
Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Paper 069, MSB 401

Can Using a Formal System For Tracing Computer Programs Help

Students Learn Introductory Computer Science?

 Tom M. Warms Qiang Duan Kavon Farvardin

 All of Pennsylvania State University, Abington, PA

 tomwarms@psu.edu qxd2@psu.edu kff5027@psu.edu

Abstract
Teachers of computer science have known that the ability to trace a computer program is in

some sense a necessary condition for being able to write original programs. The concept of

tracing has not been given much specificity in the literature. In the research reported upon here,

a formal concept of tracing is used to present material to an introductory computer science

class, and in a computer software representation, is made available to the students as a

resource. Neither the tracing method nor the software is made available to a control section.

The results of the research suggest that programming students feel that the tracing technique

and software are useful tools, and inexperienced students respond more positively to the

method and the software than experienced students.

Introduction

Tracing a computer program is an imprecise term that is used to describe the activity of

following the statements of the program, step-by-step, and predicting the results of executing

the statements. The literature describes experiments that relate the ability of a student to

trace programs or program segments accurately to the student’s ability to write original

programs. One study [1] examined behaviors of students as they tried to solve programming

problems, and found that students who accurately formed certain kinds of traces had a high

probability of getting the correct answer to a variety of programming-related questions.

Conversely, the study found that students who did poorly on tracing had a fragile grasp of

basic programming principles, and suggested that an early emphasis on tracing and program

comprehension might liberate the student to concentrate on the more creative aspects of

programming. Another study [2] suggested that that "the combination of tracing and

explaining questions, more so than each skill independently correlates highly to code writing

skills, supporting the ... notion of a hierarchical development of skills in learning to

program."

In the present study, a formal method for tracing the execution of computer programs [3, 4] is

introduced by the instructor to an experimental section; a computerization [5] of the system is

used for lecturing and is made available to the students in that section as a resource. The

study seeks to determine whether or not the student’s overall performance in the course is

enhanced by this availability.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Method

The experiment was conducted in two sections of the course CMPSC 121 in the Fall 2010

semester at a campus of Pennsylvania State University. CMPSC 121 introduces the

fundamental concepts of computer programming and teaches students basic skills for

designing and implementing structured programs. This course uses C++ as the programming

language, and employs the procedural paradigm almost exclusively.

This is the first course in a three course programming sequence for computer science and

computer engineering majors at Penn State. There is no computer programming prerequisite

for the course. Topics covered in this course include data types, mathematical expressions

and calculations, basic I/O and files, control structures, looping structures, user-defined

functions, arrays, simple searching and sorting algorithms, and the mechanisms of running,

testing, and debugging a program.

There were two sections of CMPSC 121 taught by the same instructor in Fall 2010. The

experimental section in which the tracing method was taught and for which the tracing

software was made available had 16 students. The control section had 7 students who were

not exposed to the tracing method. Students enrolled in both sections included computer

science and computer engineering majors as well as students in a variety of engineering and

other majors.

Before taking this course, some students learned programming either by taking courses in

high school or college or by teaching themselves. For other students, this was their first

programming experience.

In the experimental section, the instructor introduced the tracing method at the beginning of

the third week of the semester. At that time the tracing software was provided to students by

posting it on the class bulletin board for download.

From the time of introduction, the instructor used the tracing software as a tool to explain

new concepts. Typically the instructor used the software to trace through example programs

to demonstrate how those programs are executed. By doing that, the instructor also

demonstrated how to use the tracing software. Example programs for the following subjects

were analyzed by using the tracing software: basic mathematical expressions and

calculations, if and if-else statements, while, do while, and for loops, user-defined function

calls and returns using both call-by-value and call-by-reference, arrays, and linear search.

Students in the experimental section had opportunities to use the tracing method and the

software both in class and after class. The instructor also demonstrated how to use the tracing

method manually without running the software, and asked students to practice it in a

homework assignment.

The same set of topics was taught in both sections. Students in the control section were not

exposed to either the tracing method or the tracing software. In order to compare the student

performances in the two sections, identical homework and programming assignments were

assigned to both sections, and the test questions for both sections were identical.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Tracing

The tracing method is described in [3, 4]. According to the method, the student writes down

in a specified manner the result of the computer’s carrying out each of the executable

statements in a program. While tracing any program statement in this formal system, the

results of executing previous statements are always available. Uniquely, the method

provides notations for tracing programs that contain more than one function. There are

notations, for example, for statements that transfer control to other functions using call-by-

value or call-by-reference, and for statements that return control to the calling function.

Figure 1 shows a program that prompts the user for three integers and, using a function,

calculates and prints the largest and smallest of the integers.

Figure 1. A program that prompts the user for three integers, and calculates and prints the largest

and smallest; a user-defined function is used for the calculation.

The software

The software program, called RandomLinearizer, presents a list of programs to trace. Once one

has been chosen, the selected program appears in the center of three panels, followed by an input

set. The left panel then contains a randomized list of the elements that make up the trace of the

program from that input set. The right panel is initially empty. The student is expected to click

on the trace steps in the correct order so that the complete trace unfolds in the right panel. At the

same time, the contents of the console window are updated at the bottom of the middle panel.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Figure 2a: The setup for tracing a program that uses a function to calculate the sum of

two numbers.

Figure 2b: The completed trace for the program of Figure 2a.

Figure 2a shows the setup for the trace of a program that uses a function to calculate the

sum of two numbers and Figure 2b shows the completed trace. When the user makes an

error, RandomLinearizer displays a window that provides the location and, at times, the

nature of the error. Figure 3 shows a diagnostic comment as a user makes a wrong choice

in tracing a program.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Figure 3: A diagnostic comment appears when the user has selected the wrong trace step.

Student reaction to the tracing method and the software

Figure 4 contains a questionnaire that was administered to students in the experimental

section at the time of the final examination. Questions 1 – 10 dealt with the tracing

method, 11 – 17 with the software, and 18 – 20 with the students’ programming

background. Questions 18 – 20 were administered to students in the control section as

well as in the experimental section, and the responses in both sections were used to

determine whether the student was inexperienced or experienced in computer

programming. Table 1a shows the results for the responses for the entire experimental

section, questions 1 – 10, table 1b for questions 11 – 17.

The results of the questionnaire show that students in the experimental section

overwhelmingly responded positively toward the method and the software. The

students agreed emphatically that tracing helped them learn the material of the

course (question 2: Mean = 4.00 on a scale of 1 to 5). When the course material was

broken down into general topics, agreement was strongest that the software was

helpful when the students were trying to learn how to write programs with

functions (question 15: Mean = 4.00). The students responded strongly in the

negative to questions which stated that tracing didn't help the student at all

(question 4: Mean = 1.64), and the software was not at all helpful (question 14:

1.50).

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Figure 4: Questionnaire administered to the students in the experimental section of the

course at the time of the final examination

Table 1a: Mean and Standard Deviation for Questions 1 – 10 of the Questionnaire

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Mean 4.14 4.07 3.64 1.64 4.14 3.79 3.5 2.93 3.93 3.14

N 14 14 14 14 14 14 14 14 14 14

SD 1.027 0.730 0.929 0.745 0.663 0.802 1.286 1.207 0.829 1.099

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Table 1b: Mean and Standard Deviation for Questions 11 – 17 of the Questionnaire

 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Mean 3.00 3.50 3.64 1.50 4.00 3.71 3.64

N 14 14 14 14 14 14 14

SD 1.414 1.225 1.082 1.019 0.784 0.914 0.929

Response to method and software by prior experience in experimental section

Some of the students in both sections had previously taken computer science

courses in high school or college, or had taught themselves how to write programs.

Table 2a shows the results of questions 1 – 10 for the experimental section broken

down by the experience of the user; table 2b shows the results for questions 11 – 17.

Table 2a: Mean and Standard Deviation for Questions 1 – 10 of the Questionnaire

As a Function of Experience

Experienced Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

yes Mean 4.00 4.13 3.50 1.63 4.13 3.50 3.63 3.13 3.75 3.00

 N 8 8 8 8 8 8 8 8 8 8

 SD 1.195 0.835 1.069 0.744 0.641 0.756 0.916 1.126 0.886 1.069

no Mean 4.33 4.00 3.83 1.67 4.17 4.17 3.33 2.67 4.17 3.33

 N 6 6 6 6 6 6 6 6 6 6

 SD 0.816 0.632 0.753 0.816 0.753 0.753 1.751 1.366 0.753 1.211

Table 2b: Mean and Standard Deviation for Questions 11 – 17 of the Questionnaire

As a Function of Experience

Experienced Q11 Q12 Q13 Q14 Q15 Q16 Q17

yes Mean 2.63 3.38 3.88 1.88 4.00 3.75 3.50

 N 8 8 8 8 8 8 8

 SD 1.598 1.408 0.991 1.126 0.926 0.886 1.069

no Mean 3.50 3.67 3.33 1.00 4.00 3.67 3.83

 N 6 6 6 6 6 6 6

 SD 1.049 1.033 1.211 0.632 0.632 1.033 0.753

Students in the experimental section responded positively toward the method and

the software regardless of their experience; the inexperienced students among them

responded even more positively. The difference in means for the inexperienced and

experienced students trended toward significance in their responses as to whether

tracing helping them understand C++ (question 6) and tracing not being at all

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

helpful (question 14). The two questions are, in a sense, inverses of one another:

question 6 deals positively with the tracing method and question 14 negatively with

the software. The direction of the difference in both cases suggests that

inexperienced students felt that the method and software were more helpful than

did the experienced students.

Conclusions and Future Work

No more than very tentative conclusions can be reached on the basis of this

experiment that was carried out with small sample sizes. On the whole, students felt

that tracing was useful and the tracing software was a useful program. More

specifically, a statistically significant result showed that inexperienced students

were even more positively disposed to the tracing technique and the tracing

software than the experienced students.

Comparison between the control and experimental sections involved even smaller

sample sizes; therefore, no conclusions, however tentative, could be drawn.

Elsewhere [6] it has been conjectured that inexperienced students may feel

intimidated by experienced students. In addition, it has been found that the best

predictor of success in introductory computer science courses is students’ comfort

level [7]. Repeating this study on a larger scale will provide a better answer to the

questions of whether tracing is a tool that appeals to all students; whether it helps

inexperienced students feel less intimidated by experienced students; and, whether

students who learn in an environment in which tracing is taught learn the material

better than others who learn in a non-tracing environment.

Acknowledgments

Kavon Farvardin worked on this project within the Penn State Abington ACURA

undergraduate research program.

References

[1] R. Lister et al., "A multi-national study of reading and tracing skills in novice

programmers," SIGCSE Bulletin, vol. 36, no. 4, pp. 119-150, 2004.

[2] G. Tan, and A. Venables, "Wearing the assessment 'BRACElet'," Journal of

Information Technology Education: Innovations in Practice, vol. 9, pp. IIP 25-

34, 2010.

[3] T. M. Warms, "The power of notation: modeling pointer operations," ACM

SIGCSE Bulletin, vol. 37, no. 2, pp. 41-45, June 2005.

[4] T. M. Warms and R. Drobish, "Tracing the execution of computer programs –

report on a classroom method," in Proceedings of the Spring 2007, ASEE Mid-

Atlantic Section Conference, Newark, NJ. (CD-ROM proceedings).

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

[5] T. M. Warms, "Using the tracing method and RandomLinearizer for Teaching

C++," in Proceedings of the FECS'10 — The 2010 International Conference on

Frontiers in Education: Computer Science and Computer Engineering, Las

Vegas, NV. pp. 16-22.

[6] E. Holden and E. Weeden, “Prior Experience and New IT Students,” The

Journal of Issues in Informing Science and Information (2005).

[7] B.C. Wilson and S. Shrock, "Contributing to success in an introductory

computer science course: a study of twelve factors," in Proc. SIGSCE'01, pp.

184-188, 2001.

Biography

TOM WARMS is a faculty member of the department of computer science and

engineering at Penn State Abington. He has taught courses in mathematics,

computer science, information sciences and technology, philosophy, and linguistics.

He has published papers in pattern recognition, psycholinguistics and computer

science pedagogy.

QIANG DUAN is a faculty member in the department of information sciences and

technology at Penn State Abington. His teaching areas include networking and

telecommunications, computer programming, system analysis and design, and

network security. He has published papers in data communications and computer

networking, network virtualization and the Internet, Service-Oriented Architecture

and Web services, and Grid and Cloud computing.

KAVON FARVARDIN is an undergraduate student majoring in computer science at

Penn State Abington.

