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Abstract 
 
In this paper, we propose a simple and efficient method for encoding data sequences with the 
sparse distribution. The data sequence with a sparse distribution contains most data samples 
that can be encoded with a smaller number of bits per sample and a small number of large 
amplitude samples that require a larger number of bits to encode. The data sequence with the 
sparse distribution is often encountered as the residues from prediction in waveform, image, 
and video compression.  
 
The proposed method divides the data sequence into two block sets. One is the level-0 block, 
where at least one sample in the block requires the maximum number of bits to encode, and 
the other one is the level-1 block, in which each sample in the block only needs a smaller 
number of bits to encode. Hence, coding efficiency could be achieved. We propose an 
algorithm to determine the optimal coding parameters, such as the block size and the number 
of bits for encoding each data sample in the level-1 blocks based on the sparse distribution of 
the given data sequence. Comparing with the traditional bi-level coding method [1], in which 
the coding parameters are obtained via an assumed Gaussian distribution function and pre-
optimization, the proposed method achieves its coding efficiency using a real data amplitude 
distribution to determine the optimal coding parameters and is simpler to implement in real-
time. In addition, the bi-level block coder is more robust to bit errors, as compared to 
instantaneous coding schemes such as Huffman and arithmetic coding schemes.  
 
 
Introduction 
 
Lossless compression of waveform data, such as audio, seismic, and biomedical signals [1, 2, 
3, 4, 5, 6], plays a significant role in alleviating data storage and reducing the transmission 
bandwidth while achieving the recovered data in their original forms. One of the traditional 
lossless compression schemes involves two stages reported in references [1, 3, 4]. The first 
stage performs prediction, resulting in a residue sequence, in which each residue has reduced 
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amplitude as compared to that of the original data. The residue sequence is ideally assumed 
to have a Gaussian distribution. The second stage further compresses the residue sequence 
using coding schemes such as bi-level coding [1], Huffman coding, and arithmetic coding [3, 
4, 5] based on the statistical model of the Gaussian distribution. Although the Huffman and 
arithmetic algorithms offer high efficiency in compressing the residue sequence, they may 
suffer from several problems: 1) For a large sample size of residues, a large number of 
symbols must be used. Reference [3] successfully deals with such a problem by dividing the 
data sample size into equal intervals. First, it uses the arithmetic algorithm to encode the 
intervals with a less number of symbols. Second, it continues to encode each offset value, 
that is, the differences between the residue value and the center of its interval. This type of 
entropy coding often makes a real-time implementation difficult due to its complexity; 2) In 
practice, the predicted residue sequence exhibits a sparse distribution where some large peak 
amplitudes exit in the residue sequence; on the other hand, the residue sequence may not 
follow the Gaussian distribution well. In this case, compressing the residue sequence using 
the assumed statistical model may have less efficiency; 3) Huffman and arithmetic 
algorithms, without applying an error control scheme, are sensitive to bit errors due to the 
fact that these coding schemes produce instantaneous codes. A single bit error could damage 
all the decoded information. 
 
This paper introduces a simple and efficient method, called bi-level block coding, for 
encoding a data sequence with a sparse distribution in general. The sparse distribution 
indicates that most of the data samples in the given data sequence have small amplitudes, 
requiring a small number of bits per sample to encode, and a few number of data samples 
have larger amplitudes that require a larger number of bits per sample to encode. The 
proposed method divides the data sequence into two block sets. One is the level-0 block, 
where at least one sample in the block requires the maximum number of bits to encode, and 
the other one is the level-1 block, in which each sample in the block only needs a smaller 
number of bits to encode. Hence, coding efficiency could be achieved. We propose an 
algorithm to determine the optimal coding parameters, such as the block size and the number 
of bits, for coding each data sample in the level-1 blocks according to the sparse distribution 
of the given data sequence. Comparing with the traditional bi-level coding method [1], in 
which the coding parameters are obtained via an assumed Gaussian distribution function and 
pre-optimization, the proposed method achieves its coding efficiency using a real data 
amplitude distribution to determine the coding parameters and is simpler to implement in 
real-time. In addition, the bi-level block coder is more robust to bit errors as compared to 
instantaneous coding schemes such as the Huffman and arithmetic coding schemes.  
 
We first develop a bi-level blocking coding scheme and then apply it into a two-stage 
lossless compression scheme with applications to waveform data such as audio, seismic, and 
ECG (electrocardiography) signals. 
 
 
Development of Bi-level Block Coding 
  
In this section, we develop a bi-level block coding algorithm and determine its optimal 
coding parameters. Then, we verify its performance using a generated data sequence with the 
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Gaussian distribution. The performances will be presented in practical applications in the 
next section. 
 
 
A. Bi-level Block Coding 
 
To illustrate bi-level block coding, we consider the following 8-bit data sequence, which is 
considered to be sparsely distributed. 
 

Data sequence: 
1, 10, 2, -1 -3, 126, 6, 14, -11, -10, 0, 12, -9, -10, 0, 2, -7, 15, -100, 2, 1, 
0, 0, 1, -3, -4, 10, -8, 9, 11, -12, 10 

  
Figure 1: Data Sequence with a Sparse Distribution 

 
 
The above sequence has a sparse distribution. Thirty of 32 data samples have amplitudes less 
than 15, while only two of them (126, –100) have amplitudes close to the maximum 
magnitude value of 127. If we use an 8-bit sign magnitude format to encode these data, a 
total of 256 bits is required. Here, we describe a bi-level block coding scheme to take the 
advantage of data sequence with a sparse distribution. Bi-level block coding is depicted as 
follows. 
 
1. We divide the data sequence with a length of xmn ×=  into m  blocks, in which each 

block consists of x  data samples; that is, x  is the block size. 
2. The sign magnitude format is used for encoding each sample. MSB (most significant bit) 

is used to encode the sign of data, while the rest of the bits are adopted for encoding the 
magnitude. 

3. Two type blocks are defined below: 
a. The level-0 block of x  samples is shown in Figure 2, where at least one of data 
samples in the block need the maximum number of bits including the sign bit, 0N . We 
encode each data sample in the level-0 block using N 0  bits; in our example, 80 =N  bits. 
To distinguish between the level-0 block and the level-1 block (described next), the 
prefix “0” is added to indicate the level-0 block. 

 
 

0 N 0 , N 0 , …….., N 0  
      

Figure 2: Level-0 Block 
 

b. Second, the level-1 block of x  samples is defined in Figure 3, where all samples in the 
level-1 block can be encoded by 1N  bits, including the sign bit. Correspondingly, the 
prefix “1” designates the block as a level-1 block. 
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1 N1 , N1 , …….., N1  

 
Figure 3: Level-1 Block 

 
Notice that we require 01 NN <  such that the coding scheme is profitable. 
 
4. With the given N 0 , we must determine the optimal number N1  and the block size x , such 

that the minimum number of bits is obtained for encoding the entire data sequence. 
 
For example, assuming that we use N1 5=  bits for encoding each data sample in the level-1 
blocks and the block size chosen as x = 4 , then the encoding cost is as follows. 
 
 
Encoded data  “1” 1  10  2   -1 “0” -3 126  6  14 “1” -11 -10 0 12 “1” -9  -10  0  2  
Number of bits   1   5  5   5    5  1    8     8   8    8  1    5     5    5   5   1   5     5    5   5 
Block type   Level-1 block  Level-0 block Level-1 block Level-1 block 
 
“0”-7 15 -100  2 “1” 1    0    0    1  “1” -3  -4 10 -8 “1”  9 11 -12 10 
 1   8   8    8      8  1   5    5    5    5 1     5    5    5    5   1   5   5    5   5 
Level-0 block Level-1 block Level-1 block Level-1 block 
 

Figure 4: Bi-level Block Coding Example 
 
 
It is clear that two level-0 blocks are encoded with 25 bits each; whereas, six level-1 blocks 
are encoded using 21 bits each. We only need 176 bits for encoding the same sequence, as 
compared to 256 bits used in the case without using the bi-level block coding approach.   
 
B. Optimal Coding Parameters 
 
To derive the algorithm to obtain the optimal coding parameters N1  and x , we make the 
following assumptions: 1) The probability of a data sample requiring less or equal to N1  bits 
to encode is p , the probability of a data sample requiring the number of bits between N1  and 
N 0  bits to encode is p0 , where p0  is close to zero for a sparsely distributed data sequence; 
2) All data samples are statistically independent. Then, the probability for a level-1 block 
with a block size of x  samples could be written as 
  xpP =1 ,         (1) 
and the probability of a level-0 block is then expressed as 
  xpPP −=−= 11 10 .        (2) 
Similar to [2], the coding length with k  level-1 blocks and ( m k− ) level-0 blocks is given by 
  xkNkmxNmkL 10 )()( +−+= .      (3) 
Again, note that using the binomial coefficient formula, the probability of a sequence having 
k  level-1 blocks and ( m k− ) level-0 blocks is given below: 
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Substituting (1) in (4) leads to the following: 
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We now obtain the average total length Lave  as the following: 
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Equation (6) is further expressed in its closed form as follows: 
x

ave xmpNNxmNmL )()( 100 −−+=       (7) 
With mxn ×= , we achieve 

  0 0 1( ) x
ave

nL nN N N np
x

= + − − ⋅ .      (8) 

Equation (8) is very difficult to be minimized to find the optimal block size x  and 1N . We 
now adopt the following approximation. Assuming that xp0 0 3≤ . , we can approximate the 
probability of the level-1 block by omitting the higher-order terms of its Taylor series 
expansion, that is, 
  1 0 0 0(1 ) 1 ... 1x xP p p p x p x= = − = − + ≈ − .     (9) 
Given the measured probability p0  for 0N  and equation (9), we can simplify equation (8) to 

  1 0 1 0( )ave
nL nN N N nxp
x

= + − − .                (10) 

Taking the derivative of equation (10) to x  and setting it to zero, we yield 

0 1 02 ( ) 0avedL n N N np
dx x

= − + − = .                (11) 

Solving for equation (11) gives the optimal block size as 
  *

0 1 01/ ( )x N N p= − .                  (12) 
Taking the second derivative of equation (10) to x  leads to 

02
32

2

>=
x
n

dx
Ld ave .                  (13) 

Equation (13) shows that we can obtain the minimum average coding length. By substituting 
equation (12) in equation (10), we obtain the minimum average length as 
  ( ) 0 1 0 1min

2 ( )aveL n N N p nN= − + .                (14) 
Dividing the minimum average length by a total number of the data samples, the average bits 
per sample is therefore yielded as  

  0 1 0 1
min

2 ( )aveL N N p N
n

⎛ ⎞ = − +⎜ ⎟
⎝ ⎠

.                (15) 
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As an example, when encoding a data sequence with a Gaussian distribution with a length of 
16384214 ==n  and a standard deviation of α2 , where 7=α , we found 110 =N , 91 =N , 

and the probability for the samples requiring more than 1N  bits to encode as 0401.00 =p . 

Using equation (12) leads to the optimal block size as 40401.02/1* ≈×=x  samples for 
the bi-level block coding algorithm, noticing that 1604.00 =xp  in this case. Applying 
equation (15) gives the average bits per sample as 53.9/ =nLave  bits. It is observed that 1.47 
bits per sample are saved. For a more sparsely distributed data sequence, we may expect 
smaller probability of 0p  and a larger difference of ( 0 1N N−  ) bits. Hence, more saving in 
terms of bits per sample is expected. Finally, the bi-level block coding scheme with an 
optimal block size is summarized below: 
 
     1. Find N 0  for the given data sequence.  
          Initially, set 1 0 2N N= −  and 4x = . 
     2. For 1 01, 2,3, 1N N= − . 
         Estimate 0p , the probability of the sample requiring more than 1N  bits to encode; 
         Calculate the optimal block size: 

*
0 1 01/ ( )x N N p= −  

         Round up the block size to an integer value. 
         If *

0 0.3x p× ≤ , calculate the average bits per sample 

   0 1 0 12 ( )aveL N N p N
n

⎛ ⎞ = − +⎜ ⎟
⎝ ⎠

, 

          and record 1N  and *x  vales for the next comparison. 
         After completing search loops, select 1N  and *x  corresponding to the minimum 

average bits per sample, 
min

aveL
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

   3. Perform bi-level block coding using the obtained optimal 1N  and *x . 
 
 
Computer Simulations 
       
To examine the performance of bi-level block coding, we generated data sequences using the 
Gaussian distribution with a length of 16,384 samples and various standard deviations. We 
compare each theoretical value of the average bits per sample with the experimental one, as 
well as compare them with the zero-th order entropy, which is the lower bound of lossless 
compression, defined as  

   2logi i
i

H p p= −∑ ,                (16) 

where ip  is the estimated probability of data samples in the sequence. Figure 5 shows the 
results. The top plot is the generated data sequence with the Gaussian distribution using a 
standard deviation of four, while the middle plot describes its distribution. Bi-level block 
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coding uses the following optimal coding parameters: 0 5N =  bits, 1 3N =  bits, and block 
size as 4x = samples. We achieve the theoretical average bits per sample as 3.61 bits, 
experimental average bits per sample as 3.60 bits, and entropy value as 3.07 bits. Hence, we 
can conclude that the theoretical value of the average bits per sample is very close to the one 
from the experiment. The coding scheme has 0.53 bits per sample above the lower bound 
(zero-th order entropy value). Therefore, we save 1.40 (5-3.60) bits per sample. The bottom 
plot in Figure 5 demonstrates that our results are consistent when compressing the data 
sequences with various standard deviations.  
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Figure 5: Bi-level Block Coding for Compressing Sequences with Gaussian Distribution 

 
Since the bi-level block coding scheme is developed based on the data sequence with a 
sparse distribution, the use of the algorithm is not limited to the Gaussian sequence. As long 
as the percentage of data samples requiring more than 1N  bits to encode in the sequence is 
significantly small, applying the bi-level block coder would achieve its profitability. 

 
 

Applications in the Two-stage Compression Scheme 
  
In this section, we test bi-level block coding using a two-stage lossless compression scheme 
for compressing waveform data. Figure 6 shows the block diagram. For a simple illustrative 
purpose, the first stage of the scheme is chosen to be a linear predictor with an order of N , in 
which the linear predictor is designed using a traditional least-square design method [1, 7]. 
We use 16 bits to encode each linear predictor coefficient and each initial sample, 
respectively, and 4 bits for the linear predictor order. The bi-level block coder at the second 
stage requires 8 bits for storing each 0N and 1N , respectively, 8 bits for block size, 1 bit for 
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the block type indicator (“1” indicates the level-1 block, while “0” designates the level-0 
block) for each block, and outputs all the residue bits. Finally, the packer packs the predictor 
and bi-level block coding information, which may be protected using an error control scheme 
to correct bit errors as a header, followed by the residue block bit steam. Hence, the 
measured average bits per sample (ABPS) is expressed as 
 

  (2 16 28 bi-level block coding bits)
total number of samples

NABPS × × + +
= .     (17) 

 
If the original data is represented by 16 bits each, the data compression ratio could be 
determined by  

   16 bits
ABPS

CR = .          (18) 

 
 

 

Predictor Bi-level
block coding

ResiduesWavefom
data

Bi-level block indicators
Predictor parameters
(option using an error
control scheme)

Level-0 or level-1
residue blocks

 Packer
Bit stream

 
 

Figure 6: Two-stage Compression Scheme Using Bi-level Block Coding 
 
 
Figure 7 shows the results of compressing audio signal. The audio is sampled at 44.1 kHz, 
and each audio sample is encoded using 16 bits. The two-stage compression scheme 
compresses audio samples frame by frame. We use a frame size as 1024 samples and a linear 
predictor order of 10. The final ABPS is obtained by averaging all the ABPS’s from all the 
frames. The top plot in Figure 7 shows audio data samples, while the middle plot displays the 
predicted residues that have significantly reduced amplitudes and are de-correlated. The 
bottom plot depicts the distribution of the predicted residues from Frame 20. In this example, 
we achieve ABPS = 4.57 bits per sample and a compression ratio as CR =3.5. 
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Figure 7: Lossless Compression of Audio Signal Using Bi-level Block Coding 

 
 

Next, we examine the results of compressing of an ECG signal. As shown in Figure 8, the top 
plot of the ECG signal is sampled at 500 Hz, and each sample is encoded using 16 bits. The 
predicted residues are depicted in the middle plot, where the de-correlated residues with the 
reduced amplitudes are compressed using the bi-level coding algorithm. The bottom plot 
shows the distribution of the predicted residues from Frame 2. In this experiment, each frame 
consists of 1,000 samples. Compressing ECG samples frame by frame and using a linear 
predictor with an order of eight, we obtain the average bits per sample of ABPS =7.92 bits. A 
compression ratio of CR =2.02 is achieved.  
 
Figure 9 shows the similar displays. The seismic data shown in the top plot is provided from 
USGS Albuquerque Seismological Laboratory by Professor S. D. Stearns. Each seismic data 
is presented using 32 bits. We use a linear predictor with an order of eight and a frame size of 
835 in the two-stage compression scheme. The residues and residue distribution for Frame 4 
are depicted in the middle plot and bottom plot, respectively. Finally, we obtain ABPS=9.80 
bits per sample and CR=3.27.  
 
The sample size, linear predictor order, frame size, ABPS, and compression ratio (CR) for 
each application are summarized in Table 1.  
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Figure 8: Lossless Compression of ECG Data Using Bi-level Block Coding 
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Figure 9: Lossless Compression of Seismic Data Using Bi-level Block Coding 
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Table 1: Performance Comparisons Using Bi-level Block Coding in the Two-stage Scheme 

 
Data type Sample size LP order Frame size ABPS CR 
Audio  16 bits 10 1024 samples 4.58 bits 3.5 
ECG data 16 bits 8 1000 samples 7.92 bits 2.02 
Seismic 32 bits 8 835 samples 9.80 bits 3.27 

 
 
Lossless compression in waveform data could be improved by choosing a more sophisticated 
predictor, such as the nonlinear predictor, neural network predictor, or others, as shown in 
references [4, 5, 6]. We are currently investigating lossless compression of waveform data 
using these predictors, along with bi-level block coding in a bit-error environment. 
  
 
Conclusions 
 
In this paper, a bi-level block coding scheme is developed, and its optimal coding 
parameters, such as the block size and the number of bits for encoding each data sample in 
the level-1 blocks, are obtained. The coding method is simple to apply and efficient for a 
sparsely distributed sequence, such as the predicted residue sequence from various prediction 
methods. Applications of bi-level block coding to audio, seismic, and ECG data are 
demonstrated using the two-stage compression scheme, where the first stage is linear 
prediction and the second stage is bi-level block coding. The bi-level block coding algorithm 
is also robust to bit errors if the coding parameters of the predictor and bi-level block coding 
are protected using the bit-error control scheme.  
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