
Proceedings of the 2006 IJME – INTERTECH Conference 

Session ENT 104-030 
 

WIP: Exploring the Feasibility of a Robot-Centric CPU Simulator to Control 
Physical Robots as an Assembly Language Instructional Aid 

 
Susan L. Gordon, James Wolfer 

Department of Computer and Information Sciences 
Indiana University South Bend 
{slgordon, jwolfer}@iusb.edu 

 
Abstract 
 
In an effort to make program debugging more transparent, to provide an aspect of kinesthetic 
learning, and to inspire student interest, Indiana University South Bend incorporated robots into 
the assembly language curriculum. While the robots satisfied these original objectives, it is 
important for our students to acquire a deeper understanding of computer organization and its 
implication for program development.  Toward this end, a custom, robot-centric, CPU instruction 
set was developed.  Robot control programs written in this instruction set would be run on 
student-implemented simulators written in Intel assembly language.  This study explores the 
feasibility of deploying a simulated CPU to control an actual robot.  Specifically, we describe the 
simulated CPU, an implementation of an instruction subset, and an initial assessment of the time 
penalties involved in the simulation. 
 
Introduction 
 
Indiana University South Bend incorporated robots into its computer structures and assembly 
language curriculum in an effort to provide an engaging, kinesthetic environment for learning 
computer organization and assembly language [1]. While the robots satisfied these original 
objectives, they also introduced the side-effect that students tended to implement their robot 
control programs using a relatively restricted subset of the instructions and memory access 
modes available on a modern computer.  This is a serious issue, since students need to acquire a 
significant understanding of computer organization and its implication for program development.  
As a step toward the goal of deeper understanding, a custom, robot-centric instruction set 
simulator was designed and subsequently implemented by student-developed assembly language 
programs and used to control actual robot behavior. 
 
The application of both student-developed and instructor-provided CPU simulators as 
pedagogical tools has been a recurring theme in computer education.  Examples include the 
MiniMIPS Simulation Project [2], the Harvard Ant-32 project [3], and the Minimal Instruction 
Set Computer [4]. The MiniMIPS project begins with template programs which students 
complete.  Activities include parsing, simulating the functional units, and integrating datapath 
control.  The authors report student feedback indicated that the project helped them to understand 
CPU organizational concepts.  The Ant-32 project, in contrast, is provided to the students.  The 
architectural goal was to present a clean, easy to understand processor which is functional 
enough to be used in courses in assembly languages, operating systems, and VLSI design.  The 
Minimal Instruction Set Computer uses a Java-based platform for machine instructions, 



Proceedings of the 2006 IJME – INTERTECH Conference 

computer architecture exploration, and operating systems.  As with the Ant-32 system, this 
environment is supplied to the student. 
 
While the systems described provide working environments for students, adopting them would 
sacrifice the kinesthetic experience and student appeal of controlling robots both physically and 
under simulation.  In contrast, this work describes the results of assessing the feasibility of 
simulating a custom, robot-specific, CPU instruction subset for controlling both simulated and 
physical robots in real time on a typical, off-the-shelf computer. This, in turn, forms the basis for 
student-developed, simulated CPUs.  Assembly language programs to control robots can then be 
developed for the simulated CPUs and tested on both simulated and physical robots.   
 
Specifically, a custom CPU instruction set was developed and it was postulated that this 
instruction set could be used under simulation to control an actual robot.  This would allow 
students to implement a “virtual CPU” on which they develop and test robot control programs.  
The robots provide a practical programming problem that can be tested on a robot simulator prior 
to controlling an actual robot. This combination of software simulation and robot interaction can 
provide both motivational and kinesthetic learning experiences to enhance student understanding 
of computer organization, to explore instruction operation, to understand memory access, and to 
gain additional practice in assembly language programming.   
 
Before this custom CPU project can be deployed, an initial assessment of the time penalties 
involved in adding an additional layer of software to implement the CPU simulation needed to be 
completed.  Deployment of an actual robot was also required to ensure that a physical robot 
could be controlled in real-time by programs written in the simulated instruction set.  The 
resulting feasibility assessment included: 
 

• A minimal required instruction subset. 
• A virtual CPU to simulate instruction execution. 
• Using the virtual CPU to time simulated instruction execution. 
• Using the CPU to run a program written in the simulated instruction set to control the 

robot simulation. 
• Running a program written in the simulated instruction set to move a physical robot in a 

simple continuous loop. 
 
The balance of this report describes the implementation and results of this feasibility study.  
Based upon the resulting assessment, an expanded instruction set is being designed to provide 
students experience in implementing a wider variety of instructions and memory access modes 
ranging from simple logic to indirect jumps. 
 
Hardware and Software 
 
The hardware and software environment for this assessment consists of Khepera II robots and a 
customized simulator running under Linux.  The K-Team Khepera II, shown in Figure 1, is a 
small, two-motor robot which uses differential motor speed for steering.  It also features eight 
infrared proximity sensors positioned around the robot.  As shown in Figure 2, six sensors are 



Proceedings of the 2006 IJME – INTERTECH Conference 

positioned toward the “front” and two toward the “back” to provide sensory input values to 
detect obstacles [5].   
 
As a software prototyping tool, a publicly available Khepera simulator, SIM [6], was modified.  
The SIM Khepera Simulator provides a workable subset of the Khepera robot command 
language.  In this application, students write assembly language programs to communicate with 
and control the simulator and the robot through a pair of Linux pipes.  The commands can be 
carried out in the simulated maze environment illustrated in Figure 2 or passed by the simulator 
to a physical Khepera robot through a serial port.  This combination provides the students with 
at-home testing ability in the simulated environment and supervised lab testing time to interact 
with the actual Khepera robots. 
 

 
 

Figure 1: The K-Team Khepera II robot. 
 

 
Figure 2: The SIM Simulator Khepera robot diagram and maze environment 

 
Simulated CPU Organization 
      
The virtual CPU for this feasibility study is organized with sixteen 32-bit registers, an instruction 
pointer and a flag register along with a minimal instruction set for testing simulator speed.  This 
is illustrated in Figure 3.   
 
The instruction set was designed to include a minimum required set of typical CPU instructions 
for data transfer, arithmetic, logic, and program control functions as shown in Figure 4.  Move, 
load, and load immediate instructions were provided to get data into registers, and a store 
instruction moved register data back to memory.  Arithmetic and logic instructions provided 
increment, decrement, and, or, exclusive or, and not functions for registers. A register to register 



Proceedings of the 2006 IJME – INTERTECH Conference 

 
 

Figure 3: Virtual CPU organization 
 
compare instruction updated a flag register which could be tested by branch high, low, or equal 
instructions.  An unconditional jump instruction was also provided.   
 
In addition to common CPU instructions, three custom instructions were provided for robot 
control.  These instructions initialize communication with the Khepera simulator, read robot 
sensor values, and set motor speeds. 
 
 
# load instruction formats:  
 mov Rd,Rs # register to register 
 ldi Rd,$immed # immediate to register 
 ld Rd,memaddr # memory address to register 
 
# store instruction format:  
 st Rd,memaddr # register to memory address 
  
# logic and arithmetic instruction formats:  
 and Rd,Rs # register to register 
 or Rd,Rs # register to register 
 eor Rd,Rs # register to register 
 not Rd # register 
 inc Rd # register 
 dec Rd # register 
  
# compare instruction format:         
 cmp Rd,Rs # register to register – sets flag 
# branch instruction formats:         
 bg location # branch greater to location 
 bl location # branch less to location 
 beq location # branch equal to location 
 
 jmp location # jump to location 
 
# robot instruction formats: 

rinit  # initialize communication 
 rsens Rd # read robot sensors  
 rspeed  Rright,Rleft               # set robot motor speeds 
 

 
Figure 4: Minimal instruction subset 

 
 

64K byte memory 
Instruction Pointer Register 

Flag Register 

Sixteen 32-bit registers 

CPU  Memory 



Proceedings of the 2006 IJME – INTERTECH Conference 

Implementation of the Instruction Subset 
 
The simulated CPU was implemented in Pentium assembly language using AT&T assembler 
syntax under Linux.  The code used for this feasibility study is contained in the appendix with 
portions extracted for illustration in the figures below.  The simulated CPU was implemented 
with 64K memory and sixteen 32-bit registers defined as arrays.  The virtual CPU code to be 
interpreted by the simulator was assembled into the 64K memory array.  The Pentium edi 
register was reserved for the simulated instruction pointer, and register ecx was designated as the 
flag register which is referenced by the simulated CPU compare instruction.   
 
The main loop in the CPU simulator carried out the classic fetch-decode-execute cycle as shown 
in Figure 5, with op-codes fetched from the memory array indexed by Pentium register edi.  The 
decode-execute routines for individual instructions were reached through a dispatch table of 
pointers indexed by the operation field of the op-code.  The individual instruction routines 
perform the appropriate operations and adjust the instruction pointer before returning to the main 
fetch-decode-execute loop. 
 
 
# *************************************** fetch-decode-execute CPU cycle **************************************# 
# 
#     AT&T assembly syntax is used. 
#     Register %edi is used as the simulated instruction pointer. 
#     Register %eax is a scratch register. 
#     The simulated 64K memory array is “smem” and  
#     “optbl” is the instruction dispatch table which is indexed by operation. 
# 
# *******************************************************************************************************************# 
-start: 
 movl $0,%edi # Load the simulated ip with address zero 
fetch: 
 andl 0xffff,%edi # Fetch the op code from the simulated memory 
     movb smem(,%edi,1),%al 
 and $0xff,%eax 
decode: 
 movl optbl(,%eax,4),%eax # Decode by operation dispatch table  
 incl %edi 
execute:  
 call *%eax # Call the inst execution routine and store results 
repeat: 
 jmp fetch # Go back and fetch the next instruction 
 

 
Figure 5: The fetch-decode-execute CPU cycle 

 
A sample routine implementing one virtual CPU instruction is shown in Figure 6.  Specifically, 
this shows the implementation of the “mov Rd,Rs” instruction, which moves the contents of a 
source register, Rs, to a destination register, Rd.  It is represented in memory as a two byte op-
code with the first byte specifying the operation and the second byte encoding the source and 
destination registers.  
 



Proceedings of the 2006 IJME – INTERTECH Conference 

 
# *************************************************** mov Rd,Rs ***************************************************# 
# 
#     AT&T assembly syntax is used. 
#     Move the contents of the source register Rs to the destination register Rd.                                         
#     The instruction pointer, %edi, points to the second byte of the op-code on entry. 
#     Registers %eax and %ebx are scratch registers. 
#     The simulated memory array is “smem” and “regs” is the array of simulated registers. 
# 
# *******************************************************************************************************************# 
 
 movb smem(,%edi,1),%al # get registers from instruction 
 andl $0xff,%eax 

movl %eax,%ebx 
andl $0x0f,%eax # source register index to eax 

 sarl $4,%ebx # destination register index to ebx  
 movl regs(,%eax,4),%eax # get contents from register 
 movl %eax,regs(,%ebx,4) # move contents to destination  
 incl %edi    

ret 
 
 

Figure 6: A sample instruction implementation 
 
Results 
 
The simulator described above required approximately fifteen Pentium instructions to process 
each simulated CPU instruction.  This includes the instruction specific code plus the constant 
overhead of the fetch-decode-execute loop that is shown in Figure 5.  While the instruction ratio 
can provide an initial indication of relative times, on modern processors actual time penalties are 
dependent on the host computer architecture and performance must be verified through 
benchmarking.  
 
To provide a benchmark performance estimate, programs were developed to compare the 
execution time for each simulated instruction with its Pentium equivalent over a large number of 
repetitions.  Specifically, the resulting programs were executed on a 1.73 GHz Pentium, 512M 
notebook under Linux.  Each simulated instruction and its equivalent Pentium counterpart was 
executed ten million times.  Table 1 shows the average time for the load, increment, exclusive or, 
and compare instructions derived from the UNIX “time” command.   The time required to 
execute the programs running under the CPU simulator was ten to thirty times greater than the 
time necessary for the equivalent Pentium instructions.  
 
With benchmarks indicating approximately an order-of-magnitude speed penalty, verification 
was necessary to ensure that the simulated CPU was capable of controlling the robot in real time.  
To this end robot control routines were developed in the simulated instruction set to move the 
robot forward, follow the left-hand wall, sense a barrier, and turn right.  These routines were 
combined to form a program that allowed the robot to move in a simple, continuous loop. These 
programs were hand-translated into machine code, and placed into the CPU simulator memory 
for execution.  A sample routine written with the simulated instruction set to move the robot and 
test the sensor values is shown in Figure 7.   



Proceedings of the 2006 IJME – INTERTECH Conference 

Table 1: Instruction timing comparisons 
 

Average User Time
Instruction (seconds) Ratio

ldi (load immediate)
cpu simulator 0.080 11.0
intel assembly 0.007

inc (increment)
cpu simulator 0.076 13.5
intel assembly 0.006

eor (exclusive or)
cpu simulator 0.096 17.9
intel assembly 0.005

cmp (compare)
cpu simulator 0.091 27.2
intel assembly 0.003  

 
 
 
# initialization 
 rinit  
 ldi R1,$256 # R1 = the address for sensor values 

ldi R5,$300 # R5 = value for too close to obstacle 
  
# move robot forward        
 ldi R3,$1  # R3 = left motor speed 
  ldi R4,$1 # R4 = right motor speed 
 rspeed R3,R4 
 
# check left sensor 

rsens R1 
ld R2,memaddr # R2 = first sensor value returned 

 cmp R2,R5 
 bg address 
 

 
Figure 7: A sample routine to move the robot and test a sensor value 

 
The resulting program executed by the CPU simulator was able to control both the simulated 
Khepera and the actual Khepera II robot.  When tested on a Pentium 2.2 GHz, 512M notebook 
computer running Linux and using a serial port to communicate with the robot, the Khepera II 
robot was able to respond to commands at a forward speed of up to 8 cm/sec.   It was also able to 
follow walls to successfully navigate a rectangular area.  This compares favorably with native 
Pentium code in the same environment, which sustained robot speeds up to 10 cm/sec. 
 
Conclusions and Future Work 
 
The preliminary results are encouraging.  It is feasible to control both the robot simulation as 
well as an actual robot using a CPU simulator designed specifically for this task.  The success 
obtained with a limited machine instruction set and a minimum number of robot control 



Proceedings of the 2006 IJME – INTERTECH Conference 

instructions suggests the possibility of increasing the sophistication of the instruction set to give 
students a more realistic implementation project. 
 
To this end, several changes are planned.  These changes include specifying a variety of memory 
addressing modes including: register, constant, memory address, and indirect register references.  
The program control instructions will be expanded, the compare/branch instructions reworked, 
and minor organizational changes will be incorporated. A draft of the anticipated instruction set 
is shown in Figure 8. 
 
 
# load instruction formats:  
# (also applies to and, or, eor, and add instructions) 
 ld Rd,Rs # register to register 
 ld Rd,$immed # immediate to register 
 ld Rd,memaddr # memory address to register 
 ld Rd,memaddr[Rs] # memory addr + register to register  
 ld Rd,*Rs # register indirect to register 
 
# store instruction formats:  
 st Rd,memaddr # register to memory address 
 st Rd,memaddr[Rs] # register to memory addr + register  
 st Rd,*Rs # register to register indirect 
  
# jump instruction formats:         
 jmp location # jump to location 
 jmp *Rd # jump register indirect 
 jal Rd,location # jump and link to location 
 jgt Rd,Rs,location # jump to location if Rd > Rs 
 jgt Rd,$immed,location # jump to location if Rd > $immed 
 jlt Rd,Rs,location # jump to location if Rd < Rs 
 jlt Rd,$immed,location # jump to location if Rd < $immed 
 jeq Rd,Rs,location # jump to location if Rd = Rs 
 jeq Rd,$immed,location # jump to location if Rd = $immed 
 jez Rd,location # jump to location if Rd = 0 
 
# robot instruction formats: 

rinit  # initialize communication 
 rsens  # read robot sensors (into registers) 

rspeed  Rright,Rleft               # set robot motor speeds 
 rspeed  $immed,$immed # set robot motor speeds 
 

 
Figure 8: Expanded instruction set formats 

 
Finally, to help students create robot control programs in the simulated environment, a simple 
assembler is currently under development to avoid hand-translating the virtual CPU instructions 
into machine code.  
 
Summary 
 
This study established that a simulated CPU is capable of controlling both simulated and actual 
robots using a simple instruction set.  We believe that having students implement an expanded 



Proceedings of the 2006 IJME – INTERTECH Conference 

version of this instruction set, including register and memory access modes, along with writing 
subsequent robot-control programs in their own CPU, will provide a rich environment for a 
deeper understanding of the CPU impact on program development. 
 
 
 
Bibliography 
 
[1] Wolfer, J. and H. Rababaah. "Creating a Hands-On Environment for Teaching Assembly 
Language Programming." Global Congress on Engineering: Technology Education, 2005. 
 
[2] Bem, Ewa Z. and Luke Petelczyc. “MiniMIPS – A Simulation Project for the Computer 
Architecture Laboratory.” Proceedings of the 34th SIGCSE Technical Symposium in Computer 
Science Education, Reno, Nevada, Feb. 19 -13, 2003. 
 
[3] Ellard, Daniel et al. “On the Design of a New CPU Architecture for Pedagogical Purposes.” 
Proceedings of the Ninth Workshop on Computer Architecture Education, Anchorage, Alaska, 
May 2002. 
 
[4] Scott, Kirk. “MISC: The Minimal Instruction Set Computer.” Proceedings of the 7th Annual 
Conference on Innovation and Technology in Computer Science Education, Aarthus, Denmark, 
2002. 
 
[5] K-Team S.A. Khepera II User Manual. version 1.1. K-Team, 2002. 
 
[6] Michael, O. "Khepera Simulator package version 2.0: Freeware mobile robot simulator." 
written at the University of Nice Sophia-Antipolis by Oliver Michael.  Downloadable from the 
World Wide Web. <http://diwww.epfl.ch/lami/team/michael/khep-sim>. 
 
 
 
Biographies 
 
SUSAN L. GORDON is a graduate student at Indiana University South Bend in Applied 
Mathematics and Computer Science. 
 
JAMES WOLFER is Associate Professor of Computer Science at Indiana University South 
Bend.  He earned his Ph.D. (Computer Science, 1993) from Illinois Institute of Technology.  His 
research interests include naturally inspired computing for real-world problem solving, 
visualization in science and medicine, and computer science education. 

 



Proceedings of the 2006 IJME – INTERTECH Conference 

Appendix 
 
# Program: cpu.s 
# Function: CPU simulator for passing robot commands 
# Updated: c335, February 7, 2006 - CPU project 
   
  .section .data 
 
#==================================================================== 
# Simulator Memory, 16bit address, 64K max 
#          A program to make the robot turn right at a barrier and follow left wall is 
#          loaded into the memory for testing. 
#==================================================================== 
#    Simulator register use for the test program: 
#         r1 = data area pointer 
#        r2 = compare register 
#    Registers 5 through 8 are used to hold the threshold values 
#   that will be compared to the robot sensor data returned by 
#   the ‘rsens’ command: 
#        r5 = wall ahead  
#        r6 = clear ahead 
#       r7 = side too close 
#        r8 = side too far  
#==================================================================== 
 
smem: 
                                                                        #initialization 
 .byte 0x0F,0x00    #   rinit 
 .byte 0x07,0x01    #   ldi r1,(64*4) 
 .long 64*4 
 .byte 0x07,0x05                                    #   ldi r5,300 
 .long 300 
 .byte 0x07,0x06    #   ldi r6,60 
 .long 60 
 .byte 0x07,0x07      #   ldi r7,300 
 .long 300 
 .byte 0x07,0x08    #   ldi r8,50 
 .long 50 
      #go_forward 
 .byte 0x07,0x03,0x01,0x00,0x00,0x00 #   ldi r3,1 
 .byte 0x07,0x04,0x01,0x00,0x00,0x00 #   ldi r4,1 
 .byte 0x11,0x34    #   rspeed r3,r4 
      #check_forward_sensors 
 .byte 0x10,0x01    #   rsens r1 
 .byte 0x08,0x02,0x0C,0x01,0x00,0x00 #   ld r2,(rsloc+12) 
 .byte 0x0A,0x25    #   cmp r2,r5 



Proceedings of the 2006 IJME – INTERTECH Conference 

 .byte 0x0B,0x00,0x6A,0x00,0x00,0x00 #   bg  (look_left) 
      #turn_hard_right 
 .byte 0x07,0x03,0x01,0x00,0x00,0x00 #   ldi r3,1 
 .byte 0x07,0x04,0xFF,0xFF,0xFF,0xFF #   ldi r4,-1 
 .byte 0x11,0x34    #   rspeed r3,r4 
      #check_clear 
 .byte 0x10,0x01    #   rsens r1 
 .byte 0x08,0x02,0x04,0x01,0x00,0x00 #   ld r2,(rsloc+4) 
 .byte 0x0A,0x26    #   cmp r2,r6 
 .byte 0x0C,0x00,0x4C,0x00,0x00,0x00 #   bl  (check_clear) 
      #reset_forward 
 .byte 0x07,0x03,0x01,0x00,0x00,0x00 #   ldi r3,1 
 .byte 0x07,0x04,0x01,0x00,0x00,0x00 #   ldi r4,1 
 .byte 0x11,0x34    #   rspeed r3,r4 
      #look_left 
 .byte 0x10,0x01    #   rsens r1 
 .byte 0x08,0x02,0x00,0x01,0x00,0x00 #   ld r2,(rsloc) 
      #too_close 
 .byte 0x0A,0x27    #   cmp r2,r7 
 .byte 0x0B,0x00,0x8E,0x00,0x00,0x00 #   bg  (too_far) 
      #go_right 
 .byte 0x07,0x03,0x02,0x00,0x00,0x00 #   ldi r3,2 
 .byte 0x07,0x04,0x01,0x00,0x00,0x00 #   ldi r4,1 
 .byte 0x11,0x34    #   rspeed r3,r4 
 .byte 0x0E,0x00,0x20,0x00,0x00,0x00 #   jmp  (go_forward) 
      #too_far 
 .byte 0x0A,0x28    #   cmp r2,r8 
 .byte 0x0C,0x00,0x20,0x00,0x00,0x00 #   bl  (go_forward) 
      #go_left 
 .byte 0x07,0x03,0x01,0x00,0x00,0x00 #   ldi r3,1 
 .byte 0x07,0x04,0x02,0x00,0x00,0x00 #   ldi r4,2 
 .byte 0x11,0x34    #   rspeed r3,r4 
 .byte 0x0E,0x00,0x20,0x00,0x00,0x00 #   jmp  (go_forward) 
 
 .rept 65536-170 
 .byte 0xff 
 .endr 
 
#==================================================================== 
# Simulator registers, 16 32-bit registers 
# Initialized to 0x00 - 0x0F on "boot" 
#==================================================================== 
 
regs: 
 .long 0,1,2,3,4,5,6,7 
 .long 8,9,10,11,12,13,14,15 



Proceedings of the 2006 IJME – INTERTECH Conference 

            # These names were used for debugging: 
 rsloc = smem+(64*4) # rsens output memory address 
 reg0 = regs                  # reg0 will be flag register for compare 
 reg1 = regs + 4 # reg1 will be address for robot output 
 reg2 = regs + 8   #  
 reg3 = regs + 12 
 reg4 = regs + 16 
 reg5 = regs + 20 
 reg6 = regs + 24 
 reg7 = regs + 28 
 reg8 = regs + 32 
 reg9 = regs + 36 
 rega = regs + 40 
 regb = regs + 44 
 regc = regs + 48 
 regd = regs + 52 
 rege = regs + 56 
 regf = regs + 60 
  
#========================================================== 
# Operation dispatch table 
#           It contains the routine to process each op-code, 256 max  
#========================================================== 
optbl:  
 .long mov00 
 .long and01 
 .long or02 
 .long eor03 
 .long not04 
 .long inc05 
 .long dec06 
 .long ldi07 
 .long ld08 
 .long st09 
 .long cmp0A 
 .long bg0B 
 .long bl0C 
 .long beq0D 
 .long jmp0E 
 .long rinit 
 .long rsens 
 .long    rspeed 
 .rept 256-18 
 .long  opFF 
 .endr 
 



Proceedings of the 2006 IJME – INTERTECH Conference 

#==================================================================== 
# Misc. data follows  
#==================================================================== 
# Control String for op-codes not yet implemented 
nostr:  .string "Not Implemented: %d\n" 
 
# Robot Sensor Control String 
rsctl: .string "N\n" 
 
# Robot Command to Set Speed  
rspeedctl:  
 .ascii  "D,%d,%d\n\0" # Sets left and right motor speeds 
rspeedbuf: 
 .space 80  # buffer to hold command formatted by sprintf 
 
# Temporary storage for simulated IP 
ipsv: .long 0 
 
# Extra control strings used for debugging:   
# Control strings for register print 
reg_print1:   
 .string "Reg0 - %x, Reg1 - %x, Reg2 - %x, Reg3 - %x\n"  
reg_print2:   
 .string "Reg4 - %x, Reg5 - %x, Reg6 - %x, Reg7 - %x\n"  
reg_print3:   
 .string "Reg8 - %x, Reg9 - %x, RegA - %x, RegB - %x\n"  
reg_print4:      
 .string "RegC - %x, RegD - %x, RegE - %x, RegF - %x\n"  
# Control string for robot sensors print 
rsprt: .string "Robot Sensors: %d,%d,%d,%d,%d,%d,%d,%d\n"   
 
 
 
 .globl _start 
 .section .text 
 
#***************************************************************************** 
#  
# Simulator CPU: Fetch, Decode, Execute 
# 
#              - Register %edi is used as the simulated instruction pointer 
#              - Register %eax is a scratch register 
#              - The simulated 64K memory is smem 
#              - ‘optbl’ is the instruction dispatch table index by operation 
# 
#***************************************************************************** 



Proceedings of the 2006 IJME – INTERTECH Conference 

  
_start:  
 movl $0,%edi  # simulated ip 
fetch: 
 andl $0xffff,%edi  # Mod 65536 
 movb smem(,%edi,1),%al # Fetch opcode 
 andl $0xff,%eax  # isolate opcode in register 
 movl optbl(,%eax,4),%eax # Decode: get address of routine 
 incl %edi   # Bump ip to next byte of operation 
 call *%eax   # Execute the instruction 
# call regprint  # For debugging only 
 jmp fetch 
 
#==================================================================== 
#        Instruction Execution Routines 
#==================================================================== 
#------------------------------------------------------------------------------------------------------------------- 
# Move source register,Rs, to destination register, Rd. 
# format - mov  Rd,Rs 
------------------------------------------------------------------------------------------------------------------- 
mov00: 
 movb smem(,%edi,1),%al 
 andl $0xff,%eax 
 movl %eax,%ebx 
 andl $0x0f,%eax                 # Rs number in %eax 
 sarl $4,%ebx                      # Rd number in %ebx 
 movl regs(,%eax,4),%eax    # Rs value to %eax 
 movl %eax,regs(,%ebx,4)    # Value to Rd 
 incl %edi   # Point ip to next instruction 
 ret 
  
#------------------------------------------------------------------------------------------------------------------- 
# Bitwise logical and of Rs with Rd with the result in Rd. 
# format - and  Rd,Rs 
#------------------------------------------------------------------------------------------------------------------- 
and01: 
 movb smem(,%edi,1),%al 
 andl $0xff,%eax 
 movl %eax,%ebx 
 andl $0x0f,%eax  # Rs number in %eax 
 sarl $4,%ebx  # Rd number in %ebx 
 movl regs(,%eax,4),%eax # Rs value to %eax 
 andl regs(,%ebx,4),%eax # and with Rd value 
 movl %eax,regs(,%ebx,4) # Result to Rd 
 incl %edi   # Point ip to next instruction 
 ret 



Proceedings of the 2006 IJME – INTERTECH Conference 

#------------------------------------------------------------------------------------------------------------------- 
# Bitwise logical or of Rs with Rd with the result in Rd 
# format - or  Rd,Rs 
#------------------------------------------------------------------------------------------------------------------- 
or02: 
 movb smem(,%edi,1),%al 
 andl $0xff,%eax 
 movl %eax,%ebx 
 andl $0x0f,%eax  # Rs number in %eax 
 sarl $4,%ebx  # Rd number in %ebx 
 movl regs(,%eax,4),%eax # Rs value to %eax 
 orl  regs(,%ebx,4),%eax # or with Rd value 
 movl %eax,regs(,%ebx,4) # Result to Rd 
 incl %edi   # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Bitwise logical eor of Rs with Rd with the result in Rd. 
# format - eor  Rd,Rs 
#------------------------------------------------------------------------------------------------------------------- 
eor03: 
 movb smem(,%edi,1),%al 
 andl $0xff,%eax 
 movl %eax,%ebx 
 andl $0x0f,%eax  # Rs number in %eax 
 sarl $4,%ebx  # Rd number in %ebx 
 movl regs(,%eax,4),%eax # Rs value to %eax 
 xorl  regs(,%ebx,4),%eax # eor with Rd value 
 movl %eax,regs(,%ebx,4) # Result to Rd 
 incl %edi   # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Bitwise logical not of Rd with the result in Rd 
# format - not  Rd 
#------------------------------------------------------------------------------------------------------------------- 
not04: 
 movb smem(,%edi,1),%al 
 andl $0x0f,%eax  # Rd number in %eax  
 notl  regs(,%eax,4)  # not Rd value 
 incl %edi   # Point ip to next instruction 
 ret 
 
 
 
 



Proceedings of the 2006 IJME – INTERTECH Conference 

#------------------------------------------------------------------------------------------------------------------- 
# Add 1 to Rd. 
# format - inc  Rd 
#------------------------------------------------------------------------------------------------------------------- 
inc05: 
 movb smem(,%edi,1),%al 
 andl $0x0f,%eax  # Rd number in %eax 
 incl  regs(,%eax,4)  # Increase Rd value 
 incl %edi   # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Subtract 1 from Rd. 
# format - dec  Rd 
#------------------------------------------------------------------------------------------------------------------- 
dec06: 
 movb smem(,%edi,1),%al 
 andl $0x0f,%eax  # Rd number in %eax 
 decl  regs(,%eax,4)  # Decrease Rd value 
 incl %edi   # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Load an immediate value into register Rd. 
# format - ldi  Rd,$immediate 
#------------------------------------------------------------------------------------------------------------------- 
ldi07: 
 movb smem(,%edi,1),%al 
 andl $0x0f,%eax  # Rd number in %eax 
 incl  %edi   # Next location in storage is the 
 movl smem(,%edi,1),%ebx #   4 byte immediate value to %ebx 
 movl %ebx,regs(,%eax,4) # Move the value to specified register 
 addl $4,%edi  # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Load a value from storage into register Rd. 
# format - ld  Rd,address 
#------------------------------------------------------------------------------------------------------------------- 
ld08: 
 movb smem(,%edi,1),%al 
 andl $0x0f,%eax  # Rd number in %eax 
 incl  %edi   # Next location in storage is the 
 movl smem(,%edi,1),%ebx #   address of data to move to %ebx 
 movl    smem(,%ebx,1),%ebx 
 movl %ebx,regs(,%eax,4) # Move the value to specified register 



Proceedings of the 2006 IJME – INTERTECH Conference 

 addl $4,%edi  # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Put a value from a register into storage at (smem + address). 
# format - st  Rd,address 
#------------------------------------------------------------------------------------------------------------------- 
st09: 
 movb smem(,%edi,1),%al 
 andl $0x0f,%eax  # Rs number in %eax 
 movl regs(,%eax,4),%eax # Value in register to %eax 
 incl  %edi   # Next location in storage is the 
 movl    smem(,%edi,1),%ebx #   offset in memory for value 
 movl %eax,smem(,%ebx,1) # Value from Rs to memory 
 addl $4,%edi  # Point ip to next instruction 
 ret 
  
#------------------------------------------------------------------------------------------------------------------- 
# Compare value in R2 to R1 with the result code in reg 0 - 00 = less 
#                                                  01 = greater 
#                                                  02 = equal    
# format - cmp  R1,R2 
#------------------------------------------------------------------------------------------------------------------- 
cmp0A: 
 movb smem(,%edi,1),%al 
 andl $0xff,%eax 
 movl %eax,%ebx 
 andl $0x0f,%eax  # R2 number in %eax 
 sarl $4,%ebx  # R1 number in %ebx 
 movl  $0,regs   # Clear reg0 for flag values 
 movl regs(,%eax,4),%eax    # Value in register to %eax 
 movl    regs(,%ebx,4),%ebx   # Value in register to %ebx 
 cmpl %ebx,%eax  # Compare R2,R1 
 jle less_or_equal 
 movl $1,reg0  # Code for greater = 1 
 jmp end_cmp 
less_or_equal:  
 jl end_cmp  # Code for less = 0 
 movl $2,reg0  # Code for equal = 2 
end_cmp:  
 incl %edi   # Point ip to next instruction 
 ret 
 
 
 
 



Proceedings of the 2006 IJME – INTERTECH Conference 

#------------------------------------------------------------------------------------------------------------------- 
# Branch greater - used with compare R2 to R1 instruction tests result code in reg0,  
#          01 = greater. 
# format - bg address 
#------------------------------------------------------------------------------------------------------------------- 
bg0B: 
 incl %edi   # Move to address part of instruction 
 cmpl $1,reg0  # Code for greater 
 jne       no_bg 
 movl smem(,%edi,1),%edi # Move specified address to ip 
 jmp fetch 
no_bg:   
 addl $4,%edi  # Move ip past branch address not taken 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Branch less - used with compare R2 to R1 instruction tests result code in reg0,  
# 00 = less. 
# format - bl address 
#------------------------------------------------------------------------------------------------------------------- 
bl0C: 
 incl %edi   # Move to address part of instruction 
 cmpl $0,reg0  # Code for less 
 jne        no_bl 
 movl smem(,%edi,1),%edi # Move specified address to ip 
 jmp fetch 
no_bl:   
 addl $4,%edi  # Move ip past branch address not taken 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# Branch equal - used with compare R2 to R1 instruction tests result code in reg0,  
# 02 = equal. 
# format - beq address 
#------------------------------------------------------------------------------------------------------------------- 
beq0D: 
 incl %edi   # Move to address part of instruction 
 cmpl $2,regs   # Code for equal 
 jne       no_beq 
 movl smem(,%edi,1),%edi # Move specified address to ip 
 jmp fetch 
no_beq:   
 addl $4,%edi  # Move ip past branch address not taken 
 ret 
 
 



Proceedings of the 2006 IJME – INTERTECH Conference 

#------------------------------------------------------------------------------------------------------------------- 
# Unconditional branch. 
# format - jmp address 
#------------------------------------------------------------------------------------------------------------------- 
jmp0E: 
 incl %edi 
 movl smem(,%edi,1),%edi # Move specified address to ip 
 jmp fetch 
 
#------------------------------------------------------------------------------------------------------------------- 
# rinit --  Open pipes to robot. 
#------------------------------------------------------------------------------------------------------------------- 
rinit: 
 call open_pipes 
 incl %edi   # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# rsens -- Read robot sensors. 
#------------------------------------------------------------------------------------------------------------------- 
rsens: 
 movb smem(,%edi,1),%al 
 andl $0xFF,%eax 
 movl regs(,%eax,4),%eax # Rd value to %eax = offset 
 addl $smem,%eax  # Get storage addr in smem  
 pushl $rsctl   # Push command string 
 pushl %eax   # Push addr to return data 
 movl %edi,ipsv  # Save ip 
 call sndRcv_0  # Issue robot command 
 addl $8,%esp 
 
#          pushl rsloc+28  # Call to print sensors 
# pushl rsloc+24  #    just for debugging 
# pushl rsloc+20 
# pushl rsloc+16 
# pushl rsloc+12 
# pushl rsloc+8 
# pushl rsloc+4 
# pushl rsloc 
# pushl $rsprt 
# call printf 
# addl $36,%esp 
  
 movl ipsv,%edi  # Restore ip 
 incl %edi   # Point ip to next instruction 
 ret 



Proceedings of the 2006 IJME – INTERTECH Conference 

#------------------------------------------------------------------------------------------------------------------- 
# Set robot speed. 
#       format - rspeed Rleft, Rright 
#                       Rleft - register containing left motor speed 
#   Rright - register containing right motor speed 
#   valid speed values are -127 to 127    
#   reg1 has response address for testing 
#------------------------------------------------------------------------------------------------------------------- 
rspeed: 
 movl %edi,ipsv  # Save ip register before call 
 movb smem(,%edi,1),%al 
 andl $0xff,%eax 
 movl %eax,%ebx 
 andl $0x0f,%eax  # Rr to %eax 
 movl regs(,%eax,4),%eax # Move right speed value to %eax 
 sarl $4,%ebx  # Rl to %ebx 
 movl regs(,%ebx,4),%ebx # Move left speed value to %ebx 
 pushl %eax 
 pushl %ebx 
 pushl $rspeedctl 
 pushl $rspeedbuf 
 call sprintf 
 pushl $rsloc 
 call sndRcv_0 
 
 addl $20,%esp 
  
 movl ipsv,%edi 
 incl %edi   # Point ip to next instruction 
 ret 
 
#------------------------------------------------------------------------------------------------------------------- 
# OpFF -- Temporary operation 
#------------------------------------------------------------------------------------------------------------------- 
opFF: 
 pushl $0xFF #Print its own op-code 
 jmp notimp 
 
#------------------------------------------------------------------------------------------------------------------- 
# Notimp: Default operation for operations not implemented 
# Should never happen in actual program, represents an 
# error.  Treat as no-op for now. 
#------------------------------------------------------------------------------------------------------------------- 
notimp: 
 movl %edi,ipsv                    # In case printf changes ip 
 pushl  $nostr                         # Pointer to control string 



Proceedings of the 2006 IJME – INTERTECH Conference 

 call  printf 
 addl $8,%esp 
 movl ipsv,%edi                    # Restore simulator ip 
 call exit                              # Stop program on bad op 
 ret                                            # Should never get here, but in case 
 
#------------------------------------------------------------------------------------------------------------------- 
# regprint - print registers for debugging 
#------------------------------------------------------------------------------------------------------------------- 
regprint: 
 movl %edi,ipsv            # In case printf changes ip 
 pushl reg3             # Register values 
 pushl reg2 
 pushl reg1 
 pushl reg0 
 pushl  $reg_print1  # Pointer to control string 
 call  printf 
 addl $20,%esp 
 pushl reg7   # Register values 
 pushl reg6 
 pushl reg5 
 pushl reg4 
 push  $reg_print2  # Pointer to control string 
 call  printf 
 addl $20,%esp  
 pushl regb   # Register values 
 pushl rega 
 pushl reg9 
 pushl reg8 
 push  $reg_print3  # Pointer to control string 
 call  printf 
 addl $20,%esp 
 pushl regf   # Register values 
 pushl rege 
 pushl regd 
 pushl regc 
 push  $reg_print4  # Pointer to control string 
 call  printf 
 addl $20,%esp 
 movl ipsv,%edi  # Restore simulator ip 
 ret          


