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Abstract  
 
Realistic modeling of cost of manufacturing is essential both for estimating cost of a product and 
for optimizing alternate manufacturing strategies. Although there are many factors that affect 
cost of manufacturing, the single most important parameter for estimating the cost of 
manufacturing is tolerance (deviation from the nominal size). Since tolerance affects the 
manufacturing cost directly, in the past most cost formulations were constructed using some 
form of inverse power function of a single tolerance parameter. However, to meet stringent 
quality and functional requirements more parts are now being controlled with geometric 
tolerances on top of size tolerances. In these situations, it is very difficult to establish a single 
representative tolerance parameter that can be used for estimating cost of manufacturing. A more 
general formulation is needed to extend the cost functions to deviations of all features of a part 
and the mating relations between parts so that the total effect of the prescribed geometric 
tolerances could be captured. In this paper we review existing single parameter cost formulations 
and then present an extension of cost formulations to a generic deviation-based formulation. We 
also briefly discuss the constraints and advantages of extending the cost functions to such multi-
dimensional formulations. 
 
Introduction 
 
Estimation of cost of manufacturing a part before the actual production (during the design phase) 
is essential to optimize alternate manufacturing strategies and to control the cost of a product. 
There are many factors that affect cost of manufacturing. Some of them are directly attributable 
to the manufacturing process and the desired level of tolerance. From a manufacturing point of 
view tolerance is the single most important parameter as the tolerance value dictates the cost: 
tighter the tolerance, higher the cost and vise-versa. This cost-tolerance relation is used in most 
cost formulations by constructing some form of an inverse power function of a single tolerance 
parameter. Prior to introduction of geometric tolerances, only the size tolerance (plus-minus 
tolerances) used to be specified for manufacturing parts. However, prescribing geometric 
tolerances on top of traditional size tolerances to meet stringent quality requirements, functional 
requirements and assemblability of parts has become very common engineering practice. In these 
situations, it is very difficult (often impossible/impractical) to establish a single representative 
tolerance parameter that can be used for estimating cost of manufacturing. For example, if we 
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look at the single plus-minus size tolerance (20±0.5 mm) (Figure 1) for the smaller cylindrical 
feature and consider only the variation of length (axial deviation) as the parameter, we could use 
just one tolerance parameter to establish the cost function for machining the circular face. 
However, the part as given in Figure-1 has a positional tolerance (specified as per ASME 
Y14.5M [1]), that uses multiple datum references and also it includes maximum material 
conditions (MMC) both for the geometric tolerance as well as for the datum A. This leads to 
conditions that would need establishment of a virtual condition boundary (VCB) for the 
cylindrical surface and we also have to take into account bonus tolerance and allowable datum 
shift (datum A) corresponding to the AME (actual manufactured envelope) of these features, to 
find the total tolerance. This is a relatively simple case of a single part with one geometric 
tolerance; even then, in this case establishing an explicit single tolerance parameter that could 
represent the behavior of the cylindrical feature is difficult, specifically when we want to study 
various alternative configurations that this part could be manufactured maintaining 
assemblability with other parts. In these cases a more general formulation that could take into 
account variation of all parameters of the geometric tolerances would be desirable. Unfortunately 
no such universal formulation is available. In order to circumvent these difficulties, we propose 
to extend the cost functions from the tolerance domain to a generalized deviations domain so that 
the total effect of geometric tolerances prescribed for all features of a part and also the effect of 
mating relations between parts in assembly could be captured.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure -1:  Geometric tolerance specified using feature control frame (FCF) 
 
In this paper we review existing single parameter cost formulations and then present an extension 
of cost formulations to a generic deviation-based formulation. We also briefly discuss how the 
deviation-based formulation could be used and what are the advantages and disadvantages of 
extending the function to such multi-dimensional formulations. First, we look into the basic 
factors that affect cost of manufacturing. 
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Costs associated with manufacturing a part are dependent on several parameters including 
tolerance specification, material, dimensions, geometric shape, sequence of manufacturing 
operations, and the process capabilities. Many researchers have analyzed various issues 
associated with the cost of manufacturing in relation to tolerances.  There are various methods to 
formulate these cost function [2]. Essentially all cost of manufacturing formulations are 
monotonically decreasing functions of a single tolerance parameter. Effects of various functional 
forms like inverse power law, exponential decay, etc., and the effect of process capabilities have 
been studied by many researchers [3].   

 
Since in general, more than one operation is required to transform the raw blank into the final 
finished part, the cost of manufacturing is a function of the process sequence and how much 
accuracy is achieved in each stages of operation. This cost is also affected by the setup error in 
each machining process. The total cost of production thus becomes a sum of the costs associated 
with each process [4].   

 
While none of these methods mentioned above could claim to be universal, there are several 
limitations with the one-parameter (single tolerance) cost of manufacturing formulation. In 
reality, a manufactured surface would rarely have a single tolerance value.  Apart from a size 
tolerance, there could be more than one geometric tolerances (form, positional, and orientation 
tolerances, etc) prescribed for a feature and it would be difficult to formulate a single parameter 
representing all these tolerances that could effectively be used for representing the cost of 
manufacturing. The proposed deviation-based formulation could effectively model the cost in a 
generic manner. 
 
Review of Single-parameter based Cost formulations 
 
Traditional one dimensional cost-tolerance model has a typical shape as shown in Figure-2. Most 
of these formulations are some form of power law, some are exponential decay functions and 
there are some formulations with piece-wise continuous curves (Table-1) [3].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Proceedings of The 2006 IJME - INTERTECH Conference 

Figure-2: Typical Shape of One-dimensional Cost-Tolerance Function 
Table-1: Various Cost Tolerance Formulations from [3] 

 
Model                    Equation            Method                  Author 

 
 
 
In the above table-1, the equations represent cost per part. T is the tolerance parameter and 
symbols A, B, m, k, are constants. The A term represents fixed costs, such as tooling, setup, etc. 
and the B term express cost of producing single component dimension for the specified tolerance 
T. Complete details of most of these formulations and comparison of these models are found in 
[5].  
 
Each of the above formulations has been used by the authors for optimal tolerance allocation 
using suitable optimization methods as indicated in the table. These methods have their 
limitations and suitability for specific applications.  
 
In case of multi-process operations, cost functions for each process would be different. Also if 
there are alternate processes available for producing a part, cost tolerance models for each 
process needs to be considered separately. In these cases, cost models for each process could be 
imposed to define the operating zones for each process (Figure-3). Procedure for tolerance 
allocation calculations using these functions has been detailed in [3]. 
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Deviation-based cost of manufacturing 
 
Before we introduce the deviation based cost of manufacturing formulations, we need to 
introduce the concept of a) generic deviations of a feature and b) a mapping between deviation 
parameters and tolerance parameters. For brevity, we will describe the concepts in brief here and 
use the relations that have already been established in our earlier works [6-11]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure-3: Multi-process Cost-Tolerance Functions [3] 
 

The concept of representing the variations of a feature in terms of small deviations at strategic 
points on a feature has been used by many researchers [11-12]. These deviations are called small 
displacement torsors (SDT). Each SDT has six components (three linear, three rotational) 
corresponding to the six degrees of freedom (DOF) associated with a feature. Although these 
SDTs look like 6-component vectors (Figure-4), they are not true vectors as three of the 
components are linear and the other three are rotational and they follow a different 
transformation rule [11]. One interesting aspect of these torsors is that even though they have six 
components, only one to four of the six DOF are required to represent the behavior of standard 
engineering features. For example, to represent the axial displacement of a cylindrical rod, only 
one linear component is required and to represent the variation of a planar surface only three of 
the six parameters are required. In figure-4, a point P is used at the center of the circular face and 
the torsor DP is used to represent the behavior of the circular-planar feature.  
 
 
 
 
 
 
 

R
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Figure-4:  Components of a Planar Cylindrical Feature 
The first DP shows the general 6-components and the next one shows the three displacement 
components (one linear displacement along the Z-direction and two rotational components along 
the X and Y directions) that are relevant for the planar feature. These three parameters could be 
used to define the displacement of any point R on the circular face. 
 
When the displacements are small, the torsors could effectively represent the behavior of the 
feature. We will use these SDTs as our deviation parameters to formulate the cost of 
manufacturing function. However, since we do not use the deviation parameters to prescribe 
geometric tolerances, we would need a mechanism to transform these deviation parameters into 
tolerance parameters so that the final results could be converted to tolerance specifications 
conforming to ASME Y14.5M geometric tolerancing standards. This transformation from the 
deviation space to the tolerance parameter space is carried out using suitable mapping schemes 
as described below.  
 
It has been established [8,10] that the geometric tolerance specified as per ASME Y14.5M could 
be mapped to the generic deviation parameters through a series of explicit or implicit relations. 
These mapping relations become a set of constraints that restrict the domain of the deviation 
parameters in the deviation space. Cost functions defined in terms of the deviation parameters 
must remain within these zones. In the remaining part of this section, we will present the 
development of a cost of manufacturing formulation in terms of the deviation parameters. 
 
For modeling the cost of manufacturing, some suitable form of generic function of the deviation 
parameters could be used and the mapping between the deviation parameters and the tolerance 
parameters could then be used to link the cost function to the tolerance specification. We will use 
the notation (θx,  θy,  θz,  δx,  δy,  δz) to represent the six components of a SDT. Thus, the cost 
function C(δ) defined as a function of some tolerance parameter δ, would become a function of 
the six deviation parameters C(δ) = C(δ(θx,  θy,  θz,  δx,  δy,  δz)).  
 
There could be various forms/structures for these functions depending on specific surface 
features and manufacturing processes and experimental results would be needed to establish 
typical functions for domain-specific applications. In this work, the cost of manufacturing a part 
is shown as an explicit product of six functions of the six deviation parameters in the form:   
C(d) = C1(d1)*C2(d2)*….C6(d6) where  d = (d1, d2, d3, d4, d5, d6) = (θx , θy , θz , δx , δy , 
δz)  is the deviation parameters characteristic of the feature.   
 
Depending on the nature/type of the feature, some of the functions will be constants (invariants) 
and could be eliminated, for example, for some j, we could use C(dj) ≡ 1. This will correspond to 
the deviation parameters that are invariants of the feature.  
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As for an example, as was mentioned earlier in this section, for a planar surface there are only 
three independent parameters represented by d = (0, θy, θz, dx, 0, 0) that affect the deviation of 
the surface from its nominal shape. The cost function for such a planar feature can then be 
represented as:  C(d) = Cx(dx)*Cθ(θy)*Cθ(θz)        
 
Also, in this case, the form of the two functions for rotational components along the y and z-axes 
could be of same structure.   
 
For example, for a rectangular planar section with cross-section (2a x 2b), (Figure-5) the 
mapping relations (taken from [10]) could be written as: 
 
TSL ≤  min (dX+a*θy + b* θz, dX + a*θy -b* θz, dX- a*θy + b* θz, dX- a*θy  - b* θz )      
TSU ≥ max (dX+a*θy + b* θz, dX + a*θy- b* θz,  dX- a*θy+ b* θz , dX-a*θy  - b* θz )      
 
where  (TSL, TSU) are the lower & upper values of the tolerance parameter for the planar surface.  
Above relationship could be considered as constraints (restrictions) on the parameters (dx, θy, 
θz). The cost function will be valid within the restricted zone.  
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure-5: A rectangular-planar feature with a plus-minus size tolerance 

 
To illustrate the cost function, a generic function of the form: C(x) = f1 + f2/(λ+|x|) is 
considered, where λ >0  is a small  constant used to avoid singularity at origin x = 0,  x  is the 
deviation parameter and f1 > 0  and f2 > 0 are cost constants. Thus, the cost function becomes  
C(d)= Cx(dx)*Cθ(θy)*Cθ(θz) = (f11+f12/(λ+|dx|)) * (f21+f22/(λ+|θy|)) * (f31+ f32 / (λ+|θz|)).  
 
For a visual representation of this function as a surface in 3D, removing the θz term, assuming 
a= b=1, and using dx=d, θy=θ, the constraints become:   - TSL ≤   (d + θ  ) ≤ TSU    and - TSL  ≤  
(d -  θ )  ≤ TSU  and the cost function  is:  C(d)= (f11+f12/(λ+|d|)) * (f21+f22/(λ+|θ|)) 
 
In  the d-θ plane, this would look like a tent bounded by four vertical planes defined by the four 
limits from the tolerance specification (Figure-6) and a cost contour would look as shown in 
Figure-7 and the area enclosed by the four constraint lines would be the mapped zone within 
which the cost function would be valid.  
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Figure-6:    Example of a deviation based cost function 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure -7: Example cost function contour lines and the four constraints. 

 
 
General Observations  
  
The extension of the cost functions to the deviation-based formulations as shown here are 
generic and could be used wherever a cost of manufacturing model is required. However, the 
overhead for using such generalization is two-fold: 1) more parameters are used to represent the 
function and as a result, computational complexity increases, and 2) suitable mapping relations 
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are required to transform the deviation parameters to the tolerance space. In our earlier work [10] 
we have developed mapping relations for planar, cylindrical, and spherical features at various 
geometric tolerances with material conditions (MMC, LMC and RFS).  
 
Conclusion 
 
In this paper we have discussed the limitations of single parameter cost models and  presented a 
procedure for developing a generic deviation based cost of manufacturing formulation. This 
formulation has been successfully used [9] for synthesis of geometric tolerances of several 
assembly models including a planetary gearbox. This method could be used for representing the 
cost of manufacturing for various material removal processes like turning, milling, broaching, 
etc. However, in order to establish process-specific formulations, experimental data has to be 
collected and fitted to the proposed model.  
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