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Abstract  
 
When bells are manufactured by traditional methods, the ideal symmetries are usually all broken 
due to irregularity of shape, material properties, and local defects during the casting process. 
Therefore, the vibration analysis of bell type structures become complicated and sometimes 
predicting precise results is not possible. Lack of generalized mathematical representation of bell 
vibrations necessitates numerical and/or experimental methods to determine the vibration 
characteristics of these types of structures. 
 
Rapid advances in computer aided design and manufacturing technology, as well as the accuracy 
of the virtual instrumentation programs in recent years, cause the possibility of solving such 
complex vibration problems. In this study a finite element commercial package is used for 
vibration analysis. Modal simulation and LabView are used as well for experimental 
measurements of the first five natural frequencies. 
 
As an initial step toward more sophisticated situations and in order to reduce the complexity of 
the problem, the variation of the wall thickness only in the region of the soundbow is considered. 
Moreover, damping of any kind is neglected. The effect of the wall thickness (particularly 
soundbow thickness) on the first five musical modes is studied in detail. The experimental modal 
parameters obtained by impact testing were compared with corresponding analytical results 
obtained by the finite-element analysis.  
 
 
Introduction 
 
In practice, bells are imperfect and the ideal symmetries are usually broken due to irregularity of 
shape, material properties, and local defects during the casting process. Therefore, the vibration 
analysis of bell type structures becomes complicated and sometimes prediction of precise results 
is not easily possible. Lack of generalized mathematical representation of bell vibrations 
necessitates numerical and/or experimental methods to determine the vibration characteristics of 
these types of structures. Various experimental methods have been used by some authors to 
study the complex vibrations of bells [1, 2]. Using Finite Element Method and/ or modal testing, 
the vibration characteristics of both western and oriental bells are found in practice [3]. In this 
study the effect of wall thickness on the natural frequencies and corresponding mode shapes are 
discussed.  
 



Proceedings of The 2006 IJME - INTERTECH Conference 

The present discussion of the vibration characteristics of bells are divided into two parts. The 
experimentally predicted results and the results obtained by finite element modeling of a bell are 
discussed in this paper. The practical modifications done on the bell to obtain the desired beating 
and modal characteristics are under study and will be discussed in a companion paper in the 
future. 
 
Theoretical Background 
  
A simple theoretical starting point is to approximate the bell as a cylindrical shell to estimate the 
basic geometry. The natural frequencies and corresponding radial displacements of a hinged 
cylindrical shell with a  being the radius, L  the length, and h  the thickness, can be obtained 
from the following inextensional approximation [4] derived by Rayleigh [5]: 
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Where; E, ρ  and µ  are Young’s modulus, mass density and Poisson’s ratio of shell material, 
respectively. 
As it can be seen from equation (1), in the preliminary design stage sufficient information can be 
obtained. By pre-selecting the fundamental natural frequency, the main geometry of the bell can 
be easily determined. But for detail design it is not possible to apply a parametric equation to get 
all the required design information. Therefore, using numerical methods such as Finite Element 
modeling is necessary to analyze the problem. As it can be seen from equation (1), natural 
frequencies can be controlled by controlling the shell thickness, radius to length ratio and the 
radius itself. By having in mind that the radius to length ratio of bells is approximately 
between1.1 to 1.4, equation (1) can be used successfully for estimating the fundamental natural 
frequencies in the preliminary design stages. Next, control can be done by thickness of the 
Soundbow, where the thicker Soundbow results in higher natural frequencies. In higher natural 
frequencies the effect of the Soundbow thickness becomes more noticeable. 
 
 
Finite Element Modeling 
 
The equation of motion of a system under conservative loading can be derived from the well- 
known Hamilton’s Variational Principle. Hamilton’s principle states that the actual path followed 
by a dynamic process is: 
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WhereU E , K E  and W E  are strain energy, kinetic energy and work done by applied external 
forces respectively. For a thin elastic shell, the variation in strain energy is given by: 
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The stress resultants and stress couples are related to the middle surface strains and curvature 
changes through an elastic matrix by: 
 

{ } [ ] { }εEN =                                           (5)  

Matrix [ ]E contains both bending stiffness )1(12/ 23 υ−= EhD  and extensional stiffness 

)1/( 2υ−= EhC  of the element.  
 
In order to facilitate the satisfaction of displacement continuity in an assemblage of the shell 
elements, the generalized displacements{ }q must be used in for degrees of freedom on nodes. 
Therefore, using Eq.(4) the variation in strain energy for an element becomes: 
 

{ } [ ] { }qkqU T
E δδ =                             (6) 

[ ]k is known as the stiffness matrix of the element. The variation in kinetic energy for an 
element can be found as: 
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Substituting equations (6) and (7) in equation (3) and summing for all the n elements comprising 
the original structure, after simplification the variation equation becomes 
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Since equation (8) is valid for any arbitrary variation { }T

iqδ the vanishing of the coefficient leads 
to the equations of motion  
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Where [ ]K and [ ]M  are stiffness and mass matrices for the entire shell respectively and 

[ ]F is the total generalized force. 
 
Once the finite element model is completely defined, the element stiffness and mass matrices, 
and then the resonance frequencies and corresponding mode shapes are computed. 
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Experiment Setup for Impact Excitation 
 

Impact excitation is used in this study to predict the natural frequencies of the bell specimen. The 
bell shown in Figure 1 cast from brass is used for vibration testing and modal analysis. National 
Instruments’ LabVIEW 7.1 software and National Instruments’ PCI-4474 data acquisition board 
are used for data collection. The system collects signals from the impulse hammer (Omega’s IH-
101) and the accelerometer (Omega’s ACC104A) attached to the outside surface of the bell rim.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Bell specimen used for Impulse Excitation 

 
By striking the specimen at any point on its surface and displaying the response signals from the 
accelerometer in the frequency domain, the fundamental natural frequencies can be measured at 
resonant peaks. To illustrate the normal mode shapes corresponding to natural frequencies, the 
Fast Fourier Transform of signals from both impulse hammer and accelerometer should be 
analyzed to find the transfer function of the system. In general, such transfer function describes 
the complex ratio of a resultant motion signal from the accelerometer divided by an exciting 
force signal from the impulse hammer. By using the amplitude (gain) and the phase difference of 
a transfer function at peak points, the damping factors can be accurately measured. The gain is 
usually expressed in dBs (decibels) with level of zero corresponding to an output level being 
equal to input signal. Phase difference is expressed in degrees, and it represents the lead or lag of 
the output signal with respect to the input signal of the system. 
 
Striking the specimen at several points on a circumference and collecting the gain values and 
corresponding phase difference signs for a resonance frequency will provide data for graphing 
lateral mode shape for that frequency [6]. It should be noted that since the gain values are in dBs, 
it is necessary to calculate the linear units by applying the following formula:   
 
 

)10( 20/dB
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Frequency Analysis 
 
Time domain voltage signals of the accelerometer and impulse hammer for a sample test are 
shown in Figure 2. The duration of the impulse signal is less than 10 ms. The accelerometer 
signal has 1mV peak-to-peak and decreases gradually. This figure illustrates that the recording 
time of 0.1 sec is enough to store the meaningful data.  
 
 

 
 
 

Figure 2: Voltage Signals in Time Domain  
 
The fundamental natural frequencies of the model can be predicted from the frequency domain 
of the accelerometer response. The bell was excited from different positions and the predicted 
frequencies were almost the same in all cases. Figure 3 illustrates how the accelerometer 
responses in frequency domain for two different excitations.  
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Figure 3: Frequency Responses of Accelerometer 

 
 
To determine the circumferential mode shape corresponding to a natural frequency of the model, 
a large number of repeated tests are required. Fixing the accelerometer on the bell soundbow, 
striking the model at different points on the same circumference, and using transfer functions 
will show how the stroked points will be deflected relative to the accelerometer’s position. 
Figure 4 illustrates the transfer functions of the amplitude and phase for a sample test.         
 
 

 
 

Figure 4: Transfer Functions of Amplitude and Phase 
 
The analysis of captured signals from accelerometer responses and transfer functions gives the 
same five natural frequencies of the model shown in Table 1.  
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 Frequencies Hz 1220 1760 2680 3745 4935 
 Ratio to the First mode 1.00 1.44 2.20 3.07 4.05 

 
 
FE Analysis 
 
A commercial FEA package was used to find the natural frequencies and corresponding mode 
shapes of the model. The thickness of the model varied from 0.06 in. at open side (sound bow) 
region, to 0.15in. at the close side (hanger) region. The material properties of the specimen used 
for analysis are shown in Table 2. 
 
 
 

Young's modulus (E) 
  
16.7 E6 lb/in2 

Density  
  
0.32 lb/in3 

Poisson's ratio 
  
0.3   

 
 
In this study, the model was meshed into 4360 quadratic elastic shell elements with 13,157 
degrees of freedom. The profile geometry and generated finite elements of the model are shown 
in Figure 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The profile geometry and generated finite elements of the model 

 
The FE analysis was done to find the targeted eigen frequencies and corresponding eigen modes. 
The graphical results for the first four predicted lateral resonance frequencies and corresponding 
mode shapes are illustrated in Figure 6.  

Table 2: Material Properties of the Specimen  

Table 1: Natural frequencies of the model (Experiment) 
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Figure 6: Fundamental Frequencies and Corresponding Mode Shapes by FEA 

 
 
Results and discussion 
 
Figure 8 shows the harmonics mode shapes for the first four lateral vibration modes. These are 
the 3rd, 4th, 5th, and 6th harmonics mode shapes. The ratial relationships of these frequencies lead 
to the estimated 2nd harmonic frequency being 1530.5 Hz. This is shown in table 3. 
 
 
 
 
 

Harmonic number 
First Mode Vibration 

( one circumference node) 2 3 4 5 6 
 Frequencies Hz 1391.15* 1554.7 2782.3 4442.1 8654.7 
 Frequency Ratio 1.00 1.12 2.00 3.19 6.22 
* This frequency was estimated   
  

 
Even though comparisons of Tables 1 and 3 show close agreements between the two results, 
additional experiments are yet needed for comparing the individual vibration modes. The study 
may continue to include the prediction of the mode shapes for each natural frequency.  
 

Table 3: Natural frequencies of the first mode vibration (FEM) 
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Conclusion 
 
Comparison between the results from analytical and experimental results shows good agreements 
for the resonance frequencies in most cases. Increasing the bell thickness in the soundbow region 
causes the resonance frequencies to be slightly increased in higher modes. Bells having thicker 
soundbow have the tendency of suppressing normal displacements of the open edge. Since it is 
not certain that the mode shapes appear for the corresponding frequencies of the analytical and 
experimental results are same, therefore, the next step should be experimental prediction of mode 
shapes of higher resonance frequencies.  
In the course of a further investigation, the effect of irregularity (such as a crack) along a 
meridian on the modal and beat characteristics of a bell should be studied as well.  
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