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Abstract 
 
Critical quality measure and surface roughness (Ra) in mechanical parts depends on turning 
parameters during the turning process. Researchers have predicted and devloped various 
models for the optimum turning parameters for required surface roughness. This study 
focuses on comparing multiple regression models by collecting data pertaining to depth of 
cuts, nose radii, feed rates, surface roughness, and cutting speeds during the turning operation 
for an Aluminium 6061 workpieces. The conducted analyses show the behavior of turning 
parameters and high accuracy levels of the models to predicted surfaces.  

Introduction 
 
Design engineers and product designers are determined to design machines that are efficient, 
have longer lives, and operate precisely as desired. Today’s advanced machine requirements 
demand design allowances for higher loads and speeds that have led to radical change in the 
design of bearings, seals, shafts, machine ways, and gears. To satisfy the advanced 
requirements, machine parts should be dimensionally and geometrically accurate. The quality 
of a machined surface manifests the accuracy of the process in relation to the dimensions 
specified by the designer.  

Machining operations tend to leave characteristic evidence on the machined surface. They 
usually leave finely spaced micro-irregularities that form a pattern known as surface finish or 
surface roughness. The quality of the finished product, on the other hand, relies on the 
process parameters; surface roughness is, therefore, a critical quality measure in many 
mechanical products [1].  

A considerable number of studies have investigated the general effects of speed, feed, depth 
of cut, and nose radius. Receiving serious attention for many years, surface roughness has 
formulated an important design feature in many situations, such as parts subject to fatigue 
load, precision fit, fastener hole, and aesthetic requirements. In addition to tolerances, surface 
roughness imposes one of the most critical constraints for the selection of machines and 
cutting parameters in process planning. A larger point angle in combination with softer 
materials yields a smoother surface. A relatively large depth of cut can produce a smoother 
surface as well [2].  
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Previous studies proved the significant impact of DOC, machining speed, and rake angles on 
surface roughness. The few studies that have studied nose radius as a factor have failed to 
eliminate the effect of built-up edge. But very few researchers have studied the interaction 
effect of nose radius. The material will be defined when a larger nose radius was used and the 
chip had a thickness value greater than the minimum thickness value [3].  

The combination of both of these factors suggests a significant weight in the relationship. All 
the previous studies on predicting surface roughness have not included nose radius as a major 
factor that affects surface roughness.  

Factors Affecting Surface Roughness 
 
Nose Radius 
 
Nose radius is a major factor that affects surface roughness [5]. A larger nose radius produces 
a smoother surface at lower feed rates and a higher cutting speed [4]. However, a larger nose 
radius reduces damping at higher cutting speeds, thereby contributing to a rougher surface. 
The material side flow can be better defined when using a large nose radius [6]. Again, this 
can be explained by studying the effect of the nose radius on the chip formation. During 
cutting with a tool that has a large nose radius, a large part of the chip will have a chip 
thickness less than the minimum chip thickness value. In addition, increasing the nose radius 
has a direct effect on cutting forces, leading to a significant increase in the ploughing effect 
in the cutting zone. Increasing the ploughing effect leads to more material side flow on the 
machined surface. In general, increasing the nose radius increases the level of tool flank 
wear. Cutting with a large nose radius results in a higher value of cutting forces due to the 
thrust force component. On the other hand, cutting with a small nose radius prolongs tool 
life, which can be explained by the reduction in the ploughing force.  
 
Edge preparation has an effect on the surface roughness. Although the chamfered tool is 
recommended to prevent the chipping of the cutting edge, there is no significant difference in 
the rate of tool wear. The surface finish generally degrades with cutting time due to tool wear 
development. Large nose radius tools have, along the whole cutting period, slightly better 
surface finish than small nose radius tools. Tool wear development with cutting time showed, 
after high initial wear rate, that flank wear land width increases in a linear way. The tool nose 
radii in the range of 0.8–2.4 mm seem to have no effect on the tool wear process, showing 
comparable wear rate and similar tool life [7]. 
 
Feed Rate 
 
Feed rate is another major factor that has a direct impact on surface roughness [5]. Surface 
roughness is directly proportional to the feed rate. The feed rate produces effective results 
when combined with a larger nose radius, higher cutting speed, and a smaller cutting edge 
angle [1]. Regarding the workpiece machined with a smaller feed rate, the machined surface 
shows that extensive material side plastic flow existed [3]. This explains the better surface 
finish obtained at lower feed rates. A lower feed rate increased the area in which the chip 
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thickness was lower than the minimum chip thickness (tmin). Hence, instead of cutting, a 
large part of the material was ploughed, which led to material side flow. 
 
Depth of Cut 
 
The depth of cut has a proven effect on tool life and cutting forces; it has no significant effect 
on surface roughness except when a small tool is used. Therefore, a larger depth of cut can be 
used to save machining time when machining small quantities of workpieces. On the other 
hand, combining a low depth of cut with a higher cutting speed prevents the formation of a 
built-up edge, thereby aiding the process by yielding a better surface finish [8]. 
 
Cutting Speed 
 
Cutting speed has no major impact on surface roughness. It affects the surface roughness 
when operating at lower feed rates, which leads to the formation of a built-up edge. Higher 
speeds are important in yielding accurate results. At speeds higher than 300 feet per second, 
actual surface roughness comes closer to the calculated value of surface roughness [9].  
 
Built-Up Edge (BUE) 
 
A built-up edge (BUE) usually forms at the tip of the tool cutting edge during machining. As 
the BUE becomes larger, it becomes unstable and eventually breaks up. The BUE is partly 
carried away by the chip; the rest is deposited on the work surface. The process of BUE 
formation is continuous, and destruction is continuous. It is one of the factors that adversely 
affect surface roughness. Although a thin stable BUE that protects the tool’s surface is 
desirable, BUE is generally undesirable. BUE does not form at higher cutting speeds, low 
depth of cuts, and higher rake angles [6]. 
 
Material Side Flow 
 
One of the factors that deteriorate the machined surface is the material side flow. It is defined 
as the displacement of a workpiece material in a direction opposite to the feed direction, such 
that burrs form on the feed mark ridges [10]. Workpiece material in the cutting zone is 
subjected to a high enough temperature and pressure to cause a complete plastification of the 
workpiece material. Chip material flow in a direction perpendicular to that of the usual chip 
flow during the machining of hardened steel has been observed. This material sticks on the 
new machined surface and causes a deterioration of the machined surface quality, even if the 
surface roughness is kept within the desired tolerance. In addition, the adhered material is 
hard and abrasive, such that it wears on any surface that comes into contact with the 
machined surface. The surface deterioration is mainly attributed to material side flow that 
existed on the machined surface as a result of machining with a worn tool. In addition, the 
cutting speed has a significant influence on material side flow. The high temperature 
generated during high speed machining facilitates the material plastification and, therefore, 
causes a tendency for more material side flow [6]. 
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Chip Morphology 
 
An increase in the nose radius increases the chip edge serration; the chip edge serration can 
be explained by the reduction in the actual chip thickness near the trailing edge. Since the 
chip formation takes place mainly along the nose radius, it is expected that the chip thickness 
varies along the cutting edge. Due to the nose radius, the chip thickness is decreased 
gradually to zero, causing high pressure at the trailing edge [6]. Thus, the material at the 
trailing edge of the tool, where the chip thickness is a minimum, is subjected to high stress 
that causes tearing on the weakest edge of the chip. In addition, the variation in the chip 
velocity facilitates the non-uniform displacement along the chip width, which leads to chip 
edge serration [11]. The existence of the chip edge serration facilitates trailing edge wear. 
Grooves are worn in the tool at the positions where the chip edge moves over the tool. These 
grooves deteriorate the surface roughness and, in turn, reduce the tool life. 
 
Purpose of Study 
 
Based on the above analysis, this study was conducted to set up a statistical model that was 
capable of predicting the in-process surface roughness of a machined workpiece using 
turning parameters. The model was expected to have the following features.  

1. Use machining parameters, such as feed rate, depth of cut, and cutting speed as predictors. 

2. Apply nose radius information as another predictor. 

3. The prediction accuracy should be high, above 95 percent. 

Parameters’ Selection for Experiment 
 
Feed rate was selected in a range that magnifies the difference between two levels (this 
information is presented in Table 1.) The spindle speeds selected were 1,300 rpm and 1,900 
rpm. High speeds of machining were chosen to reduce the effect of built-up edge on surface 
roughness. The effect of BUE is nullified at speeds higher than 1,300 rpm because the BUE 
becomes too fragile to withstand forces at such high speeds [4].  

Table 1: Levels of Independent Parameters 

Level Feed Rate DOC Spindle Speed Nose Radius 

–1 0.004 mm/rev 0.1mm 1300rpm 1/64 inch 

1 .005 mm/rev 0.2mm 1900rpm 1/32 inch 

 

The two levels of nose radii were significantly apart from each other and fixed at 0.819 mm 
(1/32 inches) and 0.409 mm (1/64 inches) with a variable depth of cut equal to the nose 
radius. It has been proven that surface roughness causes drastically greater deterioration of  
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the workpiece at feed rates higher than 0.3 mm; therefore, feed rates of less than 0.3 mm 
were chosen to minimize the conditions that affect surface roughness. Cutting edge and rake 
angles were kept constant in all of the experiments.  

Experimental Setup 
 
Aluminum 6061(Al 6061) was used as the workpiece material due to its high machinability 
index and commercial availability. Aluminum 6061 is an alloy of aluminum (98 percent), 
chromium (0.35 percent), copper (0.4 percent), iron (0.7 percent), manganese (0.15 percent), 
magnesium (0.12 percent), and silicon in small quantities. A unique combination of 
properties makes aluminum and its alloys some of the most versatile engineering and 
construction materials. The workpieces were 3.5 inches and 1 inch in diameter. The ends 
were faced to reduce the wobbling effect that arises due to the uneven edges. The longer the 
workpiece, the higher the chances of wobbling. Therefore, care was taken when selecting the 
workpiece. The workpiece’s experimental length was less than three times its diameter. 
 
A Cummins lathe was chosen to turn the workpiece because of its capability to run at speeds 
higher than 1,300 rpm. It runs on plastic gears, which means lesser forces pass on to the 
workpiece and the cutting tool. All of this translates into longer tool life and better surface 
roughness. Since the wear on plastic gears is less than metallic gears, vibrations resulting 
from back lash are reduced significantly. The feed rate was selected from the available set of 
gear ratios for this particular lathe. For the two levels of the feed rates, two different gear 
ratios were used. For the lower level of the feed rate, the gear ratio was 20:50:20:80, while 
for the higher level of the feed rate, it was 20:60:20:80. 

A digital laser non-contact tachometer (model DT-6234) was used to measure the rotational 
speed of the spindle because measurements can be done with high accuracy, and the device, 
as the name suggests, is a non-contact type. This non-contact type is useful because any 
contact with the rotating parts of the system tends to produce unquantifiable changes in the 
system.  

For measurement of the surface roughness, a Mitutoyo profilometer (SJ 201) was used 
because of its high reliability and capability to provide the user with precise surface 
measurements. This portable device operates on the inductive principle to measure the 
roughness. The instruments’ measurement head fits with a retractable diamond stylus sensor 
(5 µm / 0.2 mils radius) and a working load of 4 mN. The roughness profiles are determined 
by the motorized travel of the sensor over the surface to be tested. Each unit is supplied with 
roughness reference standard, case, tools, and main adaptor. 

A non-ferrous grade, carbide tipped cutting tool was used to turn the workpiece material. The 
carbide tipped tools have a multiphase coating with Ti (C, N), AL2O3, and TiN (Carboloy 
grade TP200). The length of the tool shank is 3.5 inches.  
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Several trials were done on the lathe to test its performance at required high speeds. The 
amount of wobble in the workpiece while taking a cut was checked using a dial indicator. 
The wobble was later reduced by pre-adjusting the chuck. For each run, different levels of 
parameters were chosen and run with a different combination. Three tools with the two 
different nose radii were randomly used during the entire experiment. The workpiece was 
turned to a length of 1.5 inches.  

The data was collected randomly to eliminate bias in the results. Surface roughness was 
measured from three areas of the workpiece, and an average value was used to reduce the 
error. 

Experimental Design 
 
The two levels of the factors were designated as either high or low, or as –1 or 1. To keep the 
experimental design simple, two levels of factors were chosen. In a typical factorial design, 
the number of treatment combinations is denoted by 2n, where n is on the number of 
independent variables. Therefore, 24 equals 16 treatment combinations that were used 
corresponding to n=4. Table 2 shows the 16 treatment combinations. 

Table 2: Factorial Design for Four Independent Parameters 

 

The full factorial experiment was replicated 10 times to reduce the effect of the error. The 
order in which the trials were performed was random. In this full factorial experiment, all of 
the main effects and interactions were tested to check for their effect on surface roughness. 
The surface roughness values measured from the 16 combinations were first analyzed for 
individual effects. Then, the extent of the effect of each turning parameter was estimated. 
Next, the data was used to find out the existence of interactions and their effects. 

The data is used to create two multiple regression models that determine the strength of the 
relationship between the turning parameters and surface roughness, which, in turn, is used to 
predict the theoretical value of surface roughness. With and without the depth of cut as the 
main effect made the difference in the models.  
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Developed multiple regression models were checked for accuracy. Predicted surface 
roughness values were calculated using the developed regression equation. The difference 
between the surface roughness values of measured data and predicted data was used to 
calculate the error percentage. The error percentage was then used to calculate accuracy of 
the predicted model [12].  

The predicted surface roughness values by both models were tested using a t-test for 
independent samples to find if significant differences existed. 

Multiple Regression Modeling 
 
A statistical software program, Minitab version 14, and Microsoft Excel were employed in 
model training. The goal of the multiple regression analysis was to determine the dependency 
of surface roughness to selected machining parameters. In addition to the main effects of 
these variables, effects of the interactions of them were included in the analysis. The 
significance level for both the models was set at 0.05 (α = 0.05). For the involvement of the 
interactive predictor variables, a total of 13 and 12 predictor variables were used in the 
training of the model, as shown in equations 1 and 2. 

First regression model (depth of cut as main effect) was expressed as:  
 

 NDFK+NVFKVDNK+VDFKNrFK+DNK
DFKVNK+VFK

rr14rr13r12r11r10r9

r8r7r65432101

+++
+++++++= VDKNKDKFKVKKR rra , 

                 ……………. (Equation 1) 

where 
            Ra – Observed surface roughness 

Fr – Feed rate  
 V – Cutting speed 
 D – Depth of cut  
 Nr – Nose radius  

K – Linear constants, coefficients 

The second regression models (without depth of cut as main effect) were expressed as:  
 

 NDFK+NVFKVDNK+VDFKNrFK+DNK
DFKVNK+VFK3

rr13rr12r11r10r9r8

r7r6r542102

+++
++++++= VDKNKFKVKKR rra  

                 ……………. (Equation 2) 

The null and alternative hypothesis for the models was: 

0KKKKKKKK: s12111098765432101 ============== KKKKKKH O  

:aH At least one of the K does not equal to Zero. 
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The measured t-values of independent variables are populated in Table 3. A t-test performed 
on the data from the experimental design showed that all the turning parameters have a 
significant effect on surface roughness, except for depth of cut. The measured t-value of 
depth of cut, 1.56, is less than the critical t-value of 1.96; whereas the measured t-values of 
nose radius, feed rate, and cutting speed, 7.84, 10.21, and 10.77, respectively, are greater than 
the critical value of 1.96, indicating that these variables significantly affect surface 
roughness. To validate this outcome, a second model was developed without depth of cut as 
the main effect. The t-values of interactions with depth of cut are higher than the critical t-
value of 1.96. This shows that depth of cut has a significant impact on surface roughness in 
an interaction. Cutting speed had the highest t-value of 10.73, implying its strong impact on 
surface roughness. Interaction involving cutting speed and feed rate, with a t-value of 12.63, 
had greater impact on surface roughness than other independent variables.  

 
Table 3: Coefficients of the First Model 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
As shown in Table 4, both MR1 and MR2 models had low S, which is the estimate of the 
variance values (0.0567 and 0.074, respectively) after the linear relationship between the 
response and the predictor has been taken into account. This shows that both of the equations 
predict the response with low error. The square values of the regression coefficients were 
99.8 and 99.4, respectively, which indicated high association of the regression coefficients 
with variances in the predictor values. The adjusted square values of the regression 
coefficients were 97.50 and 95.7. This indicated variance was high, making the models 
stronger.  
 
The results of analysis of variance (ANOVA) of the models also supported strong linear 
relationships in the models (Table 5). The obtained F-values of regression were 42.98 and 
26.83 for MR1 and MR2, respectively. These high F-values indicated a great significance for 

Predictor Variable Coefficients T-values
Constant 39.529 9.00 

V –0.027 –10.77 
Fr –9963.9 –10.21 
D 33.94 1.56 
Nr –429.33 –7.84 
VD 0.004 0.38 
VFr 7.077 12.63 
VNr 0.325 10.96 
DFr –1496 –0.31 
DNr 766.7 –4.06 
FrNr 113989 9.46 
VDFr –4.344 –1.69 
VDNr 0.126 2.66 
VFrNr –83.771 –12.94 
DFrNr 119194 3.07 
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models in not rejecting the alterative hypothesis; at least one of these coefficients did not 
equal zero. Therefore, the linear relationship between the predicted variable (R) and predictor 
variables significantly existed. 
 

Table 4: Model Summaries 
 

Model S r-squared r-squared 
(adj) 

MR1 0.0567 99.80 97.50 
MR2 0.074 99.4 95.7 

 
Table 5: The ANOVA Table of the Regression Models 

 
Model Item Sum of Squares DF Mean Square F Sig. 
MR1 Regression 1.937 14 0.138 42.98 0.119

 Residual 0.003 1 0.003  
 Total 1.941 15  

MR2 Regression 1.930 13 0.148 26.83 0.036
 Residual 0.011 2 0.005  
 Total 1.941 15  

 
Table 6: Coefficients of the Second Model 

 
Predictor Variable Coefficients T-Values

Constant 44.620 11.57 
V –0.296 –11.24 
Fr –11054.8 –12.39 
Nr –452.20 –6.54 
VD 0.020 2.65 
VFr 7.582 12.64 
VNr 0.327 8.43 
DFr 5777 4.12 
DNr –614.3 –2.90 
FrNr 1118279 7.69 
VDFr –7.707 –4.20 
VDNr 0.111 1.82 
VFrNr –83.771 –9.87 
DFrNr 90594 2.02 

 
The coefficients of all predictor variables and the constants of the model are listed in Table 3 
and Table 6. According to these coefficients, the multiple regression models are built as 
shown in equations 3 and 4 for MR1 and MR, respectively. 
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First Model (MR1): 

 N119194DF+NVF8.830.127VDN+4.34VDFNr113989F+DN767
DF14960.325VN+VF08.70044.04299.3399640272.05.39

rrrrrrrr

rrr

−−−
−++−+−−= VDNDFVR rra  

                 ….………….. (Equation 3) 
Second Model (MR2): 

 N90594DF+N83.8VF0.111VDN+7.71VDFNr118279F+614DN
5777DF0.327VN+7.582VF0204.020.45211055296.06.44

rrrrrrrr

rrr2

−−−
+++−−−= VDNFVR rra  

 …………….. (Equation 4) 
 

Model Accuracy 
 
Average error in the models is the average of ratio difference of predicted and measured 
surface roughness to measured surface roughness expressed in percentage, as given in 
equations 5 and 6. When model accuracy is added to average error, the value should be very 
close to 100. 

 
%100×

−
=

a

aap

R
RR

iδ  ……………… (Equation 5) 

 

∑1=∆
n

i

i
n

δ
                   

……………… (Equation 6) 

 
Where,  
       δi – Percentage error in data 
      Rap – Surface roughness predicted using the developed regression model. 
      Ra – Observed surface roughness value. 
      ∆ – Average error in surface roughness prediction.   
      n – Number of experiments 
      (100- ∆)% – Accuracy of the model 
 
Difference between the Models 
 
The models have an accuracy of 99.37 percent and 99.09 percent, as reported in Table 7, with 
average error of 0.622 and 0.908, respectively. The mean values in Table 8 suggest that there 
is little difference between the two regression models (–0.350, 0.350). The t-value 
strengthens the fact that there is no significant difference between the models. As measured 
at 99 percent confidence level, t-value (0.00) is less than the critical t-value value of 2.75, 
and there is no significant difference between the two models. 
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Table 7: Model Accuracy 
 

Model Size Average Error Model Accuracy 
MR1 16 0.622 99.37 
MR2 16 0.908 99.09 

 
Table 8: T-Test to Check for Difference between the Models 

 
Model N Mean Std. Deviation 
MR1 16 2.329 0.359 
MR2 16 2.329 0.359 

 
Conclusion and Discussion 
 
Using the data, a two multiple regression model has been developed to predict the surface 
roughness. With these data and results, one could conclude the following: 
 

1) The results show both regression models are valid at a high significance. Therefore, 
both models can be reasonably adapted for surface roughness prediction.. 

2) Cutting speed, feed rate, and nose radius have a major impact on surface roughness. 
Smoother surfaces will be produced when machined with a higher cutting speed, 
smaller feed rate, and nose radius. 

3) Depth of cut has a significant impact on surface roughness only in an interaction. 
4) The interactions of the cutting speed, nose radius, and feed rate also have a more 

significant impact on surface roughness than the individuals. 
 
Recommendations 
 
Considering these conclusions, further research will be conducted to develop other prediction 
systems that could enhance the accuracy for surface roughness prediction:  
 

1) Tool temperature vibrations, tool length, and tool material should be incorporated into 
the roughness prediction model. 

2) Effects of built-up edge should be studied. 
3) Predict optimum cutting parameters that maximize surface smoothness. 
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