*exp(c6*b)*c2^2-
D^2*c9*exp(c6*b)*c8*c6^2*c1+G*J*c1*exp(c6*b)*c6^3*D-
4*D^2*exp(c6*b)*c1*c2^2+4*D^2*c9*exp(c6*b)*c1*c2^2 ... 
    +D^2*exp(c6*b)*c8*c6^2*c1+G*J*c6^3*D+G*J*c6^4*EB*I-G*J*c1*c6^3*D-
G*J*c1*c6^4*EB*I-4*D^2*c1*c2^2+12*D^2*c2^2+D^2*c8*c6^2*c1 ... 
    +4*G*J*c6*D*c1*c2^2-12*G*J*c6*D*c2^2-D^2*c8*c6^2-
12*D^2*c9*c2^2+D^2*c9*c8*c6^2+4*D^2*c9*c1*c2^2-D^2*c9*c8*c6^2*c1 ... 
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    -4*G*J*c6*exp(c6*b)*D*c1*c2^2+12*G*J*c6*exp(c6*b)*D*c2^2-
D^2*exp(c6*b)*c8*c6^2+12*D^2*exp(c6*b)*c2^2)/c6^3/(2*D*c6*exp(2*c6*b)*E
B*I ... 
    +2*D*c6*EB*I-
G*J*c6^2*EB*I+G*J*c6^2*exp(2*c6*b)*EB*I+D^2*exp(2*c6*b)-
2*D^2*exp(c6*b)*c8*c6*b+D^2*exp(2*c6*b)*c8+2*D^2*exp(c6*b)*c6*b ... 
    +2*G*J*c6*exp(2*c6*b)*D-3*D^2*c9*exp(2*c6*b)-D^2*c8-
D^2+2*G*J*c6^3*exp(c6*b)*EB*I*b+2*G*J*c6*D+3*D^2*c9-
4*G*J*c6*exp(c6*b)*D ... 
    +2*D^2*c9*exp(c6*b)*c8*c6*b+D^2*c9*exp(2*c6*b)*c8-
2*D^2*c9*exp(c6*b)*c6*b-D^2*c9*c8+4*D*c6*exp(c6*b)*EB*I); 
 


