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Abstract 

 

Multilink robot systems are typical nonlinear systems which generously involve in uncertain 

disturbances, high-dimensional system matrix and non-unique characteristic functions. The 

authors present the method of applying fractional order PID controller to such a nonlinear 

system and show the advantages of this fractional controller. In the paper, the dynamic model 

of the system serves as the foundation to derive the control law and objective function for the 

optimization design of the subjected fractional order control system. The frequency domain 

closed loop transaction function of the studied fractional system has been developed and the 

paper proceeds by the study of controllability, observability and robustly satiability. The 

paper demonstrated the algorithms to design and optimize the fractional order PID to the 

nonlinear motion control system. By conducting series numerical computation, this paper 

shows that the fractional order PID controller could enlarge the stable region of the multilink 

robot system and therefore brings superior control performance in terms of trajectory 

tracking. The results and procedures introduced in this paper could be practically generalized 

to other similar systems. 

 

Introduction 

 

Multilink robots are widely used in manufacturing industry, and the motion control issues of 

these robot systems have became popular research topics for decades since the first appear of 

the industry robots.  Generally speaking, multilink robot systems are typical nonlinear 

systems and always involve in uncertain disturbances, high-dimensional system matrix and 

non-unique characteristic functions. The fine control of industry robots usually requires 

complex control systems, careful calibrations and optimizations. In industry practice, 90% of 

these multilink robots are controlled by PID controllers which have the merits including 

effectiveness, simplicity, and feasibility. Although the ordinary PID controllers can achieve 
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satisfactory results in most common manufacturing missions, it still lacks enough precisions 

in the field requires precise instruments.   

 

The structure of ordinary PID controller is fairly straightforward. Its proportional, integral 

and derivative control parts can provide restoring, corrective, and counteractive force 

respectively. Furthermore, the corrective force introduced by integral control can overcome 

the steady-state error brought by proportional part and the counteractive force led by 

derivative control could eliminate the overshoot problem caused by the integrator. Therefore 

in common situation the ordinary PID controllers can always effectively achieve the control 

objections without obvious drawbacks. However, in modem industry, the demand for the 

precise control is driving people to search for improvement to the ordinary PID controllers.  

Fractional order PID (FoPID) introduced in this paper is a natural extension to the ordinary 

PID controllers based on the fractional calculus theory. Since in fractional calculus the orders 

of integral and derivative are not limited to integer orders anymore, people can design a new 

type of PID controller by replacing the ordinary order integrators and differentiators by 

fractional order ones. The main advantages of the FoPID controllers will include enlarged 

stable region, relatively feasible structure, and raised control precision.     

 

As mentioned above, fractional calculus takes the order of integrals and derivatives as any 

real number. It has a history nearly as long as the ordinary calculus, which considers only 

integer orders [1]. Recently, the applications of this technology have been successfully found 

in many fields, such as viscoelasticity
 
[2], [3] , control theory [4], [5] and electro-analytical 

chemistry [6,] [7]. In control theory, the general conclusion about fractional control system is 

that it could enlarge the stable region
 
[8] and yield a performance at least as good as its 

integer counterpart. And another important advantage is that fractional integrals or 

derivatives are hereditary functional while the ordinary ones are point functional. It is known 

that the hereditary functional have the long memory characteristic
 
[9], which means at any 

time it would process a total memory of past states. This unique characteristic serves as one 

of the important reasons for the better performance. For FoPID controllers, there are also 

many scholars have made tremendous contribution
 
in the past years

 
[10], especially in the 

tuning rules
 
[11], [ 12], approximation

 
[13] and stability conditions

 
[14]. All these research 

works generally forms the solid foundations for the work done in this study. 

 

In this paper, the authors apply the FoPID controllers to a nonlinear multilink robot system 

and take uncertain disturbances into consideration. Furthermore, the fractional orders of the 

integrators and differentiators used here are considered as design variables rather than pre-

fixed parameters. The authors studied the stability conditions and optimization design 

method for the overall comprehensive performance of the FoPID controllers on the basis of 

the mathematical model of Adept 550 robot.  As one of the most commonly used robots in 

the industrial production lines, the Adept 550 robot is a four-axis SCARA robot with three 

rotational joints and one translational joint. Since it features a small motion envelope while 

its speeds and payloads are relatively high, Adept 550 robot can be found in mechanical 

assembly, material handling, packaging, machine tending, screw driving, and many other 

operations requiring fast and precise automation.  The authors’ complete study of FoPID 

controllers on the model of Adept550 robot shows that the fractional controller could achieve 
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high precise control and bring feasible approaches to optimize the design of FoPID in other 

applications.   

 

Dynamics Model of Adept 550 Robot 

 

We have included the simplied structure of Adept 550 robot as in figure 1. When applying 

Denavit-Hartenberg (D-H) coordinates, one would notice that Adept 550 has the special case 

of parallel  axes, which is connected with the rigid inner and outer links.  The trajectory of 

this robot is determined by the motion of these two links, and at the wrist the rotational joint 

rotates about the z axis to adjust the gripper angle, but not to change the trajectory.  Since we 

mainly focus on the performance of trajectory tracking in this study, In order to focus on the 

trajectory study, without losing generality we would fairly assume the wrist’s rotary angle is 

zero. If took the notations as labeled in figure 1, one could get the D-H parameters as showed 

in the table 1.  

 

      
 

Figure 1: simplified structure of Adept 550 robot 

 

Table 1. D-H parameters 

 

Link Li i di i 

Inner L1 0 0 1 

Outer L2 0 0 2 

 

Table 1 lists the D-H parameters of the inner and outer links.  For the inner link (i=1) and 

outer link (i=2), the coordinate transformation with rotation and translation components is 

described with the matrix:   
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The simplified transformation matrix of Adept 550 from the base to the gripper is as follows: 
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Noticing the relationships the angular position )2,1( =iiβ  of the motors and the angle 

)2,1( =iiθ  about previous z from old x  to new x : 21211 , θθβθβ +== , the gripper’s 

horizontal position ),( yx PP can be expressed as  
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From Equation (3), the motor angular positions ),( 21 ββ can be derived: 
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Where:   
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The forward velocity v  can be found from Equation (3): 
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Where 
aJ is Jacobian matrix  
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And the backward velocity ( )
21 , ββ &&  can be derived as follows: 
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Also, the relationships of the forward acceleration ( )yx PP &&&& ,  can be determined: 
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Where:  
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The relationships of the backward acceleration ( )
21 , ββ &&&&  are as follows: 
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Applying the Lagrange method, one could get the dynamics of Adept 550 robot as described 

below
 
[15]:  

 

dampingGHD ττββββββ +=++ )(),()( &&&&                  (12) 

 

Where:  
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And matrix C  is composed of the damping coefficients.   

 

Model of fractional order PID controllers 

 

Based on equation (12), we can assume that the motors driving the inner and outer links are 

in the same type. Dynamics of the two links is described as: 
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Since kkmkmk rr ττθβ == ,, , , where r  is the gear ratio, the two dynamic equations of robot 

link and its driving motor expressed in Equation (14) can be combined into a single one: 

 

2,1,,, =−−=+ krdCKVBJ kmkkkmkkeffmkkeff θθθ &&&                                                          (15) 

 

Now for a fractional order PID controller, µλ DPI , one has the five design parameters as 

summarized in table 2: 
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Table 2. design parameters for the  controller 

 

PK  Coefficient for the proportional term 

DK  Coefficient for the derivative term 

IK  Coefficient for the integral term 

µ  Fractional order for the derivative term 

λ  Fractional order for the integral term 

 

The close loop control diagram is showed in figure 2, and equation (16) describes the transfer 

function of this close loop system . The fractional derivative used in this study is defeined ad 

Caputo’s fractional derivative [16].  

 

 
Figure 2, close loop diagram of fractional order  controlled robot arm 
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In this research we consider the FoPID controllers in the two arms have the same fractional 

order λ  and µ but different coefficients. Besides, both the fractional order of the integrator 

and the differentiator are bounded in the range of (0, 1) in this study.  

 

In equation (16), the non-linear terms nd  is as equation (17) 
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Apply the Caputo’s fractional order derivative to (17), and since ,,KmK rθβ =  we could have 

the time domain system function in matrix representation as in (18).   
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Where in (18): 
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In equation (18), the differential order of the 1β 2β are 2+λ , 1+λ , µλ +  and 0. Since these 

orders are not equally spaced, it is not easy to directly re-write (18) in a linear matrix 

formation. Inspired by the work of Galkowski, Bachelier, and Kummert [17], we assume λ  

and µ  are rational numbers which could be expressed by
b

a
 and 

d

c
 in their relatively prime 

formats respectively. By noting ];[ 21 βββ = equation (18) could be written as in (20): 
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In (20), iM and U are coefficient matrix containing their corresponding terms in (18). One 

more thing to mention here is not all of these coefficients are constant since the uncertain 

disturbance. We will show (20) is actually a time variant system later. By inserting zero 

matrixes, it is equivalent to write (20) as in (21): 
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Where 021 ======= Kji NNNNN LL .Based on (21) one has an equally spaced 

fractional order system on every term, and therefore the state space could be defined as: 
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And the system is:  
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In (24.a) and (24.b), ]2,242[0 −+ bdad  is a zero matrix whose dimension is ]2,242[ −+ bdad  and 

]242,242[ −+−+ bdadbdadI   is the identity matrix has the dimension of ]242,242[ −+−+ bdadbdad . 

Equation (23) is the state space reprenstation of our system function. The system matrix A 

has the dimesion of ]42,42[ bdadbdad ++ and B has the dimention of ]2,42[ bdad + . The 

stability study and the design of the fractional order PID controller will focus on the matrix 

A . Although, A could have a very high dimension with the different fractional order, the fact 

that matrix A  is a sparse matrix makes the task easier in most cases.   

 

Controllable, observable, and robust stable of the system: 

 

Since matrix A is in the controllable canonical form and consequently one state could be 

transferred to another, the system is controllable and observable. The design focuses on the 

robust stable of this system. For a fractional order system, the system would be guaranteed 

stable if all the system matrix’s eigenvalues satisfy the following criteria [18]. 
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Therefore, in this study the ratio of stable region of FoPID to the integer PID is bd12 −  

One seems could rising b and d to get a larger stable region. However, rising them will cause 

a larger dimension of matrix A and involves more eigenvalues, since the total number of 

eigenvalues is 2ad+4bd. More eigenvalues would make it harder to grantee all of them are 

settled in the stable region. 

 

Moreover, since A is a bounded sparse matrix with interval uncertainties, there should be 

infinite numbers of eigenvalues to check to satisfy the stable region if one directly use the 

method in (25). In this case, we would like to check the boundaries of each eigenvalue
 
[18], 

[19], and continue to analysis the stabilities of the system based on the behaviors of all 

eigenvalues’ boundaries
 
[20]. Therefore we need to check the boundaries of this system 

matrix A. Based on (18) and (19), the following inequality holds: 
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Thus, the determinant of matrix 1M satisfies: 
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The fact that condition (27) always holds implies the matrix 1M  is always nonsingular and 

consequently the matrix A will never be singular if 0,0 21 ≠≠ ii KK . And in this design we 

will keep this condition. Thus, we have:  
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And in this robot control study the β& and β&& are also bounded because of reality. Therefore one 

could find the matrix A is bounded. Plug in the parameters we used in this study, we get the 

following boundary functions for each variant terms in A through numerical computation, the 

boundaries are functions of design parameters ),,,,,,,( 212121 µλDDPPII KKKKKK .         
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Now, we could study the robust stability of this FoPID controlled system at different design 

),,,,,,,( 212121 µλDDPPII KKKKKK . And this feature actually provides a criterion to optimize 

the design of the controllers. Next we would like to show how the design parameters, which 

are the coefficients and the fractional order of the two FoPID controllers, affect the robust 

stability. The figure 3 shows this effect. Taking the upper left frame in figure 3 as an 

example, the rectangles drew by blue solid lines show the boundaries of each eigenvalues. 

Since there are uncertainties involved in this system the eigenvalues are actually located in a 

range rather than single spots. And rectangles provide sufficient boundaries for this 

eigenvalues
 
[19].  To ensure the system is robustly stable, the eigenvalues’ boundaries are not 

allowed to cross the stable boundary, which essentially represent the angle represents the 

angle bd/2π± in this research. For a better demonstration, we plot those non-violated stable 

boundaries by cyan solid lines and those violated stable boundaries by red solid lines.  
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Figure 3: the effect of changing design variables to the overall stability 

 

Figure 3 clearly shows that changing the combination of the design variables could bring 

changes on the overall stability to the whole system. During the design of the whole 

parameters set, there could be unlimited permutations for the choices of design variable 

set ),,,,,,,( 212121 µλDDPPII KKKKKK . The authors would like to apply some optimization 

algorithm to achieve the comprehensive optimized design. Since task of optimization design 

involves the permutation of each parameter, the genetic algorithm is a natural choice for this 

mission.  

 

Optimization Design 

 

For this design, the system contains uncertainties and one could only obtain the ranges for 

each eigenvalues. Like showed in figure 3, the ranges are the rectangles bounded by every 

four corner eigenvalues. If we draw down this corner eigenvalues in a complex plain and note 

the arguments of them by 4,3,2,1;,2,1, ==∠ jniij Kβ one could then measure the difference 

of these arguments to the stable boundary.  In this way and combined with the facts that all 

eigenvalues are symmetrical to real axis in the complex plan, a natural optimization objective 

is to minimize the difference of stable arguments, bd/2π  , to the absolute value of each 

ijβ∠ . Therefore, the optimization function used in this research is expressed as following 

equation (30): 

∑∑
= =

∠−=
n

i j

ijijDDPPII
bd

KKKKKKignOptimalDes
1

4

1

212121 )
2

(minarg),,,,,,,( β
π

ψµλ             (30) 

In (30), ijψ  serves as the coefficient of penalization. There could be many methods to assign 

the values of ijψ . And also one could separate the complex plain into different segments 
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according to various criteria. In this paper we studied the two-zone penalization method and 

three-zone penalization methods, and they are all stepwise penalization methods. And table 3 

in the following summarized these two different methods. 

 

Table 3: value of penalization coefficient 

 

Two-Zone Method Three-Zone Method 

ijβ∠  ijψ  
ijβ∠  ijψ  

]/2,0[ bdπ∈  1e+5 ]/2,0[ bdπ∈  1e+10 

],/2( ππ bd∈  1 ]/25.0,/2( bdbd πππ +∈  1e+3 

 N/A ],/25.0( πππ bd+∈  1 

 

Before exploring the trajectory tracking performance, we would like to introduce the 

trajectory planning used in this study. We are going to let the robot arm move in both x-

direction and y-direction. We set the original point at (500 mm, 320 mm) and allow 1 second 

for the robot arm to move to position (200 mm, 600mm). Figure 4 demonstrates the trajectory 

plan. We also summarized the optimization results in the table 4. 
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Figure 4: trjectory plan 

 

Table 4. optimization results of design parameters 

 

Two-Zone Method Three-Zone Method 

 146.93  93.87 

 14.27  80.60 

 67.33  14.27 

 80.60  146.93 

 0.80  4.70 

 3.50  0.80 

 0.20  0.67 

 0.83  0.75 
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Simulation results and conclusions 

 

We have plotted the simulation results about the trajectory tracking in the figure 5. This 

figure includes the results from the system optimized by both the two-zone method and three-

zone method. And to compare with, we have also included an ordinary PID controller result 

[15]. As showed in figure 5, the optimized FoPID controllers have tracked the trajectory plan 

successfully. In terms of tracking error, the fractional system achieved a higher precision 

when comparing with the ordinary PID system.  Both of the two-zone method and three-zone 

method provide satisfactory optimization results and therefore the optimization method 

studied in this paper has been justified as effective one. We also recorded the tracking error at 

each sampling point, and computed the average squared tracking error as summarized in table 

5. From table 5, one could clearly see that the FoPID systems have raised the precision of 

tracking by one order of magnitude. 
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Figure 10: Simulation comparisons, in terms of trajectory tracking 
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Table 6. comparisons in terms of mean squared tracking errors 

 

 Ordinary PID FoPID, Two-Zones  FoPID, Three-Zones  

Mean Squared Error in X 3.8859e-05 1.2279e-6 7.0355e-6 

Mean Squared Error in Y 1.4879e-05 8.8149e-6 3.7683e-6 

 

Evidenced by the simulation results, the FoPID controlled Adept550 robot system could 

achieve a better result in terms of trajectory tracking. And the design methods introduced in 

this paper is effective when finding the optimized design of the fractional controllers. This 

method could be easily transferred into other applications related to fractional control, and 

consequently bring valuable results to industry practice. In the end, we would like to 

conclude the following points: 

 

1. The fractional order control of multilink robot system always involves disturbance or other 

uncertainties, therefore studying the limits of each eigenvalues is a feasible method to 

analysis the overall stability. Furthermore, the boundary matrix could be helpful in finding 

the optimization design of the fractional order controllers.   

 

2. The stepwise penalized method could be used to optimize the design of FoPID system, and 

this method allows people to move the system eigenvalues toward to the desired regions. The 

method proposed in this paper could be generalized to other application in the design of 

fractional order controllers. 

 

3. The optimized fractional system will take the advantage of the enlarged stable region while 

avoiding any negative effects brought by the increased number of eigenvalues. Simulation 

results show that the optimized FoPID controlled Adept550 system could track the planned 

trajectory successfully and raise the precision greatly during the tracking process. This 

characteristic would bring valuable result to the manufacturing industry.  
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