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Abstract 
 
This research paper presents the implementation of an adaptive learning algorithm from 
artificial intelligence known as Reinforcement Learning in a robot that must deal with more 
than one reward where the rewards may come into conflict with each other.  A case that 
practically illustrates this problem is in a service industry environment where a robot is 
implemented to pick up objects for cleaning and/or attending to clients.  An example of 
conflicting rewards for this application would be achieving a high reward for quickly picking 
up objects which typically conflicts with minimizing any damage inflicted on the object 
during the picking up process.   

 
The innovative component of our research is that we will use multiple competing rewards for 
some states in contrast to the single reward per state method traditionally used in 
Reinforcement Learning.  We compare these two approaches through the implementation of 
a Lego Mindstorm robot that has been programmed with both learning methods.  The 
objective of our robot is to pick up objects quickly without damaging the object.  We 
illustrate the conditions under which it is advantageous to use a single state for competing 
rewards over a multi-state approach through practical comparisons on efficiency for our 
Lego robot.    
 
The objective of this research is to broaden the adaptability of learning robots.  The impact 
on service industries, such as hotel and restaurant service, of this research would be to 
increase the acceptability of adaptable robots into fields of manual labor that have 
traditionally been limited due to the inflexibility of robots in dealing with dynamic situations. 
 
Introduction 
 
Although robots have been used to perform tasks since the beginning of the industrial age, it 
is only in the past 20 years, since the advent of artificial intelligence research, that has 
allowed for the implementation of adaptive robots that can handle tasks that are not 
completely repetitive [1].  A learning robot fundamentally differs from a robot that performs 
a repetitive task in that the learning robot can modify its behavior with sensory feedback.  
One of the most popular learning methods for implementing such robots is the 
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Reinforcement Learning system [1].  This approach has been used to implement robots that 
can act as tour guides [2], robotic nurses [3], and automobile drivers [4].  The learning 
component of these robots makes them more flexible so that they can modify their behavior.   
 
Reinforcement Learning operates by modeling the environment as a network of states, S, 
where actions, A, can be taken to move from one state to another.  Rewards, R, are 
associated with each state and the general goal is to maximize the long-term rewards one 
may obtain as one navigates through the environment.  In order to achieve this goal one 
needs to develop a function known as a ‘policy’ (represented by the symbol π) which maps 
states to action: π(S) → A.  The main objective is to find what is known as an optimal policy, 
π* that produces the best long-term rewards navigating through the environment using 
function π* [5]. 

 
The Reinforcement Learning approach to modeling the world and developing an optimal 
policy works very well for a broad range of applications.  However it is generally limited in 
the sense that it assumes a single reward for any given state [6] [7].  There are a variety of 
situations where this is not necessarily the case.  For instance, in a service industry robot, we 
may wish to implement a robot that can pick up objects for cleaning purposes, such as 
cleaning up hotel rooms.  One natural single state is to have successfully grabbed an object 
for pick up.  For an efficient cleaning robot to achieve this state of successfully grabbing an 
object for pick up, two problems however must be overcome: 

1. Enough pressure must be applied to the object with the robot’s grabbing apparatus so 
that the object does not slip through. 

2. Excessive amounts of pressure must not be applied or the robot would damage the 
object. 

 
These two challenges can be viewed as competing rewards to achieve the same state.  This 
state is the grabbing of the object, which is essentially applying just the right pressure to pick 
up the object without damaging it.  The competing computed rewards would be, the more 
pressure applied, the greater the chance of successfully picking up the object, with an 
opposing reward of the less pressure applied, the greater the chance of successfully not 
damaging the object for pick up. 
 
An alternative approach, which is often used, is to split the two competing rewards into 
separate states, one state for each reward.  However this is not a natural solution for many 
real situations such as the cleaning robot problem.  For the cleaning robot problem, for 
instance, the state of the amount of pressure applied to pick up an object is more naturally a 
single state.  

 
The primary goal of this research is to discern the advantages of combining competing 
rewards in a single state versus separating the rewards into separate states.  We also will 
determine the conditions under which it is more efficient to use separate states for each 
competing reward versus our combined reward/single state alternative. 
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The major benefit to adding in a multiple reward structure for each state is that we provide 
more options in implementing robots.  This greater flexibility in implementation allows for 
greater adaptability in learning robots.   
 
Background on Reinforcement Learning 
 
A Reinforcement Learning system models the environment as a network of states, where 
transitions from one state to the next follow a Markov reward process on a finite set of N 
states.  Recall that we transition from one state to another by choosing an action that moves 
us into another state, given the current state we are in and the action chosen.  This produces a 
set of transition probabilities.  We choose actions based on a policy function π, which maps 
states to actions.  The goal is to find an optimal policy that produces the best long-term 
rewards [1].  To do so, we start by arbitrarily choosing a policy and evaluating it for long-
term rewards.  This evaluation is possible due to the Markov process assumption [8]. 
 

 
 

Figure 1:  Program Flow Chart 
 
A Markov process implies that in a given state, n, one transitions to a next state, m, by the 
conditional probability model P(Si+1=m|Si=n), where we assume the transition probabilities 
do not change over process time i (stationarity assumption) [9].  Such a transition model can 
be represented by an N x N matrix P, where P(n,m) denotes P(Si+1=m|Si=n) for all process 
times i.  The reward Ri observed at time i is independent of all other rewards and states given 
the state Si visited at time i.  We also assume the reward model is stationary and therefore let 
r(n) denote E[Ri|Si=n] and σ(n) denote var(Ri|Si=n) for all process times i.  Thus, r and σ 
represent the vectors (of size N x 1) of expected rewards and reward variances respectively 
over the different states n=1,...,N. 
 
The value function v(n) is defined to be the expected sum of rewards obtained by starting in 
a start state S0=n.  That is, v is a vector given by: 

K+++= PrPr 2γγrv     (1) 
where 0<γ<1 is a discounting term used on the rewards. 
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We can solve this equation by substituting the infinite sequence with vector v to produce the 
equation: 

Pvrv γ+= .     (2) 
Therefore, if P and r are known then v can be calculated explicitly by solving the matrix 
equation: 

rvPI =− )( γ .   (3) 
 
We compute an estimate of the transition probabilities to produce our matrix P during our 
learning phase of the learning algorithm.  With our estimate of P and the rewards we collect 
during the learning phase to produce the vector r, we can create an estimate of the long-term 
rewards through the value function v [5].  All these values are dependent on the fixed policy 
function π.  Once we have evaluated this policy, we can then iteratively improve it by 
modifying the policy for each state to choose a better action giving improved long-term 
rewards.  It has been proven that one can non-trivially improve a policy at every iteration of 
this process until an optimal policy has been reached [11]. 
 
A variety of approaches may be implemented to choose actions for states during the learning 
phase of the Reinforcement Learning algorithm.  For our implementation we will use a 
random uniform probability method to choose among all possible actions. 
 
When implementing a real-world robot using reinforcement learning, most approaches use 
the single reward per state method [2][12].  However, in a real-world environment, such 
restrictions are very limiting when attempting to simulate a more dynamic robot that can 
adapt to gradiated conditions such as different degrees of pressure and temperature.  The 
situation is especially challenging when attempting to deal with ultimately developing 
humanoid type robots such as those considered by Peters et al. [13].   
 
Later robotic implementations dealing with more complex environments have created more 
complex functional type rewards without explicitly considering benefits and drawbacks of 
actually splitting the rewards into multiple states.  Zhumatiy et. al. [14], for instance created 
a robot with a functional reward dependent on both an obstacle and target value.  Our 
contribution is thus to consider such benefits and drawbacks to single function rewards 
versus splitting the reward into multiple states. 
  
Lego Robots 
 
For our robotic implementation, we used the Lego Mindstorm NXT kit to build our robot.  
The NXT kit includes several essential components in order for it to be useful as a learning 
robot.  The most important components are the sensors that allow for feedback to our robot to 
sense the state of its environment.  Without such sensors, it would be impossible to learn 
whether actions taken by the robot would be yielding positive or negative results.  There are 
three sensors that were used in our robot implementation: 

1. a light sensor that could send out a laser beam of light and measure the amount of 
reflected light when the beam hits an object, 
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2. an ultrasonic sensor that is used to measure distance by an approach similar to sonar 
detection, whereby distance is measured by measuring the time needed for an 
ultrasonic wave to be reflected back to the sensor, and 

3. a touch sensor, which can measure the degree to which the sensor button is pressed. 
In addition to these sensors, the robot includes servo motors, which are essential in our 
robotic implementation, so that we can apply continuous pressure through the motors on an 
object without destroying the motors themselves. 
 
In addition to the hardware of the NXT kit that made the robot learning possible, is the 
software component.  The standard Graphical User Interface system for programming NXT 
robots is very limited.  However, Lego allows for others to develop programming compilers 
for its system by making its byte code available for translation.  In our case, we used the 
NXC programming language, which stands for Not eXactly C [15].  This language allows for 
the creation of arrays, which are essential for the matrix vector computations in the 
Reinforcement Learning algorithm.  In addition, it includes random number generators and 
probability computations needed for our uniform random choices during our learning phase 
as well as the computations of the probability matrix P.  Also the language allows for 
concurrent programming mechanisms such as semaphores and mutexes to avoid multiple 
simultaneous access to controlled systems such as motors. 
 
Our Picking-Up Robot  
 

 
 

Figure 2: Picking-Up Robot 
 

For our robot implementation, we wished to create a robot that could pick up objects.  The 
variables included:  

1. the amount of pressure the robot could apply to the object in order to pick it up and  
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2. the speed at which it would try to pick up the object.   
The robot needed to be able to sense if the object was being damaged during its picking up 
process, as well as whether it had dropped the object because the pressure it was applying 
was insufficient to hold the object. 
 
Figure 2 shows our completed robot.  The arm of the robot has both the touch sensor and 
ultrasonic sensor mounted on the arm.  The claws are used to grab the object.  In order to 
avoid destroying objects during our tests, we used a sponge to simulate a delicate object.  
The touch sensor mounted above the claw would act as a sensor to decide when the object 
had been grabbed as well as if it too much pressure was being applied to the object or if the 
object was dropped.  The idea is that the touch sensor needs to be somewhat pressed in order 
for the robot to be aware that it has successfully gotten a hold of the object.  However, if too 
much pressure is applied then the sponge would be squeezed excessively and the touch 
sensor would be pressed beyond a certain threshold indicating the object had been damaged. 

 
 

Figure 3: Pick-up Reward 
 
Recall from our introduction that we have two competing rewards for a single state.  This 
state represents the amount of pressure applied to an object to pick it up.  One of the rewards 
would be a zero-one function, where if enough pressure is applied to the object, then it would 
be enough to pick the object up producing a reward of one.  Before this threshold pressure is 
reached, this reward returns zero.  Figure 3 illustrates this reward, which we will call the 
Pick-up Reward.   

 
 

Figure 4: Not Crushed Reward 
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The competing reward also is dependent on the pressure state.  It returns a value of one as 
long as pressure is below a certain breaking threshold.  Once the pressure applied to the 
object exceeds that breaking threshold, the object is considered to have been damaged and a 
value of zero is returned.  Figure 4 illustrates this reward, which we will call the Not Crushed 
Reward.   

 
 

Figure 5: Combined Reward 
 

The two competing rewards combined can be viewed as the function illustrated in figure 5.  
As pressure increases, zero reward is obtained until enough pressure is applied to pick up the 
object, then a reward of one is obtained.  This reward of one is only obtained if concurrently 
not too much pressure is applied or the breaking threshold is reached and the reward returned 
is zero. 
 
The actual sponge object we used can be dropped as well.  So if an insufficient amount of 
pressure is applied, then the sponge can be dropped, which we would consider a failed 
attempt. 
 
Our objective during our experiments is to pick up the object as quickly as possible and 
return the arm to an initial start position.  The goal of picking up an object as quickly as 
possible is directly affected by how careful the robotic arm must be at picking up this 
delicate object.  The faster the object is picked up, the more likely it is damaged because 
greater pressure is generally needed to avoid the object from being dropped when it is being 
moved at faster speeds. 
 
Theoretical Analysis 
 
The key issue we are addressing is whether there is an advantage to using a combined reward 
structure in a single state (when it is natural to do so) or is it best to artificially separate the 
rewards into two separate states in order to fit the natural Reinforcement Learning model.  In 
our service industry application, the single state of the pressure applied to the object we are 
attempting to pick up results in two rewards that somewhat oppose each other.  Each reward 
is a natural direct result of the pressure state and thus should both be assigned during that 
state.   
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A combined reward structure for a single state intuitively requires a greater degree of 
computation and depending on the complexity of how the rewards should interact, this could 
slow down computation time significantly.  However discretizing the rewards into separate 
states could also slow computation time.  Recall from equation 3 of the background section 
on Reinforcement Learning that we need to solve an N x N matrix equation in order to 
compute value estimates during a learning phase.  By splitting a single state into two states 
we actually increase the dimension size of our matrix to (N+1) x (N+1), also slowing 
computation time.  The theoretical time to solve equation 3 is in the worst case O(N3).  Thus 
the theoretical increase in time complexity with the added state would be: 

133)1( 233 ++=−+ NNNN . 
Therefore, theoretically, if the state is only visited once per sampling estimate, then as long 
as the runtime for computing the more complex single state reward, R, is: 

133)( 2 ++< NNcombinedR  
or O(N2), (i.e. the reward must run in quadratic time to the number of states or less) then the 
single combined state should be faster.  However, if the state is visited N times per sampling 
estimate, the bound decreases to: 

NNcombinedR /133)( ++<  
or O(N), (i.e. the reward must run in linear time to the number of states or less).  Note that 
these runtimes are based on a worst-case scenario of a fully connected network of states.  
The more sparsely connected the network of states, the lower this threshold would be. 
 
In addition to the running time of the reward computation is the added possible advantage of 
using a function to compute our combined reward.  Consider that the combined reward that 
takes into account multiple factors to produce its reward for its state could be the result of a 
complex interaction between the two or more rewards.  If one were to discretize the rewards 
into separate states, the only way the rewards interact directly is through a discounting 
summation of equation 1.  This means that they, at best, proportionately weight the two 
rewards and add them together as the most complex interaction when split into separate 
states.  In contrast, a single state reward function could create a much more complex 
combined reward.   
 
Experiments 
 
In our experiments, we compared our combined reward in a single state to two other 
approaches.  One alternative approach was to choose the state that assigned the Pick-up 
Reward first and then immediately follow that with a deterministic transition to the Not-
Crushed reward state.  However, if the Pick-up reward failed, then the robot immediately 
reset to try again during learning trials.  The second alternative approach was to choose the 
Not-Crushed reward state first then immediately followed with the Pick-up Reward state but 
only if the Not-Crushed reward had not failed.  We followed this approach since it seems 
intuitively obvious that if one fails to pick up the object, there is no point in testing if the 
object is crushed.  Similarly, if the object was crushed, there is no need to check if the object 
was picked up.   
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We ran 12 trials where each trial allowed for 3 minutes of learning to find an optimal choice 
of speed and pressure to pick up our sponge object without crushing it.  We recorded how 
many practice attempts were tried during each three minute learning phase.  We also 
recorded the times each practice attempt took and whether they failed to pick up the sponge 
or crushed it.  Finally for each trial we recorded an exploitation phase where the robot 
demonstrates the best learned attempt to pick up the sponge. 
 

 
 

Figure 6: Time of Learned Pick-up 
 
Figure 6 illustrates graphically the time that it took the robot to pick up the object using the 
best learned approach in each trial.  As can be seen graphically, the Combined Reward in a 
single state for our pressure value, has the greatest variability in terms of learned result.  It 
not only produced the best learned result (shortest time to successfully pick up the sponge 
without crushing it), but also the worst learned result (longest successful time) over our 12 
trials.  We tested a null hypothesis that the means of the learned trials for each approach were 
different from each other ( ji µµ ≠ , where i  and j  represent our three different reward 
approaches, ji ≠ ).  With 99% confidence interval, none of the means could be accepted as 
different.  Thus we would accept that all three approaches on average produce comparable 
learned best pick-ups.  But the variance of the Combined Reward method did significantly 
differ from the other approaches.  Using an F distribution test on the variances, the Combined 
Reward approach has a 98% confidence that the variance differs from the variance of the 
other two approaches ( 6.4=ijf , 3.25=ikf , where i  is the Combine Reward approach, j  is 
the Not Crushed Reward approach, and k  is the Pick-up Reward approach). 
 
Looking at figure 6, the difference in variance implies that the Combined Reward approach 
tends to have the most variability in how well it learns.  The reason for this wider variability 
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is due to two factors at work during the Combined Reward approach.  The first factor is that 
the Combined reward requires a two threshold test, which takes slightly longer to compute, 
which can result in fewer practice trials in our 3 minute learning time.  With fewer practice 
trials to learn from, this could lead to worse learned results.  The second factor is that the 
more nuanced reward can give a better measure of value function, leading to better learned 
results. 
 
What can be drawn from both our experimental results and our theoretical analysis, is that 
using a function that combines multiple factors to produce a combined reward can yield 
better learned results because the reward can take into account more complex relationships 
between the rewards than the simple weighting that would result in splitting rewards into 
separate states.  But this benefit can be balanced out by the added computation time needed 
to produce this more complex reward.  Thus, sufficient learning time is needed for the 
benefits of the more nuanced combined reward in a single state to be of benefit.  The amount 
of actual time to compute the combined reward should not exceed O(N2), assuming a 
constant number of visits to the state per learning trial. 
   
Conclusion 
 
In this paper the researchers compared the traditional single state per reward approach with 
using a combined reward that incorporates at least two or more reward factors into a state.  
This combined reward allows for more subtle computations especially for reward factors that 
may oppose each other.  By allowing for more complex computed reward structures, we may 
produce better learned results.  We experimented on a practical implementation of this 
problem with a Lego robot that was charged with the task of learning to pick up a delicate 
object.  The robot needed to apply sufficient pressure to pick up the object but not too much 
pressure or the object would be crushed.   
 
In terms of theoretical results, we demonstrated that in the worst case, the combined reward 
should not exceed O(N2) computation time or the benefit in terms of efficiency would be 
outweighed by cost to compute the reward.  However, this is a worst case scenario, and it is 
quite possible that the combined reward function must be significantly faster than O(N2) 
depending on the graph connectivity of the Reinforcement Learning model and the number 
of visits to the combined state.    
 
From our robot experiments we demonstrated that the benefits of the more subtle combined 
reward can be outweighed by the extra time taken to compute the reward.  In our 
experiments, it resulted in greater variability in terms of learned ability.  Because we fixed 
the amount of learning time for our robot, the extra time needed to learn resulted in fewer 
practices to learn the task.  These fewer practices competed with the benefit of the more 
subtle reward to cause greater variability in terms of performance for our learned task.  Thus, 
for those considering using a complex function to compute rewards, they must take into 
account the amount of learning time allotted.  If a sufficient amount of learning time is 
allowed, then the more subtle combined reward structure can produce better learned results.  
How much time should be allotted most likely is application dependent.   
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In terms of future work, we plan to expand on this investigation to explore a variety of 
possible reward functions with the goal of implementing them in a practical service robot. 
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