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Abstract 
 
Heat transfer from a water tank was computationally simulated by a finite element 
method and probabilistically evaluated in view of the several uncertainties in the 
performance parameters. Cumulative distribution functions and sensitivity factors were 
computed for overall heat transfer rate due to the thermodynamic random variables. 
These results can be used to quickly identify the most critical design variables in order to 
optimize the design and make it cost effective. The analysis leads to the selection of the 
appropriate measurements to be used in heat transfer and to the identification of both the 
most critical measurements and parameters.  

 
Introduction 
 
Engineers always face uncertainties in design, whether it is in the prediction of future 
loads, variability of material properties or uncertainties in predicting system response 
under load. For aging structures, probabilistic mechanics provides the means to quantify 
the safety of the structure. For new design, probabilistic mechanics provides the means to 
explicitly treat uncertainties to achieve truly optimal design. Probabilistic methods 
provide the engineer with a way to quantify uncertainties and treat all problem 
uncertainties consistently. The traditional approach of using arbitrary design safety 
factors does not provide a means to quantify the design reliability and can sometimes lead 
to unbalanced designs wherein some components are over-designed and some may be 
actually be under-designed.  
 
Different kinds of analyses accounting for uncertainties can be carried out. Second 
moment analysis aims at characterizing the second-order statistical moments, i.e. means 
and variances of response quantities (displacements, strain and stress components, etc.) 
from those of the input variables. The perturbation method [1-2] and the weighted 
integral method [3-5] are in this category. On the other hand, first order reliability method 
(FORM) and second order reliability method (SORM) approximations and various 
simulation methods are commonly used in reliability analysis [6]. Because of the 
typically high level of reliability of civil structures, the failure probability is usually small 
(in the order of 10-2 – 10-6). 
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A probabilistic design system was developed by Fox [7] at Pratt and Whitney for the 
purpose of integrating deterministic design methods with probabilistic design techniques. 
Here, two different approaches were used for estimating uncertainty. A Monte Carlo 
approach was used on design codes that were judged to run relatively quickly. For more 
computationally intensive design codes, a second order response surface model in 
conjunction with Box-Behnken design experiments was used and then a Monte Carlo 
simulation was executed. Several researchers at NASA Glenn Research Center have 
applied the probabilistic design approaches to turbine engines and related systems. 
Chamis [8] developed a Probabilistic Structural Analysis Method (PSAM) using different 
distributions such as the Weibull, normal, log-normal etc. to describe the uncertainties in 
the structural and load parameters or primitive variables. Nagpal, Rubinstein and Chamis 
[9] presented a probabilistic study of turbopump blades of the Space Shuttle Main Engine 
(SSME). They found that random variations or uncertainties in geometry have 
statistically significant influence on the response variable and random variations in 
material properties have statistically insignificant effects.  

 
To cost effectively accomplish the design task, we need to formally quantify the effect of 
uncertainties (variables) in the design. Probabilistic design is one effective method to 
formally quantify the effect of uncertainties. In the present paper, a probabilistic analysis 
is presented for the influence of measurement accuracy and apriori fixed parameter 
variations on the random variables for heat transfer from a pressure vessel. Small 
perturbation approach is used for the finite element methods to compute the sensitivity of 
the response to small fluctuations of the random variables present. The result is a 
parametric representation of the response in terms of a set of random variables with 
known statistical properties, which can be used to estimate the characteristics of the 
selected response variables such as heat transfer rate or temperature at a given point. 
 
Analysis 
 
Let us consider the steady state heat transfer. Figure 1 shows the coordinate system and 
the model used. An energy balance yields 
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In the above equation, T is the temperature, ∞T the ambient temperature, K the thermal 
conductivity of the fin material, t the thickness of the fin, h the heat transfer coefficient 
and x and y the coordinate directions. 
 
The boundary condition is given by: 
 
T(0,y) = T0.           (2) 
 
where T0 is the inside surface temperature of the tank. 
Along the sides where convection occurs to the outside fluid, we have 
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Equation (1) together with the boundary conditions was solved by the finite element  
numerical method. 

 
Finite Element Solution 
 
Let us consider a two-dimensional partial differential equation of the form 
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The above equation is valid over an area A. We assume that on a portion of the boundary 
L1, T= T0 (x,y). 
 
On the remainder of the boundary, labeled L2, the general derivative boundary condition 
is specified in the form 
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Here, nx and ny are direction cosines of the outward normal to L2. The form of the 
functional may be written as 
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For a simplex two-dimensional element, we have extremized the above functional with 
respect to the unknown nodal temperatures. The resultant element matrices are then 
obtained from the following relation: 
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The element matrix [ ] )(eB  and the element column [ ] )(eC  may be written as 
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Where 
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The element matrices were then assembled into the global matrices and vectors. The 
prescribed boundary conditions were implemented at the appropriate nodal points. The 
algebraic equations in the global assembled form were solved by the Gauss elimination 
procedure. These details may be found in reference [10]. 

 
Perturbation of the Heat Transfer Problem 
 
The finite element solution for the heat transfer problem may be reduced to the following 
equation in the unperturbed state: 
 

][]][[ CTB =           (9) 
 
The perturbed problem involving small fluctuations of the random variables may be 
written as 
 



Proceedings of The 2008 IAJC-IJME International Conference 
ISBN 978-1-60643-379-9 

]ˆ[B  ]ˆ[T  = ]ˆ[C          
 (10) 
 
where  
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Therefore, we may write equation (9) as 
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In the last step in equation (12), we ignored the second order term d [B]. d [T]. Here, xi 
are the random variables. A simple form of the iterative algorithm is given by: 
  

nn TBCTdB ]ˆ][ˆ[]ˆ[]ˆ[][ 1 −=+        
 (13) 
 

11 ]ˆ[]ˆ[]ˆ[ ++ += nnn TdTT         (14) 
 
In order to start the iteration, we may use  
 

][]ˆ[ 0 TT =  
 
The effect of temperature-dependent properties may be included in equation (13). From 
equation (13), we may write: 
 

1]ˆ][ˆ[]ˆ[]ˆ[][ −−= nn TBCTdB        
 (15) 
 
From equations (13) and (15) we may write 
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 (16) 
 
From equation (16), we may write 
 

n1n ]T̂[d]A[]T̂[d =+         (17) 
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where 1][][][ −−= BIA  ]ˆ[B is the amplification matrix. The iterative process will remain 
stable if the spectral radius of the amplification matrix [A] is less than unity. This will be 
true when the imposed perturbations on the original element matrix are small. 
 
Probability Functions 
 
Attention is now directed to the implementation of this probabilistic formulation in the 
design process. The necessary transition from the mathematical formulation above to a 
probabilistic model that yields the information relevant for multi-variate decision-making 
is described in this section. There are two alternatives for this task. 

 
The first joint probability density function introduced here is an analytical probability 
model for criteria whose univariate distributions and their corresponding means and 
standard deviations are known. All necessary information for the model can be generated 
by the traditional probabilistic design process, using its output of univariate criterion 
distributions. A particular model for two criteria with normal distributions, represented 
by equation (17), has been introduced by Garvey and Tuab. Garvey further generated 
models for two criteria with combinations of normal and lognormal distributions, which 
are summarized in reference [11]. 
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Note that the only information needed for the Joint Probability Model consists of the 
means µX and µY, the standard deviations σX and σY, and the correlation coefficient ρ for 
the criteria X and Y. The model variables, x and y, are defined over the interval of all 
possible criterion values. The advantage of this model is the limited information needed, 
which makes it very flexible for use and application. For example, if only expert 
knowledge and no simulation/modeling is available in the early stages of design, 
educated guesses for the means, standard deviations, and the correlation coefficient can 
be used to execute the joint probability model. It also lends itself to use in combination 
with increasingly important fast probability integration (FPI) techniques.  
 
Implementation of Probabilistic Procedure Using FPI.  FPI is a probabilistic analysis tool 
that implements a variety of methods for probabilistic analysis. The procedure follows 
the steps given below: 
 
1. Identify the independent and uncorrelated design variables with uncertainties. 
2. Quantify the uncertainties of these design variables with probability distributions 

based on expert opinion elicitation, historical data or benchmark testing. 
3. It is required that there is a response function that defines the relationship between the 

response and the independent variables. 
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4. The FPI uses the responses generated to compute the cumulative distribution 
functions (CDF)/probability density functions (PDF) and the corresponding 
sensitivities of the response. 
 

Several methods are available in the FPI to compute a probabilistic distribution. In 
addition to obtaining the CDF/PDF of the response, the FPI provides additional 
information regarding the sensitivity of the response with respect to the primitive 
variables. They provide valuable information in controlling the scatter of the response 
variable. The random primitive variable with the highest sensitivity factor will yield the 
biggest payoff in controlling the scatter in that particular response variable. Such 
information is very useful to the test/design engineer in designing or interpreting the 
measured data.  

 
Results and Discussion 
 
The history of the iterative algorithm is illustrated by means of an example involving 
hydrostatic pressure and self weight, conduction and convection in a water tank as shown 
in Figure 1. The inner surface of the tank was maintained at 400°C, while the outer 
surface at 0°C. The tank was filled with liquid water. The tank was composed of 
concrete, and standard gravity was assumed. The present results for hoop stress on the 
inside surface of the tank subjected to hydrostatic pressure are compared with those of 
Zienkiewicz [12]. Table 1 shows the random variables and their mean values used. All 
random variables were assumed to be independent. A scatter of ±10 % was specified for 
all the variables. This variation amounted to two standard deviations. Normal distribution 
was assumed for all random variable scatters. 
 
Maximum thermal stress location was determined from a pre-analysis of the water tank. 
This location was used to evaluate the cumulative distribution functions (CDF) and the 
sensitivity factors for thermal stress response. Temperature distribution in the tank is 
shown in Figure 2. A typical thermal stress distribution in the water tank is shown in 
Figure 3. CDF for the thermal stress is shown in Figure 4. The sensitivity factors for the 
thermal stress versus the random variables are shown in Figure 5. We observe that the 
modulus of elasticity, Poisson’s ratio, coefficient of thermal expansion of the tank 
material and inside surface temperature of the tank have a lot of influence on the thermal 
stresses.  
 
Conventional engineering design methods are deterministic. The components of a 
machine are considered as ideal systems and parameter optimizations provide single 
point estimates of the system response. In reality, many engineering systems are 
stochastic where a probability assessment of the results is required. Probabilistic 
engineering design analysis assumes probability distributions of design parameters, 
instead of mean values only. This enables the designer to design for a specific reliability 
and hence maximize safety, quality and cost. The approaches for incorporating 
probabilistic effects in design include the use of factors of safety, the use of the worst 
case design and the use of   probabilistic design. Utilizing the uncertainties in the 
estimations, deterministic engineering design uses factors of safety to assure that the 
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nominal operational condition does not come too close to the point where the system will 
fail.  The approximation of minimum properties and maximum loads known as the 
absolute worst case gives information about this critical point. This approach limits the 
optimization capability of a system and fails to provide important information about the 
system lifetime.  
 
A robust design is one that has been created with a system of design tools that reduce 
product or process variability while guiding the performance toward an optimal setting. 
Robustness means achieving excellent performance under a wide range of operating 
conditions. All engineering systems function reasonably well under ideal conditions, but 
robust designs continue to function well when the conditions are non-ideal. Analytical 
robust design attempts to determine the values of design parameters, which maximize the 
reliability of the product without tightening the material or environmental tolerances. 
Probabilistic design and robust design go hand in hand. In order to determine the domains 
of stability, the system has to be analyzed probabilistically.    
 
Conclusion 
 
In this paper, a non-deterministic method has been developed to support reliability-based 
design. The novelty in the paper is the probabilistic evaluation of the finite element 
solution for heat transfer. Cumulative distribution functions and sensitivity factors were 
computed for heat loss due to the random variables. The inside tank temperature, 
modulus of elasticity, Poisson’s ratio and the coefficient of thermal expansion of the tank 
material have a lot of influence on the thermal stresses. Evaluating the probability of risk 
and sensitivity factors will enable the identification of the most critical design variable in 
order to optimize the design and make it cost effective. 
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Table 1: Random Variables 
 

Mass Density 4.5620000E+00 slug/ft3 
Modulus of Elasticity 6.4801000E+08 lb/ft2 
Poisson’s Ratio 1.5000000E-01  
Thermal Expansion 
Coefficient 

5.5000000E-06 1/F 

Thermal 
Conductivity 

1.5982900E-01 ft*lbs/(s*ft*°F) 

High temp 1.2160000E+03 °R 
Low Temp 4.9200000E+02 °R 
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Figure 1. Conical Water Tank Subjected to Hydrostatic Pressure and Self-Weight 
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Figure 2: Steady state heat transfer results 
 

 
 

Figure 3: Linear static stress 
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Figure 4 Cumulative Probability of Hoop Stress 
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Figure 5. Sensitivity Factors versus Random Variables 


