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Abstract 
 
In a collaborative project between the USDA and Northern Illinois University, the use of 
ethanol corn processing by-products as bio-filler materials in the compression molding of 
phenolic plastics has been studied. This paper reports on the results of a machinability study 
in the milling of various grades of this material. Three types of samples were studied: 100%, 
75% and 50% phenolic samples. The milling operation was carried out with a fixed depth of 
cut of 2.0 mm using a 12.5 mm diameter two-fluted end-mill. The cutting speed was varied 
between 120 and 160 m/min at feeds between 200 and 300 mm/min. Surface roughness 
measurements were taken after each combination of feed and speed. Mathematical models 
for surface roughness have been developed in terms of speed and feed at constant depth of 
cut by response surface methodology (RSM); the significance of the speed and feed on the 
surface roughness has been established with Analysis of Variance (ANOVA) for the three 
types of samples. The optimum cutting conditions were obtained by constructing contours of 
constant surface roughness using MINITAB statistical software. 
 
Introduction 
 
Plastics are manufactured from petroleum resources that are not renewable and not 
biodegradable. To minimize the environmental impact of plastic products and enhance 
biodegradability, many plastic products utilize low-cost, bio-based materials as fillers. Corn 
processing coproducts (DDGS), once dried, represents a potential biofiller [1]. This filler can 
be added in a concentration by weight so as to maintain the mechanical and physical 
properties of the resin. It appears that filler concentrations between 25% and 50% represent 
reasonable inclusion values and sufficient mechanical strength. The main aim of this work is 
to study the machinability of corn processing coproduct filled plastics. 
 
For the selection of optimum machining conditions Computer Aided Manufacturing (CAM) 
has been widely implemented. In the present work, experimental studies have been 
conducted to see the effect of cutting conditions on the machining performance of resin and 
corn coproduct filled resin. This paper presents an approach to develop mathematical models 
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for surface roughness by response surface methodology (RSM) in order to optimize the 
surface finish of the machined surface [2, 3]. RSM is a combination of mathematical and 
statistical techniques used in an empirical study of relationships and optimization, where 
several independent variables influence the process. The first and second order mathematical 
models, in terms of machining parameters, were developed for surface roughness prediction 
using RSM on the basis of experimental results. 
 
The influence of the speed and feed on the surface roughness has been established with the 
Analysis of variance for 100% phenolic,75% phenolic (25% DDGS), 50% phenolic (50% 
DDGS) samples. The response or dependent variable is viewed as a surface to which a 
mathematical model is fitted in RSM. The optimum cutting condition was obtained by 
constructing contours of constant surface roughness by MINITAB and used for determining 
the optimum cutting conditions for a required surface roughness. 
 
Methodology 
 
a) General Approach 
 
Response surface methodology (RSM) is an optimization technique in the field of numerical 
analysis. For optimization, it uses a function called a response surface. A response surface is 
a function that approximates a problem with design variables and state quantities, using 
several analysis or experimental results. In general, design of experiments is used for analysis 
or experiment point parameter setting, and the least square method is used for function 
approximation. Response surface methodology is a combination of mathematical and 
statistical techniques useful for modeling and analyzing the problems in which several 
independent variables influence a dependent variable or response. 
 
The RSM technique attains convergence by repeating numerical and sensitivity analysis until 
the optimal solution as obtained. For problems with high non-linearity, and for multimodal 
problems, there may be cases in which no solution can be found because of problems such as 
inability to obtain sensitivities or a lapse into a local solution. To solve such problems with 
conventional optimization, the RSM has been adopted. With RSM, optimization conditions 
are first set, and then a response surface is created between design variables and objective 
functions or constraint conditions [4]. Since the expected experimental and theoretical 
relations in machining are expected to be non-linear, in this work response surface models 
are used for optimization. 
 
The mathematical model generally used is represented by: 
 
 Y= f(v, f ,α, r)+€ (1) 
 
where Y is the machining surface response, v, f, α, r are milling variables, and € is the error 
which is normally distributed about the observed response Y with zero mean. 
 
Considering only the parameters v and f, a relation can be formulated between these 
independent variables and the dependent variable, surface roughness Ra , as follows[5]: 
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 Ra 

bafCv=  (2) 
 
where C is a constant, v is cutting speed (m/min), f is the feed rate (mm/min), and a and b are 
the empirically-estimated exponents. 
 
This mathematical model is linearized by performing a logarithmic transformation as 
follows: 
 
 flnbvlnaClnRln a ++=  (3) 
 
The constants and exponents C, a, and b can be determined by the method of least squares. 
The first order linear model, developed from the above functional relationship using the least 
square method, can be represented as follows: 
 
 2211001 xbxbxbYY ++∈=−=  (4) 
 
where Y1 is the estimated response. 
 
Based on the first-order equation, Y is the measured surface roughness on a logarithmic 
scale, x0(=1) is a dummy variable; x1 and x2 are logarithmic transformations of cutting speed 
and feed. b0, b1 and b2 are coefficients found from least squares method. 
 
The second order model can be extended from the first order model’s equation as 
 
 2112

2
222

2
111221100 xxbxbxbxbxbxbY +++++∈=−  (5) 

 
And the same method is used to determine coefficients b0, b1, b2, b11, b22 and b12. 
 
b) Experimental Details 
 
Based upon the research conducted by Alauddin et al. [5], which identified feed rate and 
cutting speed as key variables, in our study a milling operation was performed on each test 
specimen using different feeds and speeds. A CNC milling machine was used to machine a 
slot with a 12.5 mm diameter carbide two-flute end mill. Six slots were machined on each 
sample (three on each side). A new end mill was used after every specimen to reduce effects 
of tool wear on the measured parameters. The depth of cut was kept constant at 2mm. The 
table 1 below shows the selected cutting conditions. 
 
The design of experiments was based on the Taguchi approach [6]. Since the range of values 
of each factor was set at three different levels and the factors considered were 2, the design of 
experiments was based on a full factorial. Therefore the number of tests conducted was 9 
(32). Table 2 shows the full experimental schedule. 
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Table 1: The Two Process Variables in the Experiment were Each at Three Levels 
 

Parameter Level-1 Level-2 Level-3 

Speed, v (m/min) 120 140 160 

Feed, f (mm/min) 203 254 305 

 
Table 2: The Experiments were Conducted Following a 32 Factorial Design 

 
Experimental Treatment Speed, v (m/min) Feed, f (mm/min) 

1 120 203 

2 120 254 

3 120 305 

4 140 203 

5 140 254 

6 140 305 

7 160 203 

8 160 254 

9 160 305 

 
c) Coding of Independent Variables 
 
The variables were coded taking into account the capacity and limiting cutting conditions of 
the milling machine so as to avoid vibration of the work-tool system. The coded values of the 
variables shown in Table 2 for use in equations (4) and (5) were obtained from the following 
transformation equations [7]: 
 

 
120ln140ln

140lnvlnx1 −
−

=  (6) 

 

 
203ln254ln

254lnflnx2 −
−

=  (7) 

 
where x1 is the coded value of the cutting speed corresponding to its natural value v, x2 the 
coded value of the feed corresponding to its natural value f. The axial depth of cut, d, was 
kept constant at 2 mm. 
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d) Statistical Analysis 
 
Analysis of the variance (ANOVA) and the F-ratio test have been performed to justify the 
accuracy of the fit for the response surface model. The ANOVA method is based on a least 
squares approach. This analysis was carried out for a level of significance of 5% (a level of 
confidence of 95%) [8]. The regression parameters of the postulated model were estimated 
by the method of least squares using the following basic formula [9]: 
 
 YX)XX(b T1T −=  (8) 
 
where b is the matrix of parameter estimates, X is the matrix of independent variables or 
design matrix, XT is the transpose of the matrix X, and Y is the matrix of logarithms of the 
measured surface roughnesses (i.e., responses). 
 
Results and Discussion 
 
The variation of machining response with respect to the variables was shown graphically in 
figures 1 through 3.  The graphs are shown for 100% phenolic, 75% phenolic and 50% 
phenolic samples. 100% phenolic samples show minimum surface roughness values at high 
speeds and low feeds (figure 1). 75% phenolic samples show minimum surface roughness 
values at medium speeds and low feeds (figure 2), while the 50% phenolic samples show 
minimum surface roughness values at low speeds and high feeds as in (figure3). 
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Figure 1: Ra Response Plot for 100% Phenolic Sample 
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Figure 2: Ra Response Plot for 75% Phenolic Sample 
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Figure 3: Ra Response Plot for 50% Phenolic Sample 
 
a) The Roughness Model 
 
Using experimental results, empirical equations have been obtained to estimate surface 
roughness with the significant parameters considered for the experimentation (i.e. speed and 
feed). The first order model obtained from the above functional relationship using RSM is as 
follows: 
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i) 100% phenolic Sample: 
 
The first order RSM model is given by: 
 
 2101 x0.002791x0.0027-x0.410923YY +∈=−=  (9) 
 
The transformed equation of surface roughness prediction is as follows: 
 
 01245.0017515.0

a fv207493.1R −=  (10) 
 
Equation 10 is derived from 6 and 7 by substituting the coded values of 1x  and 2x  in terms 
of ln v and ln f. Results of ANOVA and F-ratio are shown in table 3 below. Since the 
calculated values of the F-ratio are less than the standard values of the F-ratio for surface 
roughness, the model is adequate at 95% confidence level to represent the relationship 
between the machining response and the machining parameters of the milling process.  The 
multiple regression coefficient for the first order model was found to be 0.88613. This shows 
that the first order model can explain the variation in surface roughness to the extent of 
88.613%.  
 

Table 3: ANOVA Results for First Order Model - 100% Phenolic 
 

 df SS MS F 
Significance 

F 
R 

Square 
Regression 2 0.139069 0.069534 23.35343 0.001475 0.886163

Residual 6 0.017865 0.002977    
Total 8 0.156933     

 
Since the first order model is not sufficiently predictable, second order model was developed 
for better results and is as follows: 
 

21
2
2

2
12102 xx000046.0x0000038.0x0.000126x0.01118x0.02622-x0.965073YY ++++∈=−=  (11) 

 
The results for ANOVA and F-test are shown in Table 4 below.  Since the calculated value of 
F is greater than F0.01; there is a definite relationship between the response variable and 
independent variable at 95% confidence level. The multiple regression coefficient of the 
second order model was found to be 0.9759. On the basis of the multiple regression 
coefficient (R square), it can be concluded that the second order model was more adequate to 
represent this relationship. 

 
Table 4: ANOVA Results for Second Order Model - 100% Phenolic 

 

 df SS MS F 
Significance 

F 
R 

Square 
Regression 5 0.153164 0.030633 24.38117 0.012366 0.975982

Residual 3 0.003769 0.001256    
Total 8 0.156933     
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ii) 75% phenolic sample: 
 
The first order model obtained from the above functional relationship using RSM method is 
as follows: 
 
 2101 x0.002983x0.00011-x0.526967YY +∈=−=  (12) 
 
The transformed equation of surface roughness prediction is as follows: 
 
 013309.000071.0

a fv45677.0R −=  (13) 
 
ANOVA and the F-ratio results are shown in table 5 below. Similarly, since the calculated 
values of the F-ratio are less than the standard values of the F-ratio for surface roughness, the 
model is adequate at 95% confidence level. The multiple regression coefficient for the first 
order model was found to be 0.36342. As it is not sufficiently predictable, the second order 
model has been developed for better results. 
 

Table 5: ANOVA Results for First Order Model - 75% Phenolic 
 

 df SS MS F 
Significance 

F 
R 

Square 
Regression 2 0.138934 0.069467 1.705325 0.259176 0.362425

Residual 6 0.244411 0.040735    
Total 8 0.383345     

 
The second order surface roughness model thus developed is given below: 
 

21
2
2

2
12102 xx0.0000051-x0.000022-x0.000462x0.014657x0.12814-x7.921301YY ++∈=−=  (14) 

 
The data for ANOVA and F-test for the second order model is shown in table 6 below. Since 
the calculated value of F is greater than the standard values of the F-ratio, there is a definite 
relationship between the response variable and independent variable and independent 
variable at 95% confidence level. 

 
Table 6: ANOVA Results for Second Order Model - 75% Phenolic 

 

 df SS MS F 
Significance 

F 
R 

Square 
Regression 5 0.21362 0.042724 0.755174 0.63531 0.557253

Residual 3 0.169725 0.056575    
Total 8 0.383345     

 
iii) 50% phenolic sample:  
 
The first order model is given by: 
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 2101 x0.00016-x005147.0x1.168429YY +∈=−=  (15) 
 
The transformed equation of surface roughness prediction is as follows: 
 
 000713.00333894.0

a fv0073835.1R −=  (16) 
 
The ANOVA) and F-ratio test results are shown in table7 below. Again it has been found that 
the calculated values of F-ratio are less than the standard values of the F-ratio. Therefore the 
model is adequate at 95% confidence. The multiple regression coefficient for the first order 
model was found to be 0.478701, thus a second order model was considered. 

 
Table 7: ANOVA Results for First Order Model - 50% Phenolic 

 

 df SS MS F 
Significance 

F R Square 
Regression 2 0.063972 0.031986 2.754854 0.141664 0.478701 

Residual 6 0.069665 0.011611    
Total 8 0.133637     

 
The second order model was found to be: 
 

21
2
2

2
12102 xx0.000293x0.0000032-x0.00018-x0.00262-x0.048853x-1.52417YY ++∈=−=  (17) 

 
The data for ANOVA and F-test for the second order surface roughness is shown in table 8 
below. The calculated value of the F-ration is greater than the standard value – thus, there is a 
definite relationship between the response variable and independent variable and independent 
variable at 95% confidence level. 
 

Table 8: ANOVA Results for Second Order Model - 50% Phenolic 
       

 df SS MS F 
Significance 

F R Square 
Regression 5 0.078351 0.01567 0.85031 0.593469 0.586295 

Residual 3 0.055286 0.018429    
Total 8 0.133637     

 
b) Taguchi Analysis Results 
 
The response tables show the average of each response characteristic for each level of each 
factor. The tables include ranks based on the delta statistics, which compare the relative 
magnitude of effects. The delta statistic is highest minus the lowest average of each factor. In 
MINITAB, ranks are assigned based on delta values: rank 1 to the highest delta value, rank 2 
to the second highest, and so on. The ranks indicate the relative importance of each factor to 
another factor. The results for 100%, 75% and 50% phenolic are shown in tables 9 to 11 
respectively.  Based on these, contour plots of the surface roughness against speed and feed 
have been obtained and are shown in figures 4 to 6. 
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Table 9: Response Table for Ra Means - 100% Phenolic Sample 
 

Level Speed (m/min) Feed (mm/min) 
1 0.8128 0.5964 
2 0.7085 0.7486 
3 0.7048 0.8811 
Delta 0.1080 0.2847 
Rank 2 1 

 
Table 10: Response Table for Ra Means - 75% Phenolic Sample 

 
Level Speed (m/min) Feed (mm/min) 
1 1.334   1.099 
2 1.147   1.307 
3 1.330   1.403 
Delta 0.187   0.304 
Rank 2 1 

 
Table 11: Response Table for Ra Means - 50% Phenolic Sample 

 
Level Speed (m/min) Feed (mm/min) 
1 1.722 1.854 
2 1.898 1.855 
3 1.928 1.838 
Delta 0.206 0.016 
Rank 1 2 
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Figure 4: Contour Plot of ln(Ra) vs. Speed and Feed - 100% Phenolic Sample 
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Figure 5: Contour Plot of ln(Ra) vs. Speed and Feed - 75% Phenolic Sample 
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Figure 6: Contour Plot of ln(Ra) vs. Speed and Feed - 50% Phenolic Sample 
 
Conclusions 
 
From these results, the combinations of speed and feed from which the surface roughness 
value decreases can be observed. The combinations of optimum speed and feed that increases 
the surface finish for the samples mentioned above are given below: 
 

• Contour and Surface plots of 100% phenolic samples show low surface roughness 
values at high speeds and low feeds. Therefore the better surface finish can be 
obtained at high speeds and low feeds. The Taguchi analysis shows that feed has 

ln(Ra) 

ln(Ra) 
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relatively more impact on surface roughness compared to speed. The ANOVA shows 
that the first order fit is 88.6% accurate, and the second order, 97.5%. The second 
order model indicates the proportion of the variability in the response explained by 
the fitted model. 

• Contour and surface plots of 75% phenolic samples do not follow any particular trend 
but in general lower surface roughness values are obtained at high speeds and low 
feeds. The Taguchi analysis results show that feed has relatively more impact on 
surface roughness compared to speed. The ANOVA shows that the first order fit is 
36.24% accurate, and the second, 55.72%.  

• Contour and Surface plots of 50% phenolic samples show low surface roughness 
values at low speeds and high feeds. The Taguchi analysis results show that speed has 
relatively more impact on surface roughness compared to feed. The ANOVA shows 
that the first order fit is 47.87% accurate, and the second order, 58.6%  

 
Although a concerted effort has been made to study the machinability of plastic composites 
filled with corn ethanol processing coproducts, further research is needed to refine the 
relationship between surface roughness and cutting speed and feed rate. Additional 
experiments will be carried out to improve the sensitivity of the results. Additionally, other 
variables to be considered for future studies include cutting force measurement and the 
determination of overall machinability indexes. 
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