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Abstract 
 
Rosette pattern scanning is a method of scanning in a space of field of view (FOV), so that an 
entire surface can be scanned by the rosette pattern model. Regarding the nonlinearity of 
rosette patterns, there are complicated calculations. We can map rosette pattern space to a 
two-dimensional space called RMA. In this space, nonlinearity effects of rosette patterns are 
omitted and properties of objects for classification are kept. 
 
Regarding nonlinearity in rosette pattern, we do not have the real shape of the objects in 
RMA space, and we could not use the physical features of objects for classification, so we 
used the statistical features of images. Independent component analysis (ICA), as a blind 
source separation (BSS) method, is a statistical method used to discover hidden factors 
(sources or features) from a set of measurements or observed data such that the sources are 
maximally independent. Typically, it assumes a generative model where observations are 
assumed to be linear mixtures of independent sources and unlike principal component 
analysis (PCA), with uncorrelated data. ICA works with higher-order statistics to achieve 
independence. ICA is a powerful tool for analyzing non-Gaussian data. The hidden Markov 
model (HMM) is a statistical model for a sequence of data items called observation vectors, 
and it has a strong capability in pattern classification, especially for signals with abundant 
information quantity, non-stationary natures, and poor repeatability and reproducibility. 
 
A new approach to Real Target recognition from false targets is proposed in this article. In 
this approach, ICA is used for feature extraction, and the HMM is used as a classifier. We 
used two architectures for HMM training and testing. The proposed approach is compared 
with another recognition approach in which PCA is used for feature extraction and HMM is 
used as a classifier that is shown to be effective. 
 
Introduction 
 
A rosette scanning infrared seeker (RSIS) is a device mounted on infrared guided missiles. It 
offers the positions and images of a target to the missiles’ servo systems by scanning a total 
field of view (TFOV) in a rosette pattern with a single detector. An instantaneous field of 
view (IFOV) is a diameter of the detector moving along the path of the rosette pattern. The 
IFOV, which is smaller, provides less interference of background signals and detector 
noise. [1] The rosette pattern of the RSIS can be achieved by means of two counter-rotating 
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optical elements such as prisms, tilted mirrors, or off-centered lenses. It offers the imaging 
information of the target to the processing unit. Planes keep themselves safe against thermal 
tracking missiles by discharging flares. The flares are false targets released at different 
periods of time in a discontinuous format to misguide the seeker. In the processing unit of the 
missile, all of the received samples are clustered, classified, and the center of each class 
calculated. [2] 
 
ICA is closely related to the method called blind source separation (BSS) or blind signal 
separation. A source means there is an original signal, such as an independent component. 
Blind means that we know very little, if anything, about the mixing matrix and make few 
assumptions on the source signals. ICA is one method, perhaps the most widely used, for 
performing BSS. ICA is the extension of standard PCA to higher-order statistics. PCA is an 
analysis method that de-correlates the components of the signal using only the first- and 
second-order statistics, which is adequate for Gaussian data analysis, while ICA is based on 
higher-order statistics. ICA imposes statistical independence on the extracted components 
and has no orthogonality constraint. ICA has been successfully applied to feature extraction. 
[3, 4] HMM is a statistical model of the time series, and its basic theory was initially 
proposed in the 1970s and propagated more widely in the 1980s. Later, it became an 
important research direction in the field of signal processing, especially with respect to 
speech recognition. HMM has received much attention from researchers and has been 
applied to many fields successfully because it has some distinct characteristics that are not 
possessed by various traditional recognition methods. HMM, which is a dual stochastic 
process, has hidden Markov chains with a given number of states and an observable random 
function set. However, each function is relevant to a state of the chains, and the hidden 
process can be described using the sequences produced by the observable process. HMM is 
suitable for modeling dynamic time series and has a strong capability for pattern 
classification, especially for signals with abundant information quantity, non-stationary 
behavior, and poor repeatability and reproducibility. [5, 6] Here, a new approach to 
recognition of the real target in the rosette pattern based on combining ICA and HMM is 
proposed. In this approach, ICA is used for feature extraction and HMM as a classifier.  
 
The article is organized in the following sections. In the first section, we will describe rosette 
patterns and new two-dimensional space, RMA. After that, the classic BSS solution, PCA, 
and Fast-ICA will be described. In the next section, we will describe the hidden Markov 
model. We will continue the discussion by introducing two architectures of recognition. 
Following this, implementation of these two architectures and recognition results will be 
discussed. Finally, our conclusions will be summarized. 
  
Rosette Pattern 
 
The rosette pattern of the RSIS can be achieved by means of two counter-rotating optical 
elements such as prisms, tilted mirrors, or off-centered lenses. [7] Figure 1 shows the scheme 
of the typical RSIS using wedge prisms with apex angle Ø1 and Ø2, respectively. A prism of 
apex angle Ø deviates a ray through a deviation angle δ, as shown in Figure 2. The deviation 
angle can be determined by using Snell’s law of refraction as follows. 
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Figure 1: Scheme of the RSIS  
 

 
 

Figure 2: Scheme of the Wedge Prism 
 

where η is a refractive index. The deviation angle is also the radius of the TFOV. The 
rotating elements spin at frequencies f1 and f2, the values of which determine the scan pattern 
parameters, such as the number of petals and the petal width. The loci of the rosette pattern at 
any time t, in Cartesian coordinates, can be represented by  
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If f2/f1 is a rotational number, then the pattern is closed, and f1 and f2 have the greatest 
common divisor f, such that N1=f1/f and N2=f2/f are both positive integers. Moreover, N1 and 
N2 are the smallest integers satisfying Equation (3). 
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The rosette period, T, is 1 / f = N1 / f1 = N2 / f2. 
The number of petals in the pattern is N = N1+N2. The size of the IFOV should be minimized 
to lessen interfering background signals and detector noise, yet large enough to provide full 
scan coverage (FSC). [8] The size of the IFOV is defined as a distance between two points 
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that are selected among the intersections between any petal and its neighbors. Therefore, the 
size of the IFOV (ω) can be represented as  
 

( ) ( ),coscos NN ππδω 222 −∆=                                                                           (4) 
 
where ∆N=N1 –N2 and ∆N≥3. Figure 3 shows an example of the closed rosette pattern. 
 

  
 

Figure 3: Rosette Pattern: N1=11, N2=4, ∆N=7 
 
 

Rosette Mapping Algorithm (RMA) 
 
In the rosette mapping algorithm (RMA), all of rosette pattern data is transferred into 2D 
space. The dimensions of new space will correspond to dimensions of the rosette pattern. [9] 
 

 
 

Figure 4: Partitioning of a Rosette Pattern Based on θ 
 

In this space, vertical axis x represents number of samples, and horizontal axis y represents θ 
axis in rosette pattern. The whole 360-degree rosette pattern is divided into 2 *(N1+N2) areas. 
Partitioning is done on points at the intersection of petals, so that in each part there is only 
the section of the rosette pattern that is limited between the two intersection points. This 
partitioning is shown in Figure 4. 
 
Each section corresponds to a row of 2D space. The first part is numbered from one and is 
inverse clockwise extended to number 2N, such that N is the number of petals in the rosette 
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pattern. All of the samples in this section of the rosette pattern create pixels of a row of 2D 
space. The pixel numbering in these parts is done from the center of the pattern to the tip of 
each petal.By using of Equation (5), Equation (6) determines the correspondence between 
each sample of the rosette pattern and rows of new 2D space. We calculated the phase of 
each sample using the following equations: 
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X(t) and y(t) are the situation of the samples on the rosette pattern at one instant of time. 
Then, the calculated value of the phase by Equations (5) and (6) is divided by α. Its quotient 
is summed with one. If the total number of samples from the rosette pattern on a row are NP, 
the value of jth pixel on a row calculates with the following equations. 
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In Equations (7) and (8), Nj changes from one to NT, such that NT is the total number of 
samples on the rosette pattern. Np’s values are the number of sampling points on a petal. The 
number of rows and columns of the new space, to which samples map, is equal to the number 
of half petals and number of samples on each half petal, respectively.When the rosette pattern 
infrared seeker scans the total field of view, relevant information about the detected objects is 
saved in its memory. Then, the relevant situations of detected samples at the end of each 
period are determined in a new 2D space. Figure 5 shows the mapping of samples to a new 
2D space. 
 
In this figure, the dimension of the new space is i * j = 2N * NP . Figure 5a shows a target in 
the rosette pattern with N1 = 11 and N2 = 4, and Figure 5b shows an image of the new 2D 
rosette pattern and target. 
 
If we use a multisensory instead of a single sensor, we will have grayscale images in the new 
space. This case was represented in the rosette pattern simulator. All of our work in this 
article has been done in this new 2D space (gray). 
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(a)    (b) 
 

Figure 5a: Target in Rosette Pattern; Figure 5b: Transferred Target to New 2D Space 
 
 
Classical BSS Solutions 
 
Blind source separation (BSS) consists of recovering unobserved sources from a set of their 
linear and instantaneous mixtures [10] generally described by 
 
( ) ( ) ( ),kkAskx ∈+=                                                                                                    (9) 

 
where k can be a scalar index representing time, frequency, and wavelength (1D cases), or a 
vector index representing pixel positions, time-frequency, and time-scale (2D cases). In the 
following, we refer to k as time and to column vector dimension as space. X(k) is the m-
column vector of the observed mixtures data; s(k) is the n-column vector of the unobserved 
sources; A is the (m × n) mixing matrix representing the linear and instantaneous mixing 
process; and, є(k) is the m-column vector that represents an observation noise or model 
error— ( ).,..., ,, σσ mdiagR ∈∈∈ = 1  Equation (9) can be equivalently written in a matrix form. 
 

,EASX +=                                                                                                               (9') 
 
where X, S, and E are matrices with columns, respectively x(k); s(k) and є(k) for k = 1,…,K. 
Classical source separation methods consider a noise free observational model of the form, 
such as: 
 
( ) ( ),kAskx =                                                                                                               (10) 

 
and try to find, by some nonlinear optimization criteria, a separating matrix B (generally an 
estimation of the inverse of A up to a permutation P and a scale indeterminacy 

APDBD 1−=: .) The sources are then estimated by: 
 
( ) ( ).kBxky =                                                                                                                (11) 
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Here, we describe principal component analysis (PCA). If we consider second order 
stationary sources ( )ks ~ ( )I nN ,0 , k∀  the distribution of the observations x(k) according to 
the mixing model (10) is ( )AAN x ′=∑,0  and the distribution of y(k) is ( )∑ ′x BBN ,0 . Since 
( ) ( )kPDsky = , then I nx BB =′∑ and a possible solution is: 

 
,/ U tB Λ−= 21                                                                                                               (12) 

 
where ( )Λ,U  are obtained by singular value decomposition (SVD) of ∑x .  The PCA 
algorithm begins by estimating ∑x from the observed data and computing B using the SVD. 
The principal components are then obtained by Equation (11). 
 
Here, we describe ICA. The FastICA learning rule finds a direction, i.e., a unit vector w such 
that the projection wTx maximizes non-Gaussianity. Non-Gaussianity is measured here by the 
approximation. The FastICA is based on a fixed-point iteration scheme for finding a 
maximum of the non-Gaussianity of wTx. [11] It can also be derived as an appreciative 
Newton iteration. Denote by g, for example: 
 
g1(u) = tanh(a1u),     g2(u)= u exp(-u2/2)                                                                      (13) 
 
where 1 ≤ a1 ≤ 2 is some suitable constant, and it is often taken as a1 = 1. The basic form of 
the FastICA algorithm is as follows: 
 
1. Choose an initial (e.g. random) weight vector w. 
2. Let w+ = E {xg(wTx)} – E(gt(wTx)}w. 
3. Let w = w+/||w+||. 
4. If not converged, go back to 2. 
 
 
Hidden Markov Model 
 
The hidden Markov Model (HMM) is an extension of the Markov chain concept. Since the 
actual problem is more complex than can be described by Markov chains, an HMM for each 
state does not corresponded to an observable event; instead, it is connected to a group of 
probability distributions of the state. An HMM is characterized by the following [12]: 
 
1) N is the number of the states in the model. We denote each individual state as θ = (θ1, 
θ2,…,θN) and the state at time t as st . Obviously, st є(θ1,θ2,…,θN). 
2) M is the number of distinct observation symbols per state. We denote each individual 
symbol as V = (V1,V2,…,VM) and the observable symbol at time t as ot . Obviously, ot є 
(V1,V2,…,VM ). 
3) π is the initial state probability distribution, π = (π1,π2,…,πN), where π i = P(s1= θi ,1≤ i,j ≤ 
N). 
4) A is the state transition probability matrix, A = (aij)N×N ,1 ≤ i , j ≤ N, where aij = P(st+1= θj 
/st = θi ), 1 ≤ i , j ≤ N . 
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5) B is the observation symbol probability matrix, B =(bjk)N×M , where bjk = P(ot = σk/st = θj), 
1 ≤ j ≤ N , 1 ≤ i , j ≤ N. 
 
Thus, an HMM may be denoted as λ (N, M, π, A, B). For convenience, we use the compact 
notation λ (π, A, B) to represent the complete parameter set of the model. Intuitively, an 
HMM consists of two parts—one being a Markov chain denoted by (π, A) and the other a 
stochastic process denoted by B. The output of an HMM is an observation sequence. There 
are three basic algorithms in HMM, namely the forward-backward procedure, the Viterbi 
algorithm, and the Baum-Welch algorithm. These three methods solve the three basic 
problems shown below. 
 
1) Forward-backward Procedure: Given a model λ and a sequence of observations 
O = o1, o2, …, oT , we can compute the probability of the observed sequence that is produced 
by the model. 
2) Viterbi Algorithm: Given an observation sequence O = o1, o2, …, oT and a model λ, we can 
find a corresponding state sequence S = s1, s2,…, sT , which is optimal in some meaningful 
sense (i.e., best “explains” the observations). 
3) Baum-Welch Algorithm: This algorithm solves the problem of HMM training, namely 
HMM parameter estimation (i.e., it allows us to adjust the model parameters λ (π, A, B) to 
maximize the probability of the observation sequence) given a model. 
 
 
Architectures of Recognition 
 
In this paper, we proposed two architectures for recognition. In the first architecture for each 
class (i.e., flare and target), we created only one HMM. HMMF for flare and HMMT for  
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 Figure 6: Architecture 1 for Recognition  
 

target. To compress and feature extraction of images, we used PCA and ICA and performed 
classification with HMM as a classifier. Figure 6 shows Architecture 1 for recognition. After 
feature extraction of image sequences of train sets (for target and flare), these feature vectors 
are input of HMMF and HMMT for training of them. When HMMF and HMMT are 
established, feature vectors of each test image sequence are input of HMMF and HMMT. 
Then, the maximum log likelihood probability that is obtained from HMMF or HMMT 
determines that this image sequence belongs to which one of HMM models.  
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According to the radius symmetry of the rosette pattern, we see approximately four general 
images for flare and target in the RMA space. The shapes of images that we used and 
considered for training and testing are very close to these four images but with a little 
different size (larger or smaller) than those four shapes or rotations of them. 
 
Figure 7 shows Architecture 2 for recognition. In this case, after feature extraction of images 
by PCA and FastICA, we have modeled changes of each one of the four general images by 
an HMM (i.e., four HMM for four general images of flare and four HMM for four general 
images of target.) So, in this architecture, we will have eight train sets of image sequences. 
(Four train sets for target HMMs and four train sets for flare HMMs.) 
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Figure 7: Architecture 2 for Recognition 
 
 

Implementation 
 
When the HMM is established, we consider four hidden states for simulating the variances of 
the general images described above. (Also, the number of states was considered 5, 6, 7, 8, 
and 10, and the results were either alike or worse than the results shown in this article.) The 
initial Markov chain shape in the HMM is shown in Figure 8, where the values on the arrows 
show the state transition probability. 
 
In this paper, we study recognition methods based on PCA (for feature extraction) and the 
HMM (as a classifier), which we will call the PCA–HMM recognition method, as well as 
ICA (for feature extraction) and the HMM (as a classifier), which we will call the ICA–
HMM recognition method. In the ICA-HMM and PCA–HMM recognition methods, the 
extracted feature vectors are input into the HMM of each state for training. The output 
probability of each HMM is obtained, where the HMM with the maximum probability 
determines which sequences of test images belong to the target class or flare. In each HMM, 
the maximum iterative step number is set to 100, and the convergence error of the algorithm 
is set to 0.0001.  
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Figure 8: Initial Markov Chain Shape in HMM 
 

The iterative step number of each HMM and its corresponding log likelihood probability in 
each step (as shown in Architecture 1) is shown in Figures 9a and 9b for the ICA-HMM and 
PCA-HMM methods, respectively. The test results for the two methods are shown in Tables 
1a and 1b, respectively. 
 

 
 

(a)      (b) 
 

Figure 9a: Arc 1, ICA-HMM Training Curve; Figure 9b: PCA-HMM Training Curve  
 

We have three test sets. In the first test set, training images are used, and in the second and 
third sets, images that we never used in the training process are used. In each test set, we 
have eight sequences of images, thus we have 24 test sets. Lengths of feature vectors that are 
used in the recognition process were 50, 25, and 16. In Tables 1a and 1b, test set number 1 
and 50 feature the maximum log likelihood probability that is obtained from the above four 
states (for each class) and is marked in bold.From Figure 9a and Table 1a, along with Figure 
9b and Table 1b, it can be determined that whichever of the two methods are used, the 
classification is successful, except for the last test sequence in PCA-HMM. The iterative step 
number of each HMM and its corresponding log likelihood probability in each step (shown in 
Arch 2) is shown in Figures 10a and 10b for the ICA-HMM and PCA-HMM methods, 
respectively. The test results for the two methods are shown in Tables 2a and 2b, 
respectively. 
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Table 1:Arch 1, Results of Test Set No.1 a) ICA-HMM, b) PCA-HMM 

 
Test1 ICA-HMMF ICA-HMMT Test1 PCA-HMMF PCA-HMMT 

f1 -173.48 -250.98 f1 -1043.87 -1171.09 
f2 -220.66 -253.17 f2 -1048.04 -1163.51 
f3 -203.41 -237.77 f3 -1036.75 -1168.07 
f4 -205.53 -240.76 f4 -1023.09 -1147.17 
t1 -340.32 -270.30 t1 -35000.00 -1294.80 
t2 -300.62 -257.29 t2 -1717.44 -1228.31 
t3 -561.45 -356.56 t3 -1251.02 -1216.46 
t4 -339.50 -276.83 

 

t4 -1157.57 -1169.16 
 

(a)      (b) 
 
In Tables 2a and 2b, for test set1 with 50 extracted features, the maximum log likelihood 
probability is obtained from the above four states and is marked in bold. From Figure 10a 
and Table 2a, along with Figure 10b and Table 2b, it can be determined regardless of the two 
methods used that the classification is successful. Then we compared the two recognition 
methods using two related criteria. The feature vector of a state is input into each state’s 
HMM for training, and the obtained log likelihood probability is noted. The smaller absolute 
value of difference between the output probabilities of the state’s HMM and maximum 
probability, which belongs to this state, result in the better classification. Equally, the larger 
absolute value of the difference between the maximum probability of the state’s HMM and 
the probability, which belongs to the other states, is the clearer classification. 
 

 
 

(a)      (b) 
 

Figure 10a: Arch 2, ICA-HMM Training Curve; 10b: Arch 2, PCA-HMM Training Curve 
 

On the basis of these tests, in the first case of comparison, it can be seen that the ICA-HMM 
recognition method is superior to the PCA-HMM recognition method. To illustrate their 
difference in effectiveness, we take recognition of the f1 (a sequence of flare images) as an 
example. For example, in the ICA-HMM recognition method with Arch 1, if the flare 
training data set is input into this state’s HMM, its output probability is –4994.1559. Then, if 
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the f1 sequence is input into the HMMF, its output probability is –173.48. However, in the 
PCA-HMM recognition method with Arch 1, if the flare data is input into this state’s HMM, 
its  

 
Table 2: Arch 2, Results of Test Set No.1 a) ICA-HMM, b) PCA-HMM  

 
   Method 
state 

ICA-
HMMF1 

ICA-
HMMF2 

ICA-
HMMF3 

ICA-
HMMF4 

ICA-
HMMT1 

ICA-
HMMT2 

ICA-
HMMT3 

ICA-
HMMT4 

f1 -159.40 -191.16 -191.72 -204.49 -225.44 -213.46 -207.91 -241.65 
f2 -214.52 -175.80 -263.72 -250.96 -234.57 -237.28 -214.58 -256.63 
f3 -183.29 -226.85 -153.52 -209.18 -244.94 -226.13 -196.79 -244.99 
f4 -193.93 -234.80 -189.41 -145.16 -231.12 -233.90 -219.50 -229.12 
t1 -366.82 -360.49 -383.64 -346.54 -246.91 -247.37 -279.69 -285.83 
t2 -289.13 -357.68 -296.57 -323.56 -272.49 -208.60 -248.19 -318.62 
t3 -584.27 -750.95 -725.15 -709.52 -408.98 -315.52 -270.96 -402.29 
t4 -371.41 -384.97 -400.63 -391.54 -337.57 -223.77 -295.50 -204.66 

 
(a) 

 
     Method 
state 

PCA-
HMMF1 

PCA-
HMMF2 

PCA-
HMMF3 

PCA-
HMMF4 

PCA-
HMMT1 

PCA-
HMMT2 

PCA-
HMMT3 

PCA-
HMMT4 

f1 -1037.96 -1061.92 -1052.03 -1076.61 -1399.36 -1112.50 -1097.22 -1201.20 
f2 -1052.67 -1039.97 -1057.11 -1068.13 -1398.94 -1106.42 -1087.49 -1151.80 
f3 -1048.65 -1054.48 -1042.21 -1057.74 -1390.40 -1109.21 -1096.05 -1174.43 
f4 -1023.17 -1052.03 -1020.46 -1013.48 -1396.77 -1094.66 -1054.47 -1071.49 
t1 -35000.0 -35000.0 -35000.0 -35000.0 -1227.89 -1683.50 -1745.66 -1784.39 
t2 -1639.30 -2234.29 -1659.47 -1965.81 -1470.90 -1136.53 -1204.08 -1544.62 
t3 -1226.03 -1491.69 -1253.52 -1375.64 -1449.00 -1182.56 -1156.51 -1259.72 
t4 -1163.39 -1202.63 -1186.82 -1173.91 -1447.94 -1141.36 -1115.99 -1074.75 

 
(b) 

 
output probability is –25150.0264. Additionally, if the f1 sequence is input into the HMMF, 
its output probability is –1043.87. It is clear that the absolute value of the difference between 
the output probabilities of the HMMF and the maximum probability, which belongs to f1, for 
ICA-HMM is significantly smaller than the value for PCA-HMM recognition method in 
Arch 1. The different values for ICA-HMM and PCA-HMM are 4820.6759 and 24106.1564, 
respectively. Similar results were obtained in Arch 2 and for the other test sequences (in both 
of two recognition methods.) In Tables 3 and 4, the absolute value of difference between 
maximum probabilities of the state’s HMM and the probability that belongs to the other 
states is calculated for Arch 1 and Arch 2, respectively. (In this calculation, f1 is used as an 
input sequence.)As we have seen in Table 1, in Arch 1, the ICA-HMM recognition method is 
superior to the PCA-HMM recognition method. Although Table 3 shows that the result of 
PCA-HMM is more reliable than ICA-HMM, the result of ICA-HMM is reliable too. Table 4 
does not show any superiority between reliability of the two methods in Arch 2. 
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Table 3: Comparison of Two Recognitions Methods in Arch 1 (f1 Sequence)  
 

            Method 
Model ICA-HMM PCA-HMM 

HMMT 77.49 127.22 

 
 

Table 4: Comparison of Two Recognitions Methods in Arch 2 (f1 Sequence)  
 

                  Method 
Model ICA-HMM PCA-HMM 

HMMf2 31.76 23.96 
HMMf3 32.32 14.07 
HMMf4 45.09 38.65 
HMMt1 66.04 361.40 
HMMt2 54.06 74.55 
HMMt3 48.52 59.26 
HMMt4 82.26 163.25 

 
 
Recognition Results 
 
In the Tables 5 and 6, we can see the classification accuracy for three test sets by two 
recognition methods with different length of features.  

 
Table 5: Arch 1, Classification Accuracy for Three Tests Set with Different Features 

 
RECOGNITION 

ACCURACY   
TEST3 

RECOGNITION 
ACCURACY 

TEST2 

RECOGNITION 
ACCURACY TEST1 

(TRAINING IMAGES)

FEATURE 
VECTORS LENGTH

TRANSFORM 
TYPE 

100% 100% 100% 50 FAST-ICA 
87.5% 100% 100% 25 FAST-ICA 
100% 100% 100% 16 FAST-ICA 
87.5% 75% 87.5% 50 PCA 
75% 75% 75% 25 PCA 

87.5% 75% 87.5% 16 PCA 
 
Table 5 shows that the accuracy of the ICA-HMM recognition method in Arch 1 is superior 
to the PCA-HMM recognition method, and even with less feature, ICA-HMM keeps this 
superiority. In Table 6 for Arch 2, this accuracy was reduced significantly, especially for 
ICA-HMM. It is important to note that in both Arch 1 and Arch 2 for Test 1 (which, in this 
set, we used training images for test), we have 100 percent classification accuracy for ICA-
HMM; however, for PCA-HMM we do not have these results. This shows that if we do better 
training for Arch 2, we will have more efficient results like Arch 1. 
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Table 6: Arch 2, Classification Accuracy for Three Tests Set with Different Features 
 

RECOGNITION 
ACCURACY   

TEST3 

RECOGNITION 
ACCURACY 

TEST2 

RECOGNITION 
ACCURACY TEST1 

(TRAINING IMAGES) 

FEATURE 
VECTORS LENGTH

TRANSFORM 
TYPE 

50% 50% 100% 50 FAST-ICA 
50% 62.5% 100% 25 FAST-ICA 

62.5% 62.5% 100% 16 FAST-ICA 
62.5% 75% 100% 50 PCA 
75% 87.5% 87.5% 25 PCA 

62.5% 75% 87.5% 16 PCA 
 
 

Conclusion 
 
The use of ICA for feature extraction is motivated by the principle of redundancy reduction. 
HMM is a useful tool for dynamic pattern recognition, which can statistically model and 
classify for a dynamic observation process. Therefore, this article has proposed an approach 
to recognition in combining ICA and HMM. In this approach, the FastICA estimated basis is 
used as the feature vector, with HMM as the classifier. Results of the classifications show 
that the proposed method is very effective. The dimensionality of the observation is primarily 
compressed by the ICA transformation to some extent. This proposed method is compared 
with another recognition approach in which PCA is used for feature extraction, retaining the 
same HMM classifier. We suggest that the proposed approach has the potential to solve a 
wide range of recognition problems, such as face recognition. 
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