

INTERNATIONAL JOURNAL OF
MODERN ENGINEERING

THE LEADING JOURNAL OF ENGINEERING, APPLIED SCIENCE, AND TECHNOLOGY

 Mark Rajai, Ph.D.

Editor-in-Chief
California State University-Northridge
College of Engineering and Computer Science
Room: JD 4510
Northridge, CA 91330
Office: (818) 677-5003
Email: mrajai@csun.edu

Contact us:

www.iajc.org www.ijme.us

www.tiij.org

www.ijeri.org

Print ISSN: 2157-8052
Online ISSN: 1930-6628

 TO JOIN THE REVIEW BOARD:

• The International Journal of Engineering Research and
Innovation (IJERI)
For more information visit www.ijeri.org

• The Technology Interface International Journal (TIIJ).

For more information visit www.tiij.org

 OTHER IAJC JOURNALS:

• Manuscripts should be sent electronically to
the manuscript editor, Dr. Philip Weinsier,
at philipw@bgsu.edu.

For submission guidelines visit
www.ijme.us/submissions

 IJME SUBMISSIONS:

• Contact the chair of the International
Review Board, Dr. Philip Weinsier, at
philipw@bgsu.edu.

For more information visit
www.ijme.us/ijme_editorial.htm

• IJME was established in 2000 and is the first and
official flagship journal of the International
Association of Journal and Conferences (IAJC).

• IJME is a high-quality, independent journal steered by
a distinguished board of directors and supported by an
international review board representing many well-
known universities, colleges and corporations in the
U.S. and abroad.

• IJME has an impact factor of 3.00, placing it among

the top 100 engineering journals worldwide, and is the
#1 visited engineering journal website (according to
the National Science Digital Library).

 ABOUT IJME:

INDEXING ORGANIZATIONS:

• IJME is currently indexed by 22 agencies.
For a complete listing, please visit us at
www.ijme.us.

——-

——–
Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ

I J M E

The INTERNATIONAL JOURNAL OF MODERN ENGINEERING (IJME) is
an independent, not-for-profit publication, which aims to provide the engineering
community with a resource and forum for scholarly expression and reflection.

IJME is published twice annually (fall and spring issues) and includes peer-
reviewed research articles, editorials, and commentary that contribute to our un-
derstanding of the issues, problems, and research associated with engineering and
related fields. The journal encourages the submission of manuscripts from private,
public, and academic sectors. The views expressed are those of the authors and do
not necessarily reflect the opinions of the IJME editors.

EDITORIAL OFFICE:

Mark Rajai, Ph.D.
Editor-in-Chief
Office: (818) 677-2167
Email: ijmeeditor@iajc.org
Dept. of Manufacturing Systems
Engineering & Management
California State University-
Northridge
18111Nordhoff Street
Northridge, CA 91330-8332

T I J M E E

Editor-in-Chief

Mark Rajai

California State University-Northridge

Production Editor

Philip Weinsier

Bowling Green State University-Firelands

Manuscript Editor

Philip Weinsier

Bowling Green State University-Firelands

Subscription Editor

Morteza Sadat-Hossieny

Northern Kentucky University

Executive Editor

Dale Litwhiler

Penn State Berks

Publisher

Bowling Green State University-Firelands

Technical Editors

Andrea Ofori-Boadu
North Carolina A&T State University

Michelle Brodke
Bowling Green State University-Firelands

Marilyn Dyrud
Oregon Institute of Technology

Mandar Khanal
Boise State University

Chris Kluse
Bowling Green State University

Zhaochao Li
Morehead State University

Web Administrator

Saeed Namyar
Advanced Information Systems

Editor’s Note: Marine Vessel Navigation Systems .. 3
Philip Weinsier, IJME Manuscript Editor

Framework for Implementing Advanced Radar Plotting-Aid Capability for Small Maritime Vessels .. 5
Otilia Popescu, Old Dominion University;
Jason S. Harris, Old Dominion University;
Dimitrie C. Popescu, Old Dominion University

Design Improvements for Coil Springs in an Automotive Independent Suspension .. 15
Diane L. Peters, Kettering University;
Yaomin M. Dong, Kettering University;
Viraj B. Dave, Kettering University

Deep Neural Networks and Universal Approximators II ... 23
Ying Liu, Savannah State University;
Majid Bagheri, Savannah State University;
Antonio Velazquez, Savannah State University;
Asad Yousuf, Savannah State University

Instructions for Authors: Manuscript Submission Guidelines and Requirements ... 35

——–————

——–————
Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

T C

 The SS Andrea Doria and MS
Stockholm collision (1956)

 The RMS Titanic allision (1912)
 The SS Edmund Fitzgerald—sunk either

by a storm or a collision with the SS
Arthur M. Anderson (1958)

 The Exxon Valdez oil spill allision (1989)
 The Costa Concordia allision (2012)

Remember any of these maritime disasters?
Every year, many people are injured or killed
when maritime vessels collide (both vessels
are in motion) or are involved in an allision (a
moving vessel impacts a stationary vessel or
a fixed object). According to the Insurance
Information Institute (www.iii.org), shipping
losses around the world over the last decade
included over 700 vessels—the bulk of these
by S. China, Indochina, Indonesia, and the
Philippines. But shipping losses as a category doesn’t give
us the “big picture.” Marine vessel incidents between 2014
and 2021 included 11,000+ cargo ships, 5000+ passenger
ships, 4000+ fishing vessels, 2200+ service ships, and 660+
“others” (www.SAFETY4SEA.com). According to the
United States Coast Guard, the top contributing factors to
these collisions are operator inattention and/or inexperience
and an improper lookout.

At the risk of stating the obvious, anything that can
reduce the number of incidents and losses should be evalu-
ated and considered. Case in point: ARPA (Automatic
RADAR Plotting Aid systems), required by the larger
commercial vessels to automatically detect potential colli-
sions and provide audio/visual alerts. The problem, though,
is cost; owners of smaller vessels—such as those used by
average recreational boaters—simply are not able to afford
such systems. It is possible, however, to implement a low-
cost ARPA-like system using open source software in con-

junction with con-
sumer-grade, com-
mercially available
RADAR systems.

In the 20th century,
the Decca Naviga-
tor System launched
its first hyperbol-
ic radio naviga-
tion system that
allowed ships and
aircraft to determine

their position by using radio signals from a
dedicated system of static radio transmit-
ters. LORAN (LOng RAnge Naviga-
tion) was another hyperbolic radio naviga-
tion system developed in the United
States during World War II and offered an
improved range, up to 1500 miles. More
modern methods of ship collision avoidance
include the following.

 ECDIS (Electronic Chart Display and

Information System)
A GPS-based system used for route
planning and automat-
ic ETA computations as well as
pinpointing tricky or congested routes.

 AIS (Automatic Identification System)
Transmits real-time ship data in order
to detect vessels in poor weather.

 RADAR (RAdio Detection And Ranging)

Detects obstacles and vessels in low visibility, such as
nighttime navigation in crowded harbors.

 COLREGS (International Regulations for Preventing
Collisions at Sea)
COLREGS-mandated lights are specific configurations
of navigation and signaling lights for indicating a
vessel’s position, status, and intent to nearby ships.

In our featured article (p.5), the authors evaluate aspects

associated with such an implementation and discuss the use
of the OpenCV computer vision library to automatically
extract target information from a standard commercial
RADAR system and render it on a navigational display for
visualization. In addition, the authors present the implemen-
tation of target tracking using the multiple hypothesis track-
ing (MHT) algorithm in conjunction with a Kalman filtering
algorithm to predict the position of a detected target via a
simulated example.

The goal of their paper is
to present a framework
that facilitates the imple-
mentation of ARPA capa-
bilities in small vessels
using consumer-grade
sensors and RADAR
systems by integrating
open source software for
target detection and
rendering with target-
tracking algorithms.

I T I (.5)
M V N S

Philip Weinsier, IJME Manuscript Editor

———–————

——–
Eൽංඍඈඋ’ඌ Nඈඍൾ (Iඇ Tඁංඌ Iඌඌඎൾ): Mൺඋංඇൾ Vൾඌඌൾඅ Nൺඏංൺඍංඈඇ Sඒඌඍൾආඌ 3

A typical shipboard ARPA/radar system. DECCA navigation system.

Editorial Review Board Members

——–————

State University of New York (NY)
North Carolina A&T State University (NC)
Texas A&M University-Kingsville (TX)
Michigan Tech (MI)
Purdue University Northwest (IN)
Zamfara AC Development (NIGERIA)
Virginia State University (VA)
Acharya Institute of Technology (INDIA)
Memphis University (TN)
Kennesaw State University (GA)
University of Arkansas Fort Smith (AR)
Ball State University (IN)
Bowling Green State University (OH)
Minnesota State University (MN)
Texas A&M University Kingsville (TX)
Illinois State University (IL)
Iowa State University (IA)
Eastern Illinois University (IL)
Indiana State University (IN)
Ohio University (OH)
Claflin University (SC)
Alabama A&M University (AL)
Oregon Institute of Technology (OR)
Elizabeth City State University (NC)
Tennessee Technological University (TN)
Millersville University (PA)
University of Tennessee Chattanooga (TN)
Zagazig University EGYPT)
Yahia Farès University (ALGERIA)
Western Illinois University (IL)
Abu Dhabi University (UAE)
Penn State University (PA)
Safety Engineer in Sonelgaz (ALGERIA)
City University of New York (NY)
Central Connecticut State University (CT)
University of Louisiana Lafayette (LA)
North Dakota State University (ND)
North Carolina A&T University (NC)
Indiana University Purdue (IN)
Michigan Tech (MI)
Eastern Illinois University (IL)
Millersville University (PA)
Purdue Polytechnic (IN)
North Dakota State University (ND)
Abu Dhabi University (UAE)
Purdue University Northwest (IN)
Bowling Green State University (OH)
Southeast Missouri State University (MO)
Bowling Green State University (OH)
Ohio University (OH)
Penn State University Berks (PA)
Central Michigan University (MI)
Florida A&M University (FL)
Purdue University Northwest (IN)
Morehead State University (KY)
Ohio University (OH)
Penn State University (PA)
Penn State University (PA)
ARUP Corporation
Millersville University (PA)
University of Louisiana (LA)
University of Southern Indiana (IN)
Eastern Illinois University (IL)
Mississippi State University (MS)
Excelsior College (NY)
Jackson State University (MS)
California State University Fresno (CA)
Penn State Berks (PA)
Michigan Tech (MI)
University of Central Missouri (MO)

Mohammed Abdallah
Paul Akangah
Shah Alam
Nasser Alaraje
Ali Alavizadeh
Lawal Anka
Jahangir Ansari
Sanjay Bagali
Kevin Berisso
Sylvia Bhattacharya
Monique Bracken
Tamer Breakah
Michelle Brodke
Shaobiao Cai
Rajab Challoo
Isaac Chang
Shu-Hui (Susan) Chang
Rigoberto Chinchilla
Phil Cochrane
Curtis Cohenour
Emily Crawford
Z.T. Deng
Marilyn Dyrud
Mehran Elahi
Ahmed Elsawy
Cindy English
Ignatius Fomunung
Ahmed Gawad
Hamed Guendouz
Kevin Hall
Mamoon Hammad
Bernd Haupt
Youcef Himri
Delowar Hossain
Xiaobing Hou
Shelton Houston
Ying Huang
Christian Bock-Hyeng
Pete Hylton
John Irwin
Toqeer Israr
Alex Johnson
Rex Kanu
Reza Karim
Manish Kewalramani
Tae-Hoon Kim
Chris Kluse
Doug Koch
Resmi Krishnankuttyrema
Zaki Kuruppalil
Shiyoung Lee
Soo-Yen (Samson) Lee
Chao Li
Jiliang Li
Zhaochao Li
Neil Littell
Dale Litwhiler
Lozano-Nieto
Mani Manivannan
Dominick Manusos
G.H. Massiha
Thomas McDonald
David Melton
Kay Rand Morgan
Sam Mryyan
Jessica Murphy
Arun Nambiar
Rungun Nathan
Aurenice Oliveira
Troy Ollison

Purdue Fort Wayne (IN)
Community College of Rhode Island (RI)
Sardar Patel University (INDIA)
Virginia State University (VA)
Broadcom Corporation
Warsaw University of Tech (POLAND)
University of West Florida (FL)
California State University-Fullerton (CA)
C Spire
Brigham Young University (UT)
Binghamton University SUNY (NY)
Baker College (MI)
Michigan Technological University (MI)
Zagros Oil and Gas Company (IRAN)
St. Cloud State University (MN)
Maharishi Markandeshwar Univ. (INDIA)
Shahrood University of Technology (IRAN)
North Carolina A&T State University (NC)
Wentworth Institute of Technology (MA)
Southern Illinois University (IL)
Ohio University (OH)
Camarines Sur Polytechnic (PHILIPPINES)
Missouri University of Science &Techn (MO)
University of Houston Downtown (TX)
University of Central Missouri (MO)
University of South Florida Polytechnic (FL)
Central Connecticut State University (CT)
Texas A&M University (TX)
Thammasat University (THAILAND)
Central Connecticut State University (CT)
Purdue University (IN)
Purdue University Northwest (IN)
Sam Houston State University (TX)
Ohio University (OH)
Fitchburg State University (MA)
Jackson State University (MS)
Missouri Western State University (MO)

Reynaldo Pablo
Basile Panoutsopoulos
Shahera Patel
Thongchai Phairoh
Huyu Qu
Desire Rasolomampionona
Michael Reynolds
Nina Robson
Marla Rogers
Dale Rowe
Raghav Rout
Anca Sala
Alex Sergeyev
Mehdi Shabaninejad
Hiral Shah
Deepa Sharma
Mojtaba Shivaie
Musibau Shofoluwe
Jiahui Song
Carl Spezia
Michelle Surerus
Harold Terano
Sanjay Tewari
Vassilios Tzouanas
Jeff Ulmer
Abraham Walton
Haoyu Wang
Jyhwen Wang
Boonsap Witchayangkoon
Shuju Wu
Baijian “Justin” Yang
Xiaoli (Lucy) Yang
Faruk Yildiz
Yuqiu You
Hong Yu
Pao-Chiang Yuan
Jinwen Zhu

——–————
4 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

Abstract

Every year, many people are injured or even lose their
lives, when small maritime vessels collide with other
vessels or fixed objects. According to the United States
Coast Guard, the top contributing factors to these collisions
are operator inattention and/or inexperience and an improp-
er lookout that could be prevented by using Automatic
RADAR Plotting Aid (ARPA) systems. It is worth noting
that, while larger commercial vessels are required to have
RADAR systems with ARPA capabilities to automatically
detect collisions and alert the vessel operator to alter
course, the cost of such systems can be prohibitive for small
vessels used by average recreational boaters. Nevertheless,
it is possible to implement a low-cost ARPA- like
system by using open source software in conjunction with
consumer-grade RADAR systems that are commercially
available for use on small vessels. In this study, the
authors evaluated aspects associated with such an imple-
mentation and, in this paper, discuss the use of the OpenCV
computer vision library to automatically extract target infor-
mation from a standard commercial RADAR system and
render it on a navigational display for visualization. In addi-
tion, the authors present the implementation of target track-
ing using the multiple hypothesis tracking (MHT) algorithm
in conjunction with a Kalman filtering algorithm to predict
the position of a detected target via a simulated example.

Introduction

Operating small vessels in open waters can be challeng-
ing, especially when poor situational awareness hinders
their maneuvering around other vessels or fixed obstacles.
According to the latest recreational boating statistics
released by the United States Coast Guard (USCG, 2022)
there were 1085 collisions involving small recreational
vessels leading to 39 deaths and 512 injuries. According to
the USCG (2022), the top three known primary contributing
factors for accidents were operator inattention and/or
inexperience and an improper lookout, causing 1453
accidents that resulted in 136 deaths and 791 injuries.
While no solution is perfect in reducing accidents on the
open seas, technology can be used to augment the skills and
capabilities of boat operators. A marine RADAR system is a
very important tool for small vessels, when it comes to safe-
ty, as it can assist navigators when poor visibility conditions
exist, when navigation by sight is not possible. In such
scenarios, a RADAR system with ARPA capability can
automatically detect nearby obstacles, plot their course, and

warn operators of imminent collisions (Bole, Wall, Norris &
Dineley, 2005). However, while commercial vessels are
required to be equipped with RADAR systems that have
ARPA capabilities to provide warnings against potential
collisions, most recreational boats and small vessels lack
such capabilities. This is due to various factors, such as the
cost of the system, the additional weight, and the power
requirements if installed systems. It is theorized that, if this
technology were more available and affordable, more vessels
would be equipped with it and the number of accidents on
the water would be reduced.

One of the main challenges in implementing ARPA capa-
bilities on marine RADAR systems for small vessels is
being able to provide an accurate platform heading to the
ARPA tracking algorithm. This is because the dynamic
nature of a vessel operating on water leads to uncertainties
regarding the vessel’s orientation with respect to the yaw
axis; Figure 1 illustrates how this is commonly represented
as noise and is combined with the uncertainties due to the
RADAR sensor. These uncertainties are much more prob-
lematic on smaller vessels, which are not fitted with preci-
sion instruments to take vessel bearing measurements, but
generally rely on inexpensive consumer-grade sensors to
determine their heading. Nevertheless, being able to use the
rough information provided by these sensors in conjunction
with affordable small marine RADAR systems would allow
the implementation of collision detection capability on more
vessels, resulting in a safer navigation environment both on
shore and on the open seas.

Figure 1. Yaw uncertainty due to the vessels’ heading (yellow)
adds to the uncertainty of the RADAR sensor (green) to increase
the range of variation in the position of a detected vessel.

The goal of this paper is to be a platform for the authors
to present a framework that facilitates the implementation of
ARPA capabilities in small vessels using consumer-grade
sensors and RADAR systems by integrating open source
software for target detection and rendering with target-
tracking algorithms. The authors were not able to find such
a framework in the open literature; thus, providing one will

F I A
R P -A C

S M V

——–———–
Otilia Popescu, Old Dominion University; Jason S. Harris, Old Dominion University; Dimitrie C. Popescu, Old Dominion University

 ——
Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024 5

——–————

——–————
6 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

enable the expansion and improvement of the safety
features of small vessels. In this paper, the authors begin
with a brief overview of sensors that are available on the
consumer market and may be used to provide heading
information, augmenting the basic information obtained
from simple RADAR systems commonly available on small
vessels. This is followed by a discussion outlining how the
RADAR system obtains information about targets that are
present in the environment and how this information is
rendered for target detection and visualization using the
OpenCV library. Finally, the authors present a discussion on
target tracking, illustrated through simulations.

Heading Sensors for Small Vessels

Small maritime vessels, as defined in this paper, do not
exceed 60 feet in length, and include personal watercraft
generally owned by individuals for recreational purposes.
Such vessels may be easily transported on land, using trail-
ers and commercial off-the-shelf RADAR systems available
for these types of comparatively small watercraft, which are
relatively inexpensive, costing only a few thousand dollars
in the United States. Due to their low cost and size, these
RADAR systems usually have no ARPA functionalities for
automatically detecting targets and warning operators of
potential collisions. However, many modern systems
designed for small vessels may include some collision-
avoidance functions referred to as Mini ARPA (or
MARPA), which are essentially simplified versions of the
ARPA used on larger vessels (SIMRAD, 2024). These are
available as advanced features usually not included in the
price of the RADAR system, and they use information from
additional onboard sensors such as a compass or global
positioning system (GPS) and require displays with control
units (McMillan, 2024).

Nevertheless, implementing ARPA capabilities on
commercial off-the-shelf RADAR systems used in small
vessels can be accomplished using information that can be
obtained from affordable consumer-grade micro-electro-
mechanical systems (MEMS) that are already incorporated
into most smartphones and can be interfaced with Arduino
microcontrollers or Raspberry Pi single-board computers at
a fraction of the cost (Abankwa, Johnston, Scott & Cox,
2015). MEMS technology became popular during the
1990s, when it started to be used on a large scale in the auto-
motive industry (Yazdi, Ayazi & Najafi, 1998). Currently,
MEMS are considered to be low-cost devices and various
types of MEMS sensors are constructed using different

techniques (Lin, Xiong, Dai & Xia, 2017), as shown in
Figure 2.

Accelerometers are used to measure acceleration and are
constructed by using a mass suspended between two small
springs. The mass acts as a capacitive plate and, as its rela-
tionship changes with respect to a fixed plate, the change in
capacitance can be converted to an acceleration value (Rao,
Wei, Zhang, Zhang, Hu, Liu & Tu, 2019). Gyroscopes are
constructed by combining two accelerometers, such that the
accelerometer that is furthest away from the center of rota-
tion will register a larger acceleration, thereby allowing for
the measurement of orientation or angular velocity. Torsion-
al magnetometers are formed by building a plate with a coil
suspended by a torsion bar, such that when a current is
passed through the coil of wire, the Lorentz force will apply
a torsion to the plate altering the capacitance with respect to
two fixed capacitive plates underneath (Wu, Tian, Ren &
You, 2018).

Figure 2. Diagrams of MEMS accelerometers, gyroscopes, and
torsional magnetometers.

In recent years, low-cost inertial measurement units
(IMUs) that combine accelerometers, gyroscopes, and
magnetometers, have been used to determine the orientation
of an object (such as a vessel or a gaming controller) with
relatively good performance (Patonis, Patias, Tziavos,
Rossikopoulos & Margaritis, 2018). It is worth noting that the
individual components in an IMU are able to complement
each other for accurate determination of the orientation in
the three-dimensional space of the object: the accelerom-
eter provides information that can be used to determine the
direction in which the sensor platform moves; the magne-
tometer is able to determine a true measurement with
respect to magnetic North; and the gyroscope detects small
changes in the orientation of the sensor platform. Table 1
shows update rates and resolutions corresponding to
commonly used low-cost IMUs, which are at a
sub-second scale (tens or hundreds of Hz update rates with
a few thousands of a degree of angular resolution).

Device

Magnetometer Gyroscope

Update rate [Hz] Resolution [mT] Update rate [Hz] Resolution [°/s]

MPU-9250 100 0.59 8000 0.076

ICM-20948 100 0.15 9000 0.076

BNO 055 30 0.3 400 0.038

Table 1. Magnetometer and gyroscope specifications for popular consumer-grade IMUs.

——–————

And, while the corresponding data can be used for
compensating yaw variations (Yi, Wu, Yue, Zhang, Chen &
Wan, 2020), it will have to be down sampled for use in
determining the heading of a small vessel, as the vessel’s
heading changes at sub-second scales, which is considered
irrelevant for the sea-keeping ability of the vessel. Sensor
fusion algorithms are able to combine accelerometer,
magnetometer, and gyroscope data to achieve an absolute
heading resolution of approximately one degree RMS
(Tomasch & Winer, 2019), with a limiting factor for getting
accurate heading data implied by calibration of the sensors.
In this direction, the gradient-descent algorithm presented
by Madgwick, Harrison, and Vaidyanathan (2011) is an
excellent choice for sensor fusion, as it performs on par
with alternative proprietary algorithms (Tomasch & Winer,
2019).

Target Detection and Rendering for ARPA
Visualization

RADAR systems used on small vessels are monostatic,
with the RADAR transmitter and receiver collocated on the
vessel, and which usually employ frequency modulated
continuous wave (FMCW) sensing to probe the environ-
ment for target presence. These RADAR systems are only
capable of scanning the environment in the azimuth direc-
tion at a constant rate (usually around 48 revolutions/
minute) and do not have the ability to focus on specific
targets. In FMCW radar systems, the transmitter sends a
chirp signal, which is a pulse of duration T whose frequency
varies linearly over its duration between frequencies F1
and F2. The chirp reflection off the target is delayed by a
certain amount of time td that depends on the distance to the
target that is present in the environment and is given by
Equation 1:

(1)

where, d is the distance to the target and c is the speed of
light.

At any given instant in time, the offset frequency between
the transmitted and reflected chirp signals is given by
Equation 2:

(2)

corresponds to the smallest frequency
offset between the transmitted and reflected chirp signals
and defines the resolution bandwidth (RBW) of the
RADAR system. This depends on the sampling rate and the

size of the fast Fourier transform (FFT) used by the RA-
DAR receiver and determines also its range resolution,
which corresponds to the smallest distance between two
targets for which they can The power Pr of
the chirp signal reflected by a target that is present in the
environment at distance d from the RADAR transmitter is
given by the radar equation (Skolnik, 1981) of Equation 3:

(3)

where, Pt is the power of the transmitted chirp, Gt and
Gr are the transmit and receive antenna gains, respective-
ly, Ae is the effective area of the receive antenna, and σ
is the radar cross-section (RCS) of the target.

The RCS is also referred to as the radar signature and is a
measure of how detectable an object is by radar, and direct-
ly affects the power of the reflected chirp signal at the radar
receiver, with larger RCS values implying larger reflected
powers, indicating that the corresponding objects are more
easily detected. The RCS depends on the frequency range of
the chirp signal and is determined by measurement for prac-
tical targets. For small vessels, the RCS measured at micro-
wave frequencies is on the order of 0.02m2 for small open
boats and 2m2 for recreational boats and cabin cruisers
(Skolnik, 1981), which indicates that, for the latter type of
small vessels, the power of the reflected signal at the radar
receiver is two times larger than for the former. The range
of the RADAR system is implied by Equation 3 and is
given by Equation 4, such that, in practical scenarios, it is
guaranteed that the radio frequency (RF) power of the
chirp reflection Pr is above the sensitivity of the
RADAR receiver Pmin from a target located at distance
d dmax, given that the RF power at the RADAR transmitter
is at least at the Pt level. Note that the RADAR system can
detect both moving and fixed targets (such as anchored
ships), and that the RADAR range corresponds to the rela-
tive distance between the vessel and the detected target.

(4)

Visualizing RADAR Information

To sense the environment for the presence of a target, the
RADAR system performs scans at given azimuth angles
relative to the vessel’s direction and returns information in
the form of spoke data, which consists of a vector at the
given azimuth whose elements represent the power strength
of the reflected chirp signal at specific distances away from
the vessel. Figure 3 illustrates how spoke data corresponds
to quantized values of the RF power of the signal reflected
by the target and is rendered for visualization in the form
of a heat map image, with warm colors indicating bins
corresponding to larger reflected power values and cooler

——–
Fඋൺආൾඐඈඋ ൿඈඋ Iආඉඅൾආൾඇඍංඇ Aൽඏൺඇർൾൽ Rൺൽൺඋ Pඅඈඍඍංඇ-Aංൽ Cൺඉൺൻංඅංඍඒ ൿඈඋ Sආൺඅඅ Mൺඋංඍංආൾ Vൾඌඌൾඅඌ 7

2
d

d
t

c

2
d

d
f Kt K

c

 2 44
t t r e

r

PG G A
P

d

1 4

max 2

min4
t t r ePG G A

d
P

2 1where, is the chirp frequency slope.
F F

K
T

——–————

——–————
8 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

colors indicating bins in which the reflected power is lower.
Specifically, a spoke corresponds to a fraction of a degree
in azimuth, and range bins are used to specify distance.
The value of the cell is indicated by its color and corre-
sponds to the returned signal strength for that cell, with red
denoting the largest power value and blue the lowest power
equal to the receiver sensitivity. Occasionally, the received
RF power may be split among multiple cells, thereby reduc-
ing the overall signal-to-noise (SNR) ratio of the target
(Richards, 2005; Oppenheim & Schafer, 1975) and provid-
ing only an approximate location of the target in terms of its
azimuth angle θ and range d. Modern small RADAR
systems are capable of returning several thousand spokes
per revolution, resulting in an angular resolution that can be
on the order of a fraction of a degree.

Figure 3. Illustration of RADAR spoke data.

Figure 4 shows that, given the inherent uncertainties of
small-vessel RADAR systems mentioned earlier, the spoke
number and range bin do not reflect the actual position of
the target, but rather place it anywhere inside an ellipse,
where the minor axis a implies the uncertainty of the range
bins occupied by the target and is determined by the RBW
of the RADAR system plus noise, and the major axis of the
ellipse b depends on the RADAR beam and is determined
by the RBW of the RADAR system plus noise. The major
axis of ellipse b depends on the RADAR beam width at the
specified range plus the associated noise.

Target Detection Using OpenCV

For target detection, a RADAR scan that consists of
360° of spoke data is used, and its analysis to deter-
mine targets is performed by employing standard digital
image processing techniques such as blob detection. This
can be accomplished using an open source toolkit such as
the Open Computer Vision (OpenCV) library, which
supports a class called “SimpleBlobDetector” for extracting
blobs from an image. The SimpleBlobDetector class uses
the “findContours” function, which is an implementation of
the algorithm for border detection (Suzuki & Abe, 1985).
Once a blob is detected, OpenCV can filter the results to
only return blobs that meet area, threshold, circularity,
inertia, or convexity requirements. To implement an auto-
matic target extraction method, filtering based on threshold
would allow OpenCV to only return blobs with a certain

signal strength. It should be noted that the findContours
function works only with greyscale images, and the first step
in detecting a target is to convert the color RADAR scan
image into a greyscale image, followed by inverting the
image colors using the OpenCV “bitwise_not” function,
since the SimpleBlobDetector function attempts to find
blobs that are darker.

Figure 4. Illustrating uncertainty in target position for two distinct
targets located at azimuth θ1 = θ2 = 45°, one with range d1 = 1
nautical mile (NM) and the other with range d2 = 3.5 NM.

The final step is to call the SimpleBlobDetector function,
which detects the blobs followed by the “drawKeypoints”
function, which allows for an easy rendering of the detected
blobs. Figures 5 and 6 illustrate this process on a simulated
RADAR scan that includes a singular RADAR return corre-
sponding to a single target with a reflected power of approx-
imately 20 dB above the noise floor. It is important to note
that one of the limiting factors of the SimpleBlobDetector
function in the OpenCV library is that the greyscale input
that it expects is limited to 8 bits. This means that the
dynamic range of the function may be considerably more
limited than the raw amplitude data returned by the
RADAR system, and, as a consequence, targets that are
very small or are very far away from the RADAR system
may be quantized to an image that is close to the noise level
of the system after the conversion to greyscale, resulting in
a potential missed detection by the SimpleBlobDetector
function.

The OpenCV SimpleBlobDetector function uses two
thresholds for detecting blobs, starting at the low threshold
value and stepping its way up to the high threshold value,
resulting in a series of detected blobs that are then
pruned to identify those blobs that are inside of other blobs
that correspond to higher detection thresholds. This process
is similar to a gradient descent algorithm. For the simula-
tions shown in Figures 5 and 6, the minimum threshold
value was set to zero, and the maximum threshold value
was set to two standard deviations below the mean of the
cell values in the RADAR return.

——–————

a) Simulated RADAR display with 64 range bins
and a resolution of showing a single target.

b) Corresponding greyscale OpenCV image.

Figure 5. Simulated RADAR display.

It should be noted that, in the case of large threshold
values, the targets that have low reflected powers at the
RADAR receiver will be missed, resulting in an increased
probability of missed detection, while, for low threshold
values, false targets may be detected, resulting in an
increased probability of false alarms. In practical settings,
the threshold values may be adjusted automatically to
ensure a constant false alarm rate (CFAR) (Skolnik, 1981).
This uses a cell averaging technique in which the value of
the returned power for each cell in the RADAR display is
compared against that of the surrounding cells that are
situated at a distance of at least two cells to accommodate
situations such as those illustrated in Figure 3, where the
return power from a target is split across multiple cells.

Skolnik (1981) noted that a 1 dB change in the value of the
detection threshold can result in a change of three orders of
magnitude in the probability of false alarm and, therefore,
automatic target detection systems can typically handle less
than a 1 dB increase in the noise level (Skolnik, 1981). To
determine how effective this technique is for automatic
target extraction from RADAR data, a divide-and-conquer
algorithm was implemented to simulate RADAR data for a
single target with decreasing SNR, and it was determined
that this target technique works effectively when the target
signal has a SNR of approximately 12 dB or more, support-
ing ship detection within a range of two nautical miles with
an accuracy that approaches 97% (Yulian, Hidayat,
Nugroho, Lestari & Prasaja, 2017).

a) Simulated RADAR image of a single target
showing OpenCV target detection as a dark blob.

b) Annotation of Figure 6(a) using the “drawKeypoints” function.

Figure 6. Further processing of the simulated RADAR display.

——–
Fඋൺආൾඐඈඋ ൿඈඋ Iආඉඅൾආൾඇඍංඇ Aൽඏൺඇർൾൽ Rൺൽൺඋ Pඅඈඍඍංඇ-Aංൽ Cൺඉൺൻංඅංඍඒ ൿඈඋ Sආൺඅඅ Mൺඋංඍංආൾ Vൾඌඌൾඅඌ 9

——–————

——–————
10 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

Target Tracking

A RADAR tracking algorithm is an essential component
of an ARPA system that takes the coordinates correspond-
ing to multiple observations of detected targets to form a
visual track of the target positions in the environment. In
this direction, the multiple hypotheses tracking (MHT)
algorithm (Reid, 1979; Kim, Li, Ciptadi & Rehg, 2015) has
been widely used in radar tracking systems (Blackman &
Popoli, 1999). Compared to alternative approaches for
target tracking, such as those using nearest neighbors and
probabilistic data association (Blackman & Popoli, 1999),
the MHT algorithm uses a successive iteration approach that
works well in a multitude of scenarios, including track initi-
ation, data clustering with multiple targets, missing meas-
urements and/or false alarms. Blackman and Popoli (1999)
found that the MHT algorithm performs significantly better
when dealing with dense target environments, which makes
it ideal for use in marine applications, since it will work in
the dense cluttered target environments of a harbor as well
as on the open seas. Figure 7 shows a block diagram of a
tracking system based on the MHT algorithm, which details
the main steps of the algorithm (Werthmann, 1992).

Figure 7. Block Diagram of the tracking algorithm.

The algorithm takes input observations of detected tar-
get locations provided by the RADAR system in terms of
the target azimuth and range, which are converted to a Car-
tesian coordinate system for visualization (as discussed ear-
lier). To predict how the location of a detected target is
expected to change, the algorithm models the target dynam-
ic using a state-space model that includes the target coordi-
nates x and y along with the corresponding speeds sx and sy
on the coordinate axes, and uses a Kalman filter for state
estimation (also discussed earlier). The observations and the
track’s predicted locations are processed as part of the
gating step, which determines the distance between them
and compares it to the gating threshold. The next step
consists of track initiation/association in which observations
whose distances to the predicted location fall below the
threshold, are assigned to existing tracks, while observa-
tions whose distances to the predicted location are above the
threshold are recorded as possible new tracks.

Following the track initiation/association step, the track
maintenance step calculates track scores, eliminating
unlikely tracks and confirming surviving ones for track
prediction and visual output. Note that in the case of
multiple targets that are located close to each other, the
SimpleBlobDetector function may end up combining them

into a single target, which would result in one or more of
the tracks being dropped. However, as the target vessels
would maneuver to get away from each other, the Simple-
BlobDetector function would eventually be able to distin-
guish them as separate targets, creating new observations
that are not associated with existing tracks. These new
observations would prompt the creation of new possible
tracks and, over time, the algorithm would build its confi-
dence in the quality of these new tracks, ultimately confirm-
ing or disproving them as valid tracks. In order for the
RADAR tracking system to work properly it needs to have
an accurate location of the target that it is tracking. The
signal processing system in the RADAR receiver provides
information about the target location in terms of the target
azimuth angle and range, which include uncertainties in the
tracking platform orientation for range and azimuth, dnoise
and θnoise, respectively, such that the observations provided
to the tracking system are given by Equation 5:

(5)

where, d and θ denote the actual values of the target range
and azimuth, respectively.

It is assumed that the uncertainties in the tracking plat-
form orientation for range and azimuth are uncorrelated,
that is E[dnoise · θnoise] = 0, and that they have zero mean and
variances equal to σ2 and σ2, respectively. For target location
and visualization on a two-dimensional display, the
observed range and azimuth values are converted to a posi-
tion vector containing the Cartesian coordinates of the
target, as shown in Equation 6:

(6)

Vector p, shown in Equation 7, represents the actual posi-
tion of the target and includes the Cartesian coordinates of
the target:

(7)

Vector v, shown in Equation 8, is the vector containing
the uncertainties in the target’s coordinates, with covariance
matrix R shown in Equation 9:

(8)

(9)

Gating Observations
Track
Prediction

Confirmed
Tracks

Track
Maintenance

Track Initialization/
Association

p̂

 and ˆ ˆ noise noised d d

ˆ ˆcosˆ
ˆ

ˆ ˆ ˆsin

noise

noise

d xx x
p

yy yd

cos

sin

dx
p

dy

noise

noise

x
v

y

11 12

21 22

R R
R

R R

——–————

The elements of matrix R are given in Equations 10-12,
(Longbin, Xiaoquan, Yiyu, Kang & Bar-Shalom, 1998;
Duan, Han & Li, 2004):

(10)

 (11)

(12)

To predict how the location of a detected target is
expected to change and to estimate where the observation
for a given track is expected, the target dynamic was
modeled using a state-space model, and a state estimation
algorithm was used to predict the target position r, as shown
in Equation 13:

(13)

The state-space model included the actual coordinates of
the target x and y along with the target speed values sx and
sy on the coordinate axes, which were combined in the
target state vector such that the evolution of the target state
is given by Equation 14:

(14)

The state transition matrix F is given in Equation 15:

(15)

where, ∆t is the time interval between state updates.

The initial state vector is shown in Equation 16:

(16)

where, the initial coordinates of the detected target are
given by x(0) and y(0) along with zero values for the
speeds on the coordinate axes.

The vector containing the target coordinates at time k is
given by Equation 17:

(17)

where, H is the observation matrix given in Equation 18:

(18)

and where, v is the observation noise in Equation 8 that
includes the uncertainties in the target coordinates.

The state estimate for the linear system, described by
Equations 14 and 17, is obtained using a Kalman filter and
is given by Equations 19-23, (Grewal & Andrews, 2001):

(19)

(20)

(21)

(22)

(23)

where, the “minus” subscript indicates the a priori values of
the variables (before the current observations at time
instant k are used) and the “plus” subscript indicates the a
posteriori values of the variables (after the current observa-
tions at time instant k are used).

Simulations and Discussion

To illustrate target tracking using the approach outlined in
the previous section, Figure 8 shows a simulation scenario
that was set up with three moving vessels and one vessel
serving as the observation vessel, where RADAR infor-
mation was used to track the other two vessels that repre-
sented the moving targets. The trajectories of the three
vessels, indicated with lines of different colors in Figure 8,
are as follows:

• The red-colored trajectory corresponds to the
Observer vessel, which moves along a straight line
from South to North at 20 knots.

• The blue-colored trajectory corresponds to target
Vessel 1, which moves from West to East, also at 20
knots.

2

2

/2 2 2
11

22 2

cos

1
1 cos 2

2

noise

d

R Var x e d

d e

2

2

/2 2 2
22

22 2

sin

1
1 cos 2

2

noise

d

R Var y e d

d e

2

2

/2 2
12 21

22 2

cos sin

1
sin 2

2

noise noise

d

R R Cov x y e d

d e

x

y

x

y
r

s

s

 1r k F r k

1 0 0

0 1 0

0 0 1 0

0 0 0 1

t

t
F

0

0
0

0

0

x

y
r

 p k H r k v k

1 0 0 0

0 1 0 0
H

 ˆ ˆ 1r k F r k

 1 TP k F P k F

 1
1T TK k P k H H P k H R

 ˆ ˆ ˆr k r k K k p k H r k

 P k I K k H P k

——–
Fඋൺආൾඐඈඋ ൿඈඋ Iආඉඅൾආൾඇඍංඇ Aൽඏൺඇർൾൽ Rൺൽൺඋ Pඅඈඍඍංඇ-Aංൽ Cൺඉൺൻංඅංඍඒ ൿඈඋ Sආൺඅඅ Mൺඋංඍංආൾ Vൾඌඌൾඅඌ 11

——–————

——–————
12 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

• The yellow-colored trajectory corresponds to target
Vessel 2, which moves along a straight line from
North to South at 20 knots. It should be noted that the
trajectories of the two target vessels were chosen to
illustrate two different tracking scenarios.

• Target Vessel 1 is shown on a course that intersects
with the Observer vessel, and the bearing from the
Observer vessel to Vessel 1 remains the same until
they intersect, when it changes as they then move
away from each other.

• Target Vessel 2 is shown on a course that passes the
Observer vessel on the starboard side, and the bear-
ing from the Observer vessel to Vessel 2 is constantly
changing as they approach and then pass each other.

Figure 8. Simulated tracking scenario with one Observer vessel
and two target vessels.

For the RADAR system located on the Observer vessel,
the bandwidth was set to = 10 MHz, which implies a
range bin resolution of approximately 15m, an antenna
beam width chosen to be °, a transmit antenna array scan-
ning the environment at 48 RPM, and a total simulation
time of 7.5 minutes, which resulted in 563 observations of
the two targets. For tracking, the implementation was
based on the MHT algorithm that used Kalman filtering
for track prediction, as discussed in the section on Kalman
filtering for track prediction. The gating threshold for the
MHT algorithm was set to 30m, and the yaw variances
corresponding to the uncertainties in the vessels’ head-
ings were chosen to be 0.062° for Vessel 1 and 0.016° for
Vessel 2. These values were found using a trial-and-error
approach in which the MHT algorithm was simulated
multiple times with different values for the yaw variance
to determine if it was able to maintain a successful track
in 50% of the cases (Harris, 2023).

For comparison, a particle filtering approach for track
prediction was also implemented as an alternative to
Kalman filtering (Harris, 2023; Ristic, Arulampalam &
Gordon, 2004; Elfring, Torta & Van De Molengraft, 2021).
Figure 9 shows the simulation results from which it was
noted that it took several observations for both the Kalman
filter and the particle filter to produce accurate estimates for
the positions of the two vessels, with the Kalman filter
converging faster than the particle filter to accurate esti-
mates. Moreover, once the Kalman filter converged, the
accuracy of the position estimates did not vary significantly,
as the position of the Observer vessel changed relative to
the two vessels. By contrast, the accuracy of the position
estimates produced by the particle filter changed signifi-
cantly, as the position of the Observer vessel changed
relative to the two vessels.

a) Estimated positions for Vessel 1.

b) Estimated positions for Vessel 2.

Figure 9. Estimated positions for Vessels 1 and 2.

——–————

It should also be noted from Figure 9 that it was easier for
the Observer vessel to acquire a good track for Vessel 1
than for Vessel 2. This was due to the relative position
of the Observer vessel as it got closer to the tracked
vessel: the bearing from the Observer vessel to Vessel 1
remained the same as the two vessels got closer to each
other, whereas the bearing from the Observer vessel to
Vessel 2 was changing as the two vessels got closer. Thus,
in order to obtain a good track, knowing the orientation
of the tracked vessel at all times improves tracking perfor-
mance. Obtaining this information requires the use of gyro-
scopes that are capable of producing rapid updates, such as
those mentioned in Table 1, that would supplement the
position updates observed at slower time scales using
consumer-grade GPS.

Conclusions

In this paper, the authors presented a framework for
implementing ARPA capabilities on small vessels—for
which sophisticated RADAR systems, such as those
required for use on large commercial vessels, might prove
to be cost prohibitive. Such small-scale, ARPA-capable
systems can automatically detect vessels on a collision
course and alert the operators to alter their heading. ARPA
requires capabilities for target detection and visualization,
along with target tracking, to display target positions and
predict their paths, which can also be implemented on small
vessels using existing affordable technologies. While similar
features may be available for small vessels as MARPA to
augment the capabilities of their RADAR systems, MARPA
is only a basic form of ARPA that requires manual selection
of targets before they can be tracked for collision avoidance.
Furthermore, MARPA features rely on information from
additional onboard sensors and use proprietary algorithms
to obtain the vessel heading, and they are usually not
included in the base price of the RADAR system, but rather
are provided at an additional cost. By contrast, the ARPA
implementation presented in the paper can be realized at a
fraction of the cost by using consumer-grade MEMS
sensors and open source software running on affordable
platforms powered by microcontrollers or single-board
computers.

Also presented here was how information about targets
present in the environment is obtained by using consume-
grade RADAR systems, such as the FMCW radars
commonly used in small vessels, low-cost MEMS sensors
for vessel attitude determination, and the open source
computer vision library OpenCV. Specifically, the RF
power of the signal reflected by a target is quantized in
terms of range and azimuth, and then is rendered for
visualization in the form of a heat map image on which
the presence of targets can be detected using functions in
the OpenCV library. Also discussed was how the coordi-
nates of detected targets are located in a two-dimensional
coordinate system for tracking, and how the MHT algorithm
with Kalman filtering can be implemented to provide a track

of detected targets. The proposed tracking approach was
illustrated with a simulation that involved three moving
vessels, including one Observer vessel and two detected
target vessels, one that was upcoming and another that was
crossing from the side. Additional scenarios, such as one in
which a vessel is slowly coming up from an angle behind
the Observer vessel, will be the object of future work.

References

Abankwa, N. O., Johnston, S. J., Scott, M., & Cox, S. J.

(2015, December). Ship motion measurement using an
inertial measurement unit. Proceedings of the 2015
IEEE 2nd World Forum on Internet of Things (WF-
IoT), 375-380. 10.1109/WF-IoT.2015.7389083

Blackman, S., & Popoli, R. (1999). Design and Analysis of
Modern Tracking Systems. Boston: Artech House.

Bole, A. G., Wall, A. D., Norris, A., & Dineley, W. O.
(2005). Radar and ARPA manual: radar and target
tracking for professional mariners, yachtsmen and us-
ers of marine radar. Elsevier.

Duan, Z., Han, C., & Li, X. R. (2004). Comments on
“Unbiased Converted Measurements for Tracking.”
IEEE Transactions on Aerospace and Electronic Sys-
tems, 40(4), 1374. DOI: 10. 1109/TAES.2004.1386889

Elfring, J., Torta, E., & Van De Molengraft, R. (2021). Par-
ticle filters: A hands-on tutorial. Sensors, 21(2), 438.
DOI: 10.3390/s21020438

Grewal, M. S., & Andrews, A. P. (2001). Kalman Filtering:
Theory and Practice Using Matlab. New York: John
Wiley & Sons, Inc.

Harris, J. S. (2023). Framework for Implementing Advanced
Radar Plotting Aid Capability for Small Maritime Ves-
sels Capability for Small Maritime Vessels (Doctoral
dissertation, Old Dominion University). https://
digitalcommons.odu.edu/ece_etds/257

Kim, C., Li, F., Ciptadi, A., & Rehg, J. M. (2015). Multiple
hypothesis tracking revisited. Proceedings of the IEEE
International Conference on Computer Vision, 4696-
4704). https://doi.org/10.1109/ICCV.2015.533

Lin, Z., Xiong, Y., Dai, H., & Xia, X. (2017, September).
An experimental performance evaluation of the orienta-
tion accuracy of four nine-axis MEMS motion sensors.
Proceedings of the 5th IEEE International Conference
on Enterprise Systems, 185-189. https://
ieeexplore.ieee.org/document/8119388

Longbin, M., Xiaoquan, S., Yiyu, Z., Kang, S. Z., & Bar-
Shalom, Y. (1998). Unbiased converted measurements
for tracking. IEEE Transactions on Aerospace and
Electronic Systems, 34(3), 1023-1027. https://
ieeexplore.ieee.org/document/705921

Madgwick, S. O., Harrison, A. J., & Vaidyanathan, R.
(2011, June). Estimation of IMU and MARG orienta-
tion using a gradient descent algorithm. Proceedings of
the 2011 IEEE International Conference on Rehabilita-
tion Robotics, 1-7). https://
pubmed.ncbi.nlm.nih.gov/22275550/

——–
Fඋൺආൾඐඈඋ ൿඈඋ Iආඉඅൾආൾඇඍංඇ Aൽඏൺඇർൾൽ Rൺൽൺඋ Pඅඈඍඍංඇ-Aංൽ Cൺඉൺൻංඅංඍඒ ൿඈඋ Sආൺඅඅ Mൺඋංඍංආൾ Vൾඌඌൾඅඌ 13

——–————

——–————
14 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

McMillan, C. (2024). Getting the Best from Your RADAR.
https://www.simrad-yachting.com/world-of-simrad/
technology/getting-the-best-from-your-radar/

Oppenheim, A. V., & Schafer, R. W. (1975). Digital Signal
Processing. Englewood Cliffs, New Jersey: Prentice
Hall.

Patonis, P., Patias, P., Tziavos, I. N., Rossikopoulos, D., &
Margaritis, K. G. (2018). A fusion method for combin-
ing low-cost IMU/magnetometer outputs for use in
applications on mobile devices. Sensors, 18(8), 2616.
https://www.mdpi.com/1424-8220/18/8/2616

Rao, K., Wei, X., Zhang, S., Zhang, M., Hu, C., Liu, H., &
Tu, L. C. (2019). A MEMS micro-g capacitive
accelerometer based on through-silicon-wafer-etching
process. Micromachines, 10(6), 380. https://
www.mdpi.com/2072-666X/10/6/380

Reid, D. (1979). An algorithm for tracking multiple targets.
IEEE Transactions on Automatic Control, 24(6), 843-
854. https://www.scirp.org/reference/referencespapers?
referenceid=3887999

Richards, M. A. (2005). Fundamentals of Radar Signal Pro-
cessing. New York, New York: McGraw Hill.

Ristic, B., Arulampalam, S., & Gordon, N. (2004). Beyond
the Kalman Filter: Particle Filters for Tracking Appli-
cations. Boston, MA: Artech House.

SIMRAD. RADAR. https://www.simrad-yachting.com/
world-of-simrad/technology/radar/

Skolnik, M.I. (1981). Introduction to RADAR Systems. Sin-
gapore: McGraw-Hill Book Company.

Suzuki, S., & Abe, K. (1985). Topological structural analy-
sis of digitized binary images by border following.
Computer Vision, Graphics, and Image Processing, 30
(1), 32-46. https://doi.org/10.1016/0734-189X(85)
90016-7

Tomasch, G., & Winer, K. (2019). Limits of absolute head-
ing accuracy using inexpensive mems sensors. Hacka-
day Journal of What You Don’t Know, 1(2).

USCG. (2022). Recreational Boating Statistics. https://
www.uscgboating.org/library/accident-statistics/
Recreational-Boating-Statistics-2022.pdf

Werthmann, J. R. (1992, August). Step-by-step description
of a computationally efficient version of multiple hy-
pothesis tracking. Signal and Data Processing of Small
Targets, 1698, 288-300. https://
doi.org/10.1117/12.139379

Wu, L., Tian, Z., Ren, D., & You, Z. (2018). A miniature
resonant and torsional magnetometer based on Lorentz
force. Micromachines, 9(12), 666. https://
doi.org/10.3390/mi9120666

Yazdi, N., Ayazi, F., & Najafi, K. (1998). Micromachined
inertial sensors. Proceedings of the IEEE, 86(8), 1640-
1659. https://ieeexplore.ieee.org/document/704269

Yi, X., Wu, X., Yue, X., Zhang, L., Chen, Z., & Wan, B.
(2020). Ocean surface current inversion with anchored
floating high-frequency radar: Yaw compensation.
IEEE Journal of Oceanic Engineering, 46(3), 927-939.
https://ieeexplore.ieee.org/document/9294035

Yulian, D., Hidayat, R., Nugroho, H. A., Lestari, A. A., &
Prasaja, F. (2017, October). Automated ship detection
with image enhancement and feature extraction in
FMCW marine radars. Proceedings of the 2017 Inter-
national Conference on Radar, Antenna, Microwave,
Electronics, and Telecommunications (ICRAMET), 58-
63. https://ieeexplore.ieee.org/document/8253145

Biographies

OTILIA POPESCU is an associate professor in the
Department of Engineering Technology at Old Dominion
University. She received her Engineering Diploma in Elec-
trical and Computer Engineering from the Polytechnic Insti-
tute of Bucharest in 1991, and PhD in Electrical and
Computer Engineering from Rutgers University in 2004.
She has experience in wireless communications and
networking and is also interested in engineering education,
including active learning and undergraduate research.
Dr. Popescu may be reached at opopescu@odu.edu

JASON S. HARRIS received his PhD degree in Electri-
cal and Computer Engineering from Old Dominion Univer-
sity in 2024. His interests include radio and antenna systems
design, radar, and embedded systems. Dr. Harris is an
amateur radio enthusiast and can be reached at
kj4iwx@gmail.com

DIMITRIE C. POPESCU is a full professor in the
Department of Electrical and Computer Engineering at Old
Dominion University. He received his Engineering Diploma
in Electrical and Computer Engineering from the Polytech-
nic Institute of Bucharest in 1991 and PhD in Electrical and
Computer Engineering from Rutgers University in 2002. He
has experience in wireless communication systems and his
interests include software-defined and cognitive radios,
transceiver optimization to support quality of service, and
signal processing for communications and radar systems.
Dr. Popescu may be reached at dpopescu@odu.edu

Abstract

Suspensions are a critical part of vehicle design, as they
greatly influence the experience that drivers and passengers
have when they are riding in a vehicle. One of the major
components of these suspensions is the suspension spring.
The springs used in suspensions can take many different
forms, including leaf springs, helical springs, and other
types. In this current study, the authors used a helical spring,
which is the case for many current suspension designs. The
focus of the study was on improving the spring, given
performance characteristics that were required and subject
to a set of constraints to ensure that the spring would not fail
in regular operation. FEA analyses were performed on 36
spring designs. At the conclusion of the analyses, the
authors found that the suspension could be improved
through variations in the spring, in particular by changing
the cross section from circular to oval.

Introduction

Suspension systems have a strong impact on both road
handling and ride quality of vehicles. Part of their purpose is
to ensure that the wheels remain in contact with the road
during a vehicle’s motion, even when the road is not smooth
and has irregularities. Another part of their purpose is to
isolate the passengers and cargo from the irregularities in
the road, preventing damage to the vehicle and cargo and
providing a good experience to the passengers. The type of
suspension system used depends in part on the type
of vehicle, and the multiple purposes that the
suspension serves may result in conflicting constraints.
These systems vary both in their mechanical design and in
whether they are purely passive or have some active
components, which would involve a controller (Peters,
Papalambros & Ulsoy, 2013; Tseng & Hrovat, 2015;
Riduan, Tamaldin, Sudrajat & Ahmad, 2018). Again, in this
current study, the authors considered a purely passive
suspension.

In passive suspensions, the performance depends on the
type and parameters of the springs and dampers used. In
existing suspension designs, three basic types of springs are
used: leaf springs (Baviskar, Bhamre & Sarode, 2013;
Mahanthi & Murali, 2017), torsion bars (Tavares, Molina,
Al Sakka, Dhaens & Ruderman, 2019; Karuppiah, Ganesan,
Kasavan & Sambasivam, 2023), and coil springs (Bartolozzi
& Frendo, 2011; Lavanya, Rao & Reddy, 2014). At times,
air springs, rubber springs, or hydropneumatic springs are
also used. (De Melo, Pereira & Morais, 2018; Lijun, Zengli-
ang & Zhuoping, 2010; Joo, 1991).

Suspension designs can be categorized based on their
overall goals and principles. One such type of suspension is
the set of anti-dive/anti-squat designs. These suspensions
typically have differences between the front and rear
suspensions, and are designed to counteract the tendency of
the vehicle for the front to dive under braking and the rear
to squat during acceleration (Campbell, 1981; Sondkar &
Jammulamadaka, 2021). Another type is the load-leveling
suspension, which counteracts the tendency of the vehicle to
be non-level, due to heavy cargo in specific locations
(Elmadany, 1990). Yet another is designed to provide isola-
tion from high-frequency shock (Islam & Ahmed, 2006).
Other design considerations include the space occupied,
with MacPherson struts being a typical compact arrange-
ment (Hales, 1964; Kodati, Reddy & Bandyopadhyay,
2015; Reddy, Kodati, Chatra & Bandyopadhyay, 2016), the
force distribution, air resistance—due to the airflow around
any exposed suspension components—and of course the
cost.

One advantage of the leaf spring is its ability to be
attached directly to the chassis. This may contribute to its
status as one of the oldest and most widely used springs in
suspension systems. The leaf spring’s characteristics can be
changed to match the requirements of the design by chang-
ing the width, thickness, and length of the leaves of the
springs. In addition, the lead spring provides a damping
effect, due to friction in the mechanism. The torsion bar
design, in which the spring is simply a round bar designed
to twist as a force is applied to the suspension, is used in
some vehicles, depending on the space constraints available.
Typically, the torsion bars are approximately four feet long,
with the tension in the bar controlled by a threaded screw
adjustment. Coil springs occupy a relatively small space
and, therefore, can be used in a variety of suspension
designs, including the MacPherson strut, a solid axle with a
trailing arm, independently sprung rear axle, or any short-
long-arm (SLA) suspension system using a spring or coil-
over shock absorber configuration. The coil spring’s charac-
teristics are determined by the wire gauge, spring length,
overall diameter of the spring, and the number of coils. Coil
springs can also have a variable rate, with the load-bearing
capability increasing as it is compressed; such springs are
often used in chassis configurations that occasionally carry
heavy loads.

In this current study, the authors decided to focus on coil
spring suspensions and conducted a review of the existing
literature and research on this specific aspect of suspen-
sions; they found that much of it focuses on manufacturing
and design. In a study by Serbino and Tschiptschin (2011),
the authors focused on fatigue, in particular the benefits of

D I C S
 A I S

——–———–
Diane L. Peters, Kettering University; Yaomin M. Dong, Kettering University; Viraj B. Dave, Kettering University

 ——
Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024 15

——–————

——–————
16 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

austempering of springs and the benefits of this process over
quenched springs, in order to better handle cyclic loads.
This specific paper focused on springs in automotive valves,
but the loading conditions and mechanisms were similar for
suspension springs, albeit with different magnitudes of the
loads. Virnich and Muhr (1985) focused on fatigue, but
centered their work specifically on suspensions. In that
study, the authors compared different alloys and found a
new Si-Cr-V steel alloy to be effective. Vaillant and
Ferlicca (1985) studied the impact of a variable diameter or
tapered spring, and found it to be beneficial for packing
reasons, though it did present a cost increase.

Sakakibara, Kusakari, Nakano, Yasuda, Sugimoto and
Watanabe (1993) also addressed the questions of materials
and manufacturing, with a FE-C-Si-Mn-Ni-Cr-Mo-V alloy
that was able to provide weight reduction due to its
improved mechanical properties. Miyamura, Kunou, Saitoh,
Matsumoto, Yamamoto, Tsurui, and Homma (1993)
performed a study on ovate wire helical springs, specifically
looking at two types of wire cross sections: one elliptical
and one a Fuch’s egg-shaped cross section. This work indi-
cated that the elliptical spring was superior. And, finally,
Pawar, Patil and Zope (2016) conducted the design and
analysis of a coil spring specifically for the front suspension
of a three-wheel vehicle. This work involved theoretical
analysis and software simulations, including finite element
analysis, in order to ensure that the design requirements
were met.

Methods

In order to improve an automotive suspension, the authors
of this current study decided that the specific design to be
considered would be one with a coil spring, as they are a
common configuration and that the specific component to
be studied would be the spring itself, as it has a large impact
on the overall suspension. The spring must be designed such
that it has a spring constant that leads to good performance,
but it also must be able to withstand the stress imposed by
the loads on it. Figure 1 shows a schematic of these loads.

Equations 1 and 2 give the maximum stress and maxi-
mum displacement for the spring, respectively (Edwards
and McKee, 1991):

(1)

(2)

where, D is the diameter of the coil, d is the diameter of the
wire, L is the length of the spring, F is the load, Ks is the
shear stress correction factor, G is the shear modulus of
elasticity of the material, and N is the number of active
coils.

Figure 1. Schematic of loading on a coil spring.

Under typical loading conditions, stress is greatest at the
inner portion of the spring. In considering the loading
conditions, the authors assumed that the weight distribution
on each wheel was nominally one fourth of the vehicle
weight at rest, and that through weight shifts in maneuvers it
could increase to as much as double that, or half of the vehi-
cle weight. This was judged to provide a substantial margin
of safety, as a vehicle maneuver that would put half the
weight on a single wheel would be quite aggressive. Based
on the range of weights seen for a variety of different types
of vehicles, three values were chosen for the final loading,
at 2015 N, 4320 N, and 5150 N (Dave, 2018). The analysis
was conducted using the Siemens NX software package.
The procedure for doing so was as follows:

Step 1: Generation of the CAD model for the spring, includ-
ing full constraints.

In this step, the 3D model was created and structured in
such a way that it could be easily changed. This involved
the relationship between key dimensions of the spring,
ensuring that minimal independent changes would be need-
ed to create a new spring, and that impossible configura-
tions (e.g., ones where the wire diameter was greater than
the spring diameter) would not occur. The loading and
constraints were placed on the top and bottom surfaces.
Figure 2 shows a CAD model of the spring (Dave, 2018).

Step 2: Analysis Setup

At the end of the first step, the part would be in the model-
ing section of the program. To set up the analysis, the pre-
post section was selected and used. A new finite element
model (FEM) and simulation was started, and appropriate
settings were selected. These included unchecking the
“idealized part” option, selecting the solution type as SOL
101 Structural Analysis, and the solver type as NX Nastran.
This then generated three files: a *.prt part file, a *.fem
finite element method file, and a *.sim simulation file.

max 3

8 sK FD

d

3

max 4

8 sK NFD

Gd

——–————

Figure 2. CAD model of the spring (Dave, 2018).

Step 3: Setting up the Finite Element Modeling File

The next step involved setting up the FEM file. A material
was selected for the spring from a list of options, and then a
mesh was chosen. A tetrahedral mesh was applied to the
part. While the software is capable of estimating mesh size,
in order to ensure that the mesh was not too large, the
recommended size was reduced by a factor of two. Figure 3
shows the meshed spring (Dave, 2018).

Figure 3. Meshed spring model (Dave, 2018).

Step 4: Setting up the Simulation File

Setting up the simulation file involved providing loads and
constraints. The load category selected was “force,” and the
load value in Newtons was specified, in accordance with the
three load values listed above. Figure 4 shows how this load
was applied to one of the divided faces (Dave, 2018), which
was the face that was assumed to be directly connected to
the vehicle chassis or upper control arm.

Constraints were also applied as part of the simulation file
setup. A fixed constraint was applied to the other side of the
divided face of the spring, which was assumed to be
connected to the axle or the lower control arm. Only vertical

linear motion of the top of the spring was allowed by the
constraint that was applied to the top of the spring, which
was a user-defined constraint. Figure 5 shows the fully
constrained file (Dave, 2018).

Figure 4. Forces (red arrows) applied to the top of the spring
(Dave, 2018).

Figure 5. Fully constrained spring (Dave, 2018).

Step 5: Analysis

In the final step, the analysis was carried out for each of the
36 cases considered in this study. This consisted of simply
running the analysis that had been set up in these steps,
which yielded results for both the stress and displacement.
Figure 6 gives typical results (Dave, 2018).

Design Conditions

In the initial analysis plans, the authors intended to look at
tapered springs as well as those with non-symmetric cross
sections. However, as discussed in the Results section, these
possibilities were eliminated, based on preliminary analyses
that involved different possibilities for the coil diameter,
wire cross section (shape and size), and applied load; the
length of the spring was held constant at 450 mm. A coding
scheme was used to designate the springs, where the first
two characters indicated coil diameter, the next two indicat-
ed the wire cross section, and the final two characters indi-
cated the loading condition. Table 1 provides the values
corresponding to each code.

——–
Dൾඌංඇ Iආඉඋඈඏൾආൾඇඍඌ ൿඈඋ Cඈංඅ Sඉඋංඇඌ ංඇ ൺඇ Aඎඍඈආඈඍංඏൾ Iඇൽൾඉൾඇൽൾඇඍ Sඎඌඉൾඇඌංඈඇ 17

——–————

——–————
18 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

 a) Deformation b) Stress

Figure 6. Typical results of analysis (Dave, 2018).

Initially, it was intended that the symmetric ovate should
utilize both d1 and d2 diameters, but preliminary analysis
resulted in the symmetric ovate being limited to the d2
diameter, as noted in the Results section, hence resulting in
three options for coil diameter, three for applied load, and
four for wire cross section, or 36 total combinations. These
combinations were coded as described previously, such that
a design condition designated as D2d1L3 would indicate
that the coil diameter was 100 mm, the wire cross section
was circular with a diameter of 16 mm, and the applied load
was 5150 N.

Table 1. Conditions for analysis.

Subsequently, the best choices of springs for two condi-
tions, one of low displacement and one of high displace-
ment, were subjected to optimization, with the length and
pitch of the spring chosen as design variables. The objective
for the optimization was to minimize weight, with
constraints on the stress and displacement. Finally, the
designs that were optimized were analyzed to determine
whether they would withstand fatigue loads. This analysis
was carried out for three different alloys:
Fe-C-Si-Mn-Ni-Cr-Mo-V, Si-Cr-V, and Cr-V. Material
properties for these alloys can be found in the study by

Sakakibara et al. (1993). In that analysis, the authors
assumed that the life of the spring should be at least 2 x 105
cycles in order to be considered acceptable. This analysis
was also carried out in NX, using the software’s tools for
fatigue analysis in the “durability wizard” provided in the
software. In setting up the analysis, the yield strength was
selected as the stress criteria, with the stress type selected as
Von Mises. The solution type was selected as SOL103, and
the remainder of the finite element setup was the same
process as for the stress analysis (i.e., Step 3). Instead of an
applied load, however, an enforced motion constraint was
used to cycle the spring.

Analysis and Results

Initial analysis was conducted on the full range of possi-
ble designs that would be present if the conditions included
a tapered spring, non-symmetric ovate cross section, and a
symmetric ovate with both d1 and d2 used for their cross
sections for the value of d, in addition to the conditions in
Table 1. Test runs were conducted, with the goal of deter-
mining whether some possible designs could be eliminated
outright from consideration; it was found that this was in
fact the case. As stated in the literature, an ovate cross
section reduces the stress value dramatically. It was hypoth-
esized that an ovate section, based on the value of d1, could
be eliminated, since, if a spring using d1 for a circular cross
section was an optimum design, then an ovate cross section
based on that value would be under-designed. It was further
reasoned that a spring using d2 would provide better results
than one using d1, independent of what other values were
selected, and this was tested for multiple cases for verifica-
tion. The non-symmetric section has a comparatively blunt
side on one end, compared to the other. It was predicted that
the blunt end would provide a reduction of stress concentra-
tion. Therefore, before attempting final analysis, a compari-
son was made between non-symmetric and symmetric
designs.

After performing analyses on several samples, it was seen
that the stress values in non-symmetric springs were higher
than those for symmetric springs. Therefore, it was decided
that the use of the non-symmetric design would not satisfy
the aim of the project; hence, this design condition was
dropped from consideration. In fact, analysis showed that
the non-symmetric ovate design resulted in stress values
that were almost double in some cases. A number of tapered
spring designs were included in the initial test cases; howev-
er, it was noted that those designs invariably had high
stresses compared to corresponding designs with a constant
coil diameter. This particular spring design was meant to
provide a reduction in length, but it was judged that this did
not provide a significant advantage in the context of this
study. Figures 7 and 8 show comparisons of stress results
for the constant diameter and tapered springs, respectively
(Dave, 2018). In this case, there was little difference, but
also little advantage, and thus the tapered springs were not
included in the systematic analysis.

Coil Diameter

D1 80 mm

D2 100 mm
D3 120 mm

Wire Cross
Section

Circular
d1 16 mm
d2 18 mm

Symmetric
Ovate

S1 1.5d
S2 2d

Applied Load

L1 3015 N
L2 4320 N
L3 5150 N

——–————

 a) Displacement b) Stress

Figure 7. Constant diameter spring (Dave, 2018).

 a) Displacement b) Stress

Figure 8. Results for tapered spring (Dave, 2018).

Analysis of the Set of 36 Cases

When the 36 cases (described in the Methods section)
were analyzed, each was categorized based on their safety
factor. While a safety factor had already been built into the
problem via the assumption of half the vehicle weight being
on one tire, an additional safety factor was considered, due
to simplifications and uncertainties in the problem. If the
safety factor was less than 2, then the design was considered
as one that may fail. Those with safety factors between
2 and 3 were considered to be marginal, and those with a
safety factor of 3 were considered to be optimal. Two types
of designs were considered for further consideration, based
on either high displacement or low displacement. Table 2
gives the full set of results (Dave, 2018); note that red
denotes values at the stress limit, white rows represent fail-
ing designs, and tan are the marginal designs. The designs
shown in green are the springs with a high displacement,
while those shown in blue have a low displacement. The
spring D1d2L1 was chosen as the starting point for the high

-displacement version of the suspension. After carrying out
the optimization procedure described in the Methods section
and then checking the stress and displacement to ensure that
constraints were not violated, it was found that the pitch of
the spring had changed from 30 mm to 60 mm, and the
length changed from 450 mm to 346 mm. Figure 8 shows
the displacement and stress for this design (Dave, 2018).

 a) Displacement b) Stress

Figure 9. Results for spring D1d2L1 with a pitch of 60 mm and a
length of 346 mm (Dave, 2018).

For the low-displacement version of the design, the spring
D2S2L2 was used as a starting point. When the optimiza-
tion was carried out, the pitch of the spring was set at
60 mm and the length became 225 mm. Figure 10 shows the
displacement and stress for this design (Dave, 2018).

 a) Displacement b) Stress

Figure 10. Results for spring D2S2L2 with a pitch of 60 mm and a
length of 225 mm (Dave, 2018).

In the final step, where a fatigue analysis was carried out,
the authors found that the best choice of material for fatigue
life was the Cr-V alloy, followed by the Si-Cr-V alloy, with
the last choice being the Fe-C-Si-Mn-Ni-Cr-Mo-V alloy.

——–
Dൾඌංඇ Iආඉඋඈඏൾආൾඇඍඌ ൿඈඋ Cඈංඅ Sඉඋංඇඌ ංඇ ൺඇ Aඎඍඈආඈඍංඏൾ Iඇൽൾඉൾඇൽൾඇඍ Sඎඌඉൾඇඌංඈඇ 19

——–————

——–————
20 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

 Displacement (mm) Stress (Mpa) Bumping stress Bumping Disp. Total stress Total Disp

D1d1L1 41.7 296.34 29.85 3.76 326.19 45.46

D1d1L2 59.75 424.6

D1d1L3 71.23 506.18

D1d2L1 26.44 230.91 25.62 2.388 256.53 28.828

D1d2L2 37 330.86 25.25 2.384 356.11 39.384

D1d2L3 45.16 394.43 23.39 2.356 417.82 47.516

D1s1L1 11.89 139.53 17.24 2.863 156.77 14.753

D1s1L2 17.05 199.92 16.96 2.861 216.88 19.911

D1s1L3 20.33 238.33 17.09 2.746 255.42 23.076

D1s2L1 7.16 103.94 10.413 1.633 114.353 8.793

D1s2L2 10.26 148.93 12.26 1.7 161.19 11.96

D1s2L3 12.23 177.55 10.278 1.701 187.828 13.931

D2d1L1 56.85 366.05 37.25 4.87 403.3 61.72

D2d1L2 81.46 524.49

D2d1L3 97.11 625.26

D2d2L1 35.27 254.08 27.56 3.176 281.64 38.446

D2d2L2 50.54 364.05 27.69 3.62 391.74 54.16

D2d2L3 60.25 434

D2s1L1 16.48 152.82 17.82 2.765 170.64 19.245

D2s1L2 23.61 218.96 17.8 2.746 236.76 26.356

D2s1L3 28.14 261.03 17.88 2.653 278.91 30.793

D2s2L1 10.07 110.98 10.446 1.7 121.426 11.77

D2s2L2 14.43 159.02 13.2 1.716 172.22 16.146

D2s2L3 17.2 189.57 12.75 1.698 202.32 18.898

D3d1L1 97.76 394.99 25.2 4.97 420.19 102.73

D3d1L2 140.07 565.96

D3d1L3 166.99 674.69

D3d2L1 60.94 300.58 28.84 5.25 329.42 66.19

D3d2L2 87.31 430.68

D3d2L3 104.09 513.42

D3s1L1 16.48 152.82 17.74 2.653 170.56 19.133

D3s1L2 23.61 218.96 17.96 2.652 236.92 26.262

D3s1L3 28.14 261.03 17.12 2.633 278.15 30.773

D3s2L1 17.97 132.37 10.559 1.699 142.929 19.669

D3s2L2 25.74 189.67 13.3 1.715 202.97 27.455

D3s2L3 30.69 226.11 12.7 1.629 238.81 32.319

Table 2. Summary of design analysis results (Dave, 2018).

——–————

Conclusions

In this study, the authors subjected the springs in an auto-
motive suspension to analysis and optimization. The proce-
dure used here involved first analyzing multiple cases, then
selecting the best ones for further optimization and a final
analysis for fatigue life. It was found that changes in the
springs could result in improved suspensions, with the
definition of improvement depending on whether a high or
low displacement was chosen for the suspension. As vehicle
types and the desired suspension characteristics are
complex, this leads to many options for future work.

Future work could include both further focus on the
springs themselves as well as a more holistic look at the
suspensions in which they are used. An optimization proce-
dure that includes the coil diameter, wire diameter, length,
and pitch might produce better results than those seen here,
albeit with the added complexity of a larger optimization
problem. Furthermore, an optimization that includes the
design characteristics of the springs as well as other compo-
nents of the suspension could result in finding synergies
between different elements of the suspension design, which
may provide even more improvements. In addition, in the
design and analysis of a more extensive suspension, an
active suspension with a controller could be implemented,
with a co-design approach to the design and control, like
that set forth in the study by Peters et al. (2013). This future
work could also be tested through production of the designs
and physical testing, in order to validate the theoretical
results found through this work and its extensions. In addi-
tion, future work should consider a detailed analysis of
vehicle dynamics, including handling and comfort. Such an
analysis should include a full model of the suspension and
require multiple test cases to adequately cover the range of
operating conditions.

References

Bartolozzi, R., & Frendo, F. (2011). Stiffness and strength

aspects in the design of automotive coil springs for
McPherson front suspensions: A case
study. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineer-
ing, 225(10), 1377-1391.

Baviskar, A. C., Bhamre, V. G., & Sarode, S. S. (2013).
Design and analysis of a leaf spring for automobile
suspension system: a review. International Journal of
Emerging Technology and Advanced Engineering, 3(6),
407-410.

Campbell, C. (1981). Suspension Geometry. In Automobile
Suspensions. Boston, MA: Springer US.

Dave, V. (2018). Experimentation for Design Improvements
for Coil spring in the Independent suspension. Master’s
Thesis. Kettering University, Flint, MI.

De Melo, F. J., Pereira, A. B., & Morais, A. B. (2018). The
simulation of an automotive air spring suspension using

a pseudo-dynamic procedure. Applied Sciences, 8(7),
1049.

Edwards, K. S. Jr., & McKee, R. B. (1991). Fundamentals
of Mechanical Component Design. New York, NY:
McGraw-Hill, Inc.

Elmadany, M. M. (1990). Ride performance potential of
active fast load leveling systems. Vehicle System Dy-
namics, 19(1), 19-47.

Hales, F. D. (1964). A theoretical analysis of the lateral
properties of suspension systems. Proceedings of the
Institution of Mechanical Engineers: Automobile Divi-
sion, 179(1), 73-97.

Islam, A. S., & Ahmed, A. K. W. (2006). A comparative
study of advanced suspension dampers for vibration
and shock isolation performance of road vehicle. SAE
Transactions, 302-311.

Joo, F. R. (1991). Dynamic analysis of a hydropneumatic
suspension system (Unpublished doctoral dissertation,
Concordia University).

Karuppiah, P. S., Ganesan, P., Kasavan, P. S., &
Sambasivam, S. (2023). Experimental and simulation
investigation of vertical response of stepped torsion bar
spring for light motor vehicle suspension sys-
tem. Proceedings of the Institution of Mechanical Engi-
neers, Part D: Journal of Automobile Engineering, 237
(7), 1479-1488.

Kodati, M., Reddy, K. V., & Bandyopadhyay, S. (2015,
June). Kinematic analysis of MacPherson strut suspen-
sion system. In TrC-IFToMM Symposium on Theory of
Machines and Mechanisms, Izmir, Turkey.

Lavanya, N., Rao, P. S., & Reddy, M. P. (2014). Design and
analysis of a suspension coil spring for automotive ve-
hicle. International Journal of Engineering Research
and Applications, 4(9), 151-157.

Lijun, Z., Zengliang, Y., & Zhuoping, Y. (2010). A novel
empirical model of rubber bushing in automotive sus-
pension system. Proceedings of the 10th international
conference on motion and vibration control. https://
doi.org/10.1299/jsmemovic.2010._3A12-1

Mahanthi, D. L., & Murali, C. V. S. (2017). Design and
analysis of composite Leaf Spring for light Weight Ve-
hicle. International Journal of Advanced Engineering
Research and Science, 4(3), 237088.

Miyamura, N., Kunou, T., Saitoh, K., Matsumoto, Y.,
Yamamoto, H., Tsurui, Y., & Homma, S.
(1993). Design and Testing of Ovate Wire Helical
Springs (No. 932891). SAE Technical Paper.

Pawar, M. H. B., Patil, A. R., & Zope, S. B. (2016). Design
and analysis of a front suspension coil spring for three
wheeler vehicle. International Journal of Innovations
in Engineering Research and Technology, 3(2), 1-6.

Peters, D. L., Papalambros, P. Y., & Ulsoy, A. G. (2013).
Sequential co-design of an artifact and its controller via
control proxy functions. Mechatronics 23, 409-418.

Reddy, K. V., Kodati, M., Chatra, K., & Bandyopadhyay, S.
(2016). A comprehensive kinematic analysis of the
double wishbone and MacPherson strut suspension

——–
Dൾඌංඇ Iආඉඋඈඏൾආൾඇඍඌ ൿඈඋ Cඈංඅ Sඉඋංඇඌ ංඇ ൺඇ Aඎඍඈආඈඍංඏൾ Iඇൽൾඉൾඇൽൾඇඍ Sඎඌඉൾඇඌංඈඇ 21

——–————

——–————
22 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

systems. Mechanism and Machine Theory, 105, 441-
470.

Riduan, A. F. M., Tamaldin, N., Sudrajat, A., & Ahmad, F.
(2018). Review on active suspension system. In SHS
Web of Conferences (Vol. 49, p. 02008). EDP Scienc-
es.

Sakakibara, T., Kusakari, W., Nakano, O., Yasuda, S.,
Sugimoto, A., & Watanabe, M. (1993). Development of
a new light-weight suspension coil spring (No.
930263). SAE Technical Paper.

Serbino, E. M., & Tschiptschin, A. P. (2011). Review on the
fatigue mechanisms in automotive valve springs (No.
2011-36-0003). SAE Technical Paper.

Sondkar, P., & Jammulamadaka, A. (2021). A study of influ-
ence of suspension on driveline torque and evaluation
of vehicle anti-squat/dive characteristics using a planar
vehicle dynamics model (No. 2021-01-0693). SAE
Technical Paper.

Tavares, R., Molina, J. V., Al Sakka, M., Dhaens, M., &
Ruderman, M. (2019). Modeling of an active torsion
bar automotive suspension for ride comfort and energy
analysis in standard road profiles. IFAC-
PapersOnLine, 52(15), 181-186.

Tseng, H. E., & Hrovat, D. (2015). State of the art survey:
active and semi-active suspension control. Vehicle sys-
tem dynamics, 53(7), 1034-1062.

Vaillant, C., & Ferlicca, R. (1985). A new design and manu-
facturing process for suspension coil springs. SAE
transactions, 305-314.

Virnich, K. H., & Muhr, K. H. (1985). Properties of cold
coiled automotive suspension springs from high
strength Si-Cr-V wire. SAE transactions, 287-297.

Biographies

DIANE L. PETERS is an Associate Professor of
Mechanical Engineering at Kettering University. She earned
her BS in mechanical engineering from the University of
Notre Dame in 1993, MS in mechanical engineering in 2000
from the University of Illinois—Chicago, and PhD in
mechanical engineering in 2010 from the University of
Michigan. Dr. Peters’ research interests include control
co-design, control systems, and autonomous vehicles. Dr.
Peters may be reached at dpeters@kettering.edu

YAOMIN DONG is a Professor of Mechanical Engineer-
ing at Kettering University. He received his PhD in
Mechanical Engineering at the University of Kentucky in
1998. Dr. Dong has extensive R&D experience in the auto-
motive industry and holds multiple patents. Dr. Dong’s
areas of expertise include metal-forming processes, design
with composite materials, computer graphics, computer-
aided engineering, and finite element analysis. Dr. Dong
may be reached at ydong@kettering.edu

VIRAJ DAVE earned his MS in automotive systems
from Kettering University in 2018. Mr. Dave may be
reached at dave0651@kettering.edu

Abstract

There are many studies of approximations using deep
neural networks. In this paper, the authors provide yet an-
other proof that deep neural networks are universal approxi-
mators. In their earlier work, the authors showed that an
arbitrary binary target function can be effectively rewritten
in terms of a set of strings, or a set of subsets, and that a
single hidden neuron can identify and only identify a single
string or a single subset. Therefore, an arbitrary binary tar-
get function can be effectively rewritten in the form of a
neural network with one hidden layer. In this study, the au-
thors imposed locality on the deep neural network, and will
show here that an arbitrary binary target function can be
effectively rewritten in the form of a locally connected deep
neural network that can have many hidden layers. Although
it will increase the neural network size, as a neural network
is localized, it will generally increase the speed of training
for large networks.

Key words: AI, Universal Approximator, Completeness,
Deep Neural Network, Machine Learning, Supervised
Learning, Unsupervised Learning, Locally Connected.

Introduction

Neural networks provide good solutions to many super-
vised learning problems. Neural networks have a long histo-
ry, but there have been two main developments in recent
years, deep learning and transforming (Amari, Kurata &
Nagaoka, 1992; Byrne, 1992; Kubat, 2015). In 2006,
authors in several other studies introduced the idea of
“deep” neural networks (Hinton, Osindero & Teh, 2006;
LeCun, Bengio & Hinton, 2015; Bengio, 2009; Coursera,
2017; Bengio, Courville & Vincent, 2013; Schmidhuber,
2015; Ciresan, Meier & Schmidhuber, 2012). Examples of
software include TensorFlow (TensorFlow, 2017), Torch
(Torch 2017), and Theano (Theano, 2017). Layers in deep
neural networks (DNNs) serve as the building blocks of the
architecture, enabling the model to learn from the data. Each
layer has a specific function in transforming the input into
an output, progressively extracting higher-level features.
For example, early layers might detect edges or simple
patterns (e.g., in images), while middle layers may capture
more complex patterns (e.g., shapes or textures), and deeper
layers identify task-specific, high-level features (e.g., faces
or objects). The transformer model, introduced by Vaswani
et al. (2017), represents a significant advancement in deep
learning architectures, particularly in natural language
processing. Each layer in the DNN is replaced by a trans-
former (Vaswani et al., 2017).

The transformer leverages a fully self-attentive mecha-
nism to model complex dependencies between elements of a
sequence. This architecture enables the transformer to be
trained more efficiently and with greater parallelism, lead-
ing to faster training times and improved scalability. As a
result, the transformer has become the backbone of numer-
ous state-of-the-art models, including Chat GPT (OpenAI,
2023) and Claude (Anthropic, 2023), profoundly influencing
the development of modern deep learning systems. Studies
of the neural network as universal approximators have a
long history. Hornik, Stinchcombe, and White (1989) estab-
lished models showing that multi-layer feed-forward
networks with hidden layers using arbitrary squashing func-
tions are capable of approximating any measurable function
from one finite dimensional space to another to any desired
degree of accuracy, provided that a sufficient number of
hidden units are available. In this sense, multi-layer feed-
forward networks are a class of universal approximators.

Hinton, Osindero, and Teh (2006) introduced the idea that
deep belief networks (DBN) are generative neural network
models with many layers of hidden explanatory factors,
along with a greedy layer-wise unsupervised learning algo-
rithm. The building block of a DBN is a probabilistic model
called a restricted Boltzmann machine (RBM), which is
used to represent one layer of the model. Restricted Boltz-
mann machines are interesting, because they have been suc-
cessfully used as building blocks for training deeper models.
Le Roux and Bengio (2008) proved that adding hidden units
yields a strictly improved modeling power, and that RBMs
are universal approximators of discrete distributions.

Liu and Wang (Liu, 1993; Liu, 1995; Liu, 1997; Liu,
2002; Liu & Wang, 2018; Liu, 2018a/b) proved that DNNs
implement an expansion and the expansion is complete; a
complete expansion can be used to expand any target func-
tions. Cheng, Li, and Lu (2019) introduced a type of convo-
lutional neural network (CNN) that can implement the
Fourier and local Fourier transformations for approximation
in a large class of problems. Cybenko (1989) showed that a
finite sum of any continuous sigmoid function can be used
to approximate any univariate function using functional
analysis. Liu and Yousuf (2020) showed that DNNs are
effective universal approximators. An arbitrary binary target
function can be effectively rewritten in the form of a DNN;
thus, proving that DNNs can implement any target
mappings. An example of a locally connected network is the
convolutional neural network (CNN) (LeCun, Bottou,
Bengio & Haffner, 1998; Krizhevsky, Sutskever & Hinton,
2012), which is a specialized type of deep learning model
particularly well-suited for processing images.

D N N
U A II

——–————
Ying Liu, Savannah State University; Majid Bagheri, Savannah State University;

Antonio Velazquez, Savannah State University; Asad Yousuf, Savannah State University

 ——
Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024 23

——–————

——–————
24 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

2024). One of the main reasons that transformer models use
far more power than biological neurons is that the biological
systems are locally connected networks. In this paper, the
authors show that, as the models transit from globally
connected networks to locally connected networks, the
computing power will not be decreased, but the amount of
data transfer can be reduced.

Review: Effectively Rewriting a Mapping
with One Hidden Layer

An arbitrary binary target function can be effectively
rewritten in terms of a set of strings, or a set of subsets.
A single string or a single subset can be identified by a single
hidden neuron, and this neuron will only identify the string or
the subset; therefore, an arbitrary binary target function can be
effectively rewritten in the form of a neural network with one
hidden layer (Liu, Yousuf, 2020). A binary-neuron input
instance is 00 … 0, or, 0 … 01, … (Amari et al., 1992; Byrne,
1992; Kubat, 2015) and an instance space (Kubat, 2015) is a
set of all instances given by Equation 1:

(1)

Given an arbitrary binary target function, it can be effec-
tively rewritten in terms of a set of strings, or a set of
subsets given by Equations 2 and 3:

(2)

(3)

Example. Given a function in Table 1, the mapping can
be rewritten using Equations 4 and 5:

Table 1. A sample binary function with three inputs.

(4)

(5)

where, y is overloaded with a table, a mapping, a set of
strings, and a set of subsets, and si in Equation 3 is over-
loaded with a string and a subset.

It utilizes convolutional layers that apply filters across the
input data to capture spatial hierarchies of patterns. This
architecture allows the network to automatically learn and
detect features such as edges, textures, and objects within
images, making them highly effective for tasks such as
image classification, object detection, and segmentation.
Several approaches can be applied for reducing computation
times of neural networks, including model optimization,
hardware utilization, and algorithmic refinement. 1) Model
optimization techniques, such as pruning, quantization, and
knowledge distillation, reduce model size while maintaining
performance (Han, Pool, Tran & Dally, 2015). Weight shar-
ing and sparse representations are also effective in minimiz-
ing redundancy in parameters. 2) Efficient architectures, for
example MobileNet (Howard et al., 2017) and EfficientNet
(Tan & Le, 2019) were explicitly designed to reduce
computational overhead through depth-wise separable
convolutions and scaling strategies. 3) Hardware-specific
optimizations are accelerators—such as GPUs, TPUs, and
custom ASICs—that exploit parallelism and optimized
memory access patterns to enhance speed (Jouppi et al.,
2017). 4) Training techniques, such as mixed precision
training (Micikevicius et al., 2018), reduce floating-point
precision for faster computation, while learning rate
schedulers and gradient accumulation ensure efficient
convergence.

In this paper, the authors will show that an arbitrary
binary target function can be effectively rewritten in the
form of a locally connected DNN. The result opens a
discussion for exploring an approach of locally connected
neural networks as an alternative to globally connected
models. Additionally, the authors will build on their earlier
work (Liu & Yousuf, 2020); in particular, locality, will be
imposed on the neural network. As a comparison, the earlier
work had a single globally connected network with one
hidden layer, while the work presented here represents
many hidden layers with locally connected neural networks.
The author will show that an arbitrary binary target function
can be effectively rewritten in the form of a locally connect-
ed DNN. To prove this result: 1) the earlier work by the
authors will be briefly reviewed foundational to this current
study; 2) the result is proof for a special case—a binary
locally connected network; and, 3) the result will be proven
by removing the binary condition. For a given target func-
tion, there are many effective ways to construct a locally
connected DNN.

The results, then, open a discussion for exploring an
approach of locally connected neural networks as an alter-
native to globally connected models. The von Neumann
bottleneck refers to the limitation in computing systems that
stems from the separation of the central processing unit
(CPU) and memory in the von Neumann architecture.
Increasingly, both computation times and electric powers
are spent on moving data from one place to another. For
example, electric power consumption has been increasing
rapidly for the transformer models. (Wall Street Journal,

x0 x1 x2 y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

 0 00,0 01,0 10,0 11,X

 0 1 2, , ,h s s s

 0,1, 2, 1is d

 001,011,100y

 2 , 1,2 , 0y

——–————

Without loss of generality, it can be assumed that there is
only one output variable for now. For the case of multiple
output variables, it can be treated as multiple mappings. The
neural network used in this review section will have one input
layer, one output layer, and one hidden layer. The neuron val-
ues are given by Equation 6 (Amari, Kurata & Nagaoka,
1992; Byrne, 1992; Kubat, 2015):

(6)

where, f is a sigmoid function given define by Equation 7:

(7)

To compute the connection weights, a constant L is intro-

duced; without a loss of generality, set L = 10. For an
arbitrary target function, it can be rewritten in the form of
Equations 2 and 3. The rules for construction of a DNN are:

1. The DNN will have one input layer, one output layer,
and one hidden layer. The input layer has d neurons.

2. Each neuron in the hidden layer identifies one string in a
target function, h = {s0, s1, …, }, so the number of
neurons in the hidden layer is |h|, which is the
number of strings or the number of subsets.

3. The output layer has one neuron; the neuron value is
1, if any one of the hidden layer neurons is 1.

4. Assume that s is a subset in a mapping, h; and
assume a hidden neuron will identify s; the subset,
then, is given by Equations 8 and 9:

(8)

(9)

The hidden neuron has weights and biases as follows:

set weight = L, for input neurons {j0, j1, j2, …}
set weight = – L, for all other input neurons
set bias = - (|s| - 1) · L

It has been proven that this simple ANN will implement a

target function (Liu & Yousuf, 2020). To summarize:
1. An arbitrary binary target function can be effectively

rewritten in terms of a set of strings, or a set of
subsets, given by Equations 2 and 3:

2. A single hidden neuron can identify and only identify
a single string or a single subset. The weights and
biases are directly determined from a given target
function by the rules in this section.

3. An arbitrary binary target function can be effectively
rewritten in the form of a neural network with one
hidden layer.

Binary Locality or Bilocality

In a locally connected neural net, let the maximum number
of connections of a hidden neuron be N. To simplify the
discussion, let the locality be extreme: N = 2; from Figure 1,

this is called binary locality or simply bilocality. Once N is
restricted, the size of connection matrices is restricted, at the
cost of increasing the number of matrices. This reduction of
one large matrix into many smaller matrices has its implica-
tions in computation efficiency, especially when the matrix is
very large.

Figure 1. A hidden neuron has two input neurons.

The following naming convention will be adopted:
 The hidden layer closest to the input is the first hidden

layer.
 The hidden layer closest to the output is the last hidden

layer.

Assumption 1:
The DNN (deep neural network) is bilocally connected, where
each hidden neuron can have only two or fewer connections.

Assumption 2:
The number of neurons in the input layer is a power of 2
(e.g., 2, 4, 8, 16, …).

These two assumptions will be removed later. Furthermore,
Assumption 1 only applies to the hidden neurons; the connec-
tions of the single output neuron are determined by the number
of strings in a target function in Equation 2, |h|. Without loss of
generality, it can be assumed that there is only one output
variable for now. For the case of multiple output variables,
it can be treated as multiple mappings. In a binary locally
connected network (bilocal network), it is only natural to
group the connection weights of a neuron with the neuron
rather than group them into connection matrices. A binary
locally connected neural net is a set of neurons; a neuron
has a neuron value, two connection weights, and a bias
(called neuron-based computation): NN1 = {Neuron},
Neuron = {value, w0, w1, b}. This is in contrast to the view
that a neural net is a set of neurons (where each neuron has
a single value), a set of connection matrices, and a set of
bias vectors (called matrix-based computation):
NN2 = {Neurons, Matrix, Bias}. To compute the connec-
tion weights, a constant L will be introduced; without a loss
of generality, set L = 10. A binary function is then rewritten
in terms of a set of strings of 0’s and 1’s. A string in the set
is directly imposed to the input neurons. For a bilocal net-
work, two input neurons are grouped together and its two-
bit pattern is passed to a hidden neuron in the first hidden
layer.

——–
Dൾൾඉ Nൾඎඋൺඅ Nൾඍඐඈඋඌ ൺඇൽ Uඇංඏൾඋඌൺඅ Aඉඉඋඈඑංආൺඍඈඋඌ II 25

 , 1,2,3,i ij j iy f w x b i

 1

1 x
f x

e

 0 1 2, , ,s j j j

 0,1, 2, 1s d

——–————

——–————
26 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

Let a sample string be x0x1x2x3, where the pattern x0x1 can be
identified by a hidden neuron, h1, in the next layer, and the
pattern x2x3 can be identified by a hidden neuron, h2. The iden-
tification of x0x1 is propagated to the next layer via h1, and the
identification of x2x3 to h2 . To identify the entire pattern
x0x1x2x3, h1 and h2 are further propagated to a hidden neuron in
the next layer, say h3, which only needs to identify the pattern
“11” (i.e., both h1 and h2 have identified their required patterns).
This is the basic idea of the newly proposed algorithm. The
new rules for the network construction are:

1. The input layer has d = 2K neurons. The DNN has one
input layer, one output layer, and O (log d) hidden
layers.

2. Each neuron in the last hidden layer identifies one string
in a target function, h = {s0, s1, …, }, so the number of
neurons in the last hidden layer is |h|, which is the
number of strings in Equation 2 or the number of
subsets.

3. The output layer has one neuron; the neuron value is
1, if any one of the last hidden layer neurons is 1.

Rule 1 states that there are d input neurons. The condition,

d = 2K, is for the sake of easy discussion and will be removed
later. Rule 2, together with several other rules, describes the
overall hidden neuron structures; each layer has a specific func-
tion in transforming the input into an output, progressively
identifying bigger bit patterns for strings in a target function.
In particular, Rule 2 specifies the last hidden layer, and its role
is: a) the number of hidden neurons in the last hidden layer is
the same as the number of strings in a given target function,
and b) each hidden neuron in the last hidden layer will identify
and only identify one string in the target function. Rule 3
describes the output layer. For the sake of this discussion,
assume that there is only one output variable, per our earlier
assumption, so there is only one output neuron. If an input
string is one of the strings in a target function, one of the
hidden neuron values in the last hidden layer is 1, which will
cause the output neuron to be 1. If an input string is not in the
target function, all of the hidden neurons in the last hidden
layer will be 0, which will cause the output neuron to be 0.

Single String Identification

To identify a single string or a single subset, let the input
layer have d neurons; let the first hidden layer have d/2 hidden
neurons; let the second hidden layer have d/4 hidden neurons;
and, let the last hidden layer have one hidden neuron. The input
layer and all hidden layers together then form a binary tree,
called a hidden tree. A hidden tree will identify one string in a
target function later. In a complete binary tree, there exist
relationships between the height, the number of edges, and the
number of nodes in each layer from which a complete binary
tree has:
 d input neurons
 log(d) hidden layers
 2d – 2 weights
 d – 1 hidden neurons

By way of example, Figure 2 shows a hidden tree that has:
 d = 4 input neurons
 log(d) = 2 hidden layers
 2d – 2 = 6 weights
 d – 1 = 3 hidden neurons

Figure 2. An example of a hidden tree with 4 input neurons.

In a complete binary tree, there exist relationships between
the height, the number of edges, and the number of nodes in
each layer. The four input neurons are drawn in column 1; thus,
d = 4. Shown in Figure 2, the number of hidden layers is log
(d) = 2: column 2 and column 3. Also shown in Figure 2 as
edges is the number of weights: 2d – 2 = 6. The number of
hidden neurons is d – 1 = 3: the 3 nodes in columns 2 and 3.
This is the tradeoff between a globally connected network and
a locally connected network. There are two costs of locality:
1) from using a single hidden neuron to identify a single
string in a fully connected network to d – 1 neurons; 2) from
using d weights to identify a single string in a fully connected
network to 2d – 2 weights.

The first hidden layer identifies the input patterns. Each
neuron in the first hidden layer identifies two input bits
(bilocal). The number of neurons in the first hidden layer has
d/2 neurons. After all of the 2-bit patterns are identified, the
results propagate up, eventually to one single neuron in the last
hidden layer. The role of the first hidden layer is to identify a
single string or a single subset, and the roles of the rest of
the hidden layers are to pass the results of the first hidden
layer to a single root of a hidden tree in the last hidden
layer.

Target Function Identification

Each neuron in the last hidden layer identifies one string in a
target function, h = {s0, s1, …, }, so the number of neurons in
the last hidden layer is |h|, which is the number of strings or

——–————

the number of subsets. Figure 3 shows how each of the
neurons in the last hidden layer grows a binary tree all the
way to the input neurons.

Figure 3. An example of two hidden trees for two strings.

In this example, the input layer has d = 4 input neurons and
the target function has two strings to be recognized. There are
two neurons in the last hidden layer; each is responsible for
identifying one string. Each of the two neurons in the last
hidden layer forms a binary tree. Within each tree, there are
d – 1 hidden neurons in log(d) hidden layers and d input
neurons. The rules for the hidden trees are:

4. Each of the neurons in the last hidden layer grows a
binary tree all the way to the input layer neurons. There
are log(d) hidden layers, where d is the number of input
neurons. There are (d – 1) hidden neurons in each hid-
den binary tree.

5. The first hidden layer identifies the input patterns. Each
neuron in the first hidden layer identifies two input bits
(bilocal).

Let s be a single subset that is given in Equations 2 and 3,

such that the rule for neurons in the first hidden layer is:
6. Assume that s is a subset in a mapping, h; further

assume that a hidden neuron identifies s. In this case,
the subset is given by Equations 8 and 9:

The hidden neuron has weights and biases as follows:

set weight = L, for input neurons {j0, j1, j2, …}
set weight = – L, for all other input neurons
set bias = - (|s| - 1) · L

After all of the 2-bit patterns are identified in the first hidden

layer, based on the rules above, the results will propagate up,
eventually to one single neuron in the last hidden layer for one
string/subset in Equations 2 and 3. The rule for neurons in the
rest of the hidden layers is:

7. For the rest of the hidden layers (other than the first),
all connection weights are L and all biases are
- (|s| - 1) · L, which is -L for bilocal hidden neurons.

This is an effective construction of a bilocal DNN from a

given target function, which will be justified in the next
section.

Effectively Rewriting a Mapping in Terms
of a Bilocal Deep Neural Network

In the earlier review section, it was noted that a 2-bit pat-
tern can be identified correctly by a hidden neuron. In this
paper, the authors first identify a 2-bit pattern by one neuron
in the first hidden layer, which has been proven to be cor-
rect. Second, the above step is repeated for all 2-bit patterns in
the input layer. For d-input neurons, there are d/2 neurons in
the first hidden layer. This step is already different from the
authors’ previous study in which they used one neuron instead
of d/2 neurons. Third, the results of the first hidden layer simp-
ly propagate up. Let h1 and h2 be two neurons in the first hidden
layer, the weights and the biases of a bilocal neuron, h3, in the
next hidden layer are simply (L, L), and -L, respectively,
which identify the pattern “11” (i.e., both h1 and h2 have identi-
fied their required patterns). Each neuron in the second hidden
layer identifies a 4-bit pattern. Fourth, each neuron in the third
hidden layer identifies an 8-bit pattern, …, eventually, each
neuron (root of a hidden tree) in the last hidden layer identifies
one string or one subset. Finally, the output layer has one neu-
ron; the neuron value is 1, if any one of the last hidden layer
neurons is 1.

Since bilocal neurons are so simple, details can be worked
out from the beginning in just a few lines. One bilocal hidden
neuron is given in Equation 10:

(10)

where, f is given in Equation 7.

Each hidden neuron in the first hidden layer has two weights
and there are d/2 neurons. Since there are only four possible
patterns to be identified, Table 2 lists the parameters in
Equation 10 required for each case.

Table 2. Bilocal hidden neuron parameters for all 2-bit identifications.

Take, for example, one instance in detail. Assume that a
neuron, m, can identify a pattern, “10”; from Table 2, Equation
10 is changed to Equation 11. All possible inputs and outputs
for Equation 11 are listed in Table 3.

 0 0 1 1m f a x a x b

Pattern to be identified a0 a1 b

00 -L -L L

01 L -L 0

10 -L L 0

11 L L -L

——–
Dൾൾඉ Nൾඎඋൺඅ Nൾඍඐඈඋඌ ൺඇൽ Uඇංඏൾඋඌൺඅ Aඉඉඋඈඑංආൺඍඈඋඌ II 27

——–————

——–————
28 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

(11)

Table 3. Inputs and outputs for Equation 11.

Column 1 shows all possible inputs for 2-bit patterns.

Column 2 is the intermediate step. Column 3 shows the neuron
values. Column 4 takes the integer part of Column 3. In Table
3, int(m) is the integer function in C# language. The hidden
neuron identifies the correct string, “10”, by Equation 12:

(12)

If there is a single bit difference (“00”, “11”), the hidden
neuron has a value given by Equation 13:

(13)

If there is a 2-bit difference (“01”), the hidden neuron has a
value given by Equation 14:

(14)

In general, if an input string differs from the string, s, by 0
bits, 1 bit, 2 bits, 3 bits, etc., the hidden neuron identifies the
string with values given in Equation 15:

(15)

This hidden neuron can clearly identify, and only identify,
one string or one subset, s. Consider this next example. Let a
given target function hold the four inputs given in Table 4.

Table 4. A sample binary function with four inputs.

The rest of the rows in Table 4 all have y(x) = 0.

The strings are y = {0011, 1001}, and the set of subsets is
y = {{2,3}, {0,3}}. Table 5 gives the weights and biases of
the hidden neurons (a0, a1, b in Equation 10) in two hidden
trees. Each row specifies all parameters in a hidden tree.
Column 1 is the input string. Column 2 (m0) and Column 3
(m1) are hidden neurons in the first hidden layer. Column 4
(m2) is the hidden neuron in the last hidden layer.

Here, m0 and m1 are hidden neurons in the first hidden
layer and m2 is the one in the last hidden layer. Figure 4
shows that there is one tree for each string/subset.

Table 5. The weights and biases of the hidden neurons for two
strings.

Figure 4. An example of two hidden trees for two strings: 0011 and
1001.

A target function is written in terms of a set of strings. For
each string in the target function, there is one hidden tree that
can identify it and only it. In this example, there are four
inputs: x0, x1, x2, and x3 and the strings in a target function
are y = {0011, 1001}. Here, m0 and m1 are hidden neurons
in the first hidden layer and m2 is in the last hidden layer.
The output layer is omitted in this figure. The connection
weight is written next to the edges and the bias is written on
top of the hidden neurons. In neuron-based computing,
connection weights are members of neurons rather than
members of the connection matrix; so, whenever possible,
the weights are drawn closer to its owners. A target function
is written in terms of a set of subsets. For each subset in the
target function, there is one hidden tree that can identify it and
only it. The last hidden layer has one neuron for each subset, so
the neural network can implement any target function.

Why locally Connected? A Time and
Space Complexity Analysis

Time complexity measures how the running time of an algo-
rithm grows as the size of its input increases. Space complexity
measures the amount of memory or storage required by an
algorithm relative to the size of its input. The implicit assump-
tion here is that the comparison between a fully connected
network and locally connected network is based on the fact that

Input ̶ Lx0 + Lx1 m int (m)

00 0 1/2 0

01 -L 0 0

10 L 1 1

11 0 1/2 0

 0 1m f Lx Lx

 0 1

1
1

1 L
m f Lx Lx

e

0

1
0.5

1
m

e

1
0

1 L
m

e

1,0.5,0,0,m

x0 x1 x2 x3 y

0 0 1 1 1

1 0 0 1 1

String m0 m1 m2

0011 (-L,-L,L) (L,L,-L) (L,L,-L)

1001 (-L,L,0) (L,-L,0) (L,L,-L)

——–————

the same target function can be identified by both. Let d be the
number of input neurons; let h = {s0, s1, …, } be a target
function; and, let |h| be the number of strings in set h. In the
fully connected network, there are d neurons from the input
layer, |h| neurons from the hidden layer, and one neuron
from the output layer for a total of d + |h| + 1 neurons. The
hidden layer has d*|h| connections and the output layer has
|h| connections. For one pass of training, the time and space
complexities are T = O (d*|h|) and S = O (d*|h|).

For bilocal networks, there are d neurons from the input
layer, |h| * (d-1) neurons from the |h| hidden trees, and one
neuron from the output layer for a total of d + |h| *(d-1) + 1
neurons. The number of hidden neurons is significantly
higher, which is increased by a factor of O(d), from |h| to
|h| * (d-1). There are also |h| binary trees, where each tree
has 2 * d – 2 connections. The hidden layer has
(2 * d – 2) * |h| connections, and the output layer has |h|
connections. The number of connection weights is roughly
doubled. This trade-off has the potential of improving time
complexity at a minor cost of more neurons and connection
weights. The space complexity is primarily determined by
connection weights, not by the number of neurons, so the
space complexity does not increase when the number of
neurons is increased by a factor of O(d). Doubling the
weights will also not change the space complexity, which
measures the order of magnitude, and a constant of 2 will
not change the space complexity. For one pass of training,
both the time and space complexities are T’ = O (d*|h|) and
S’ = O (d*|h|).

From the time and space complexity analyses, there are
no advantages for the locally connected network; however,
this is not true for the following reasons. First, the DNN
itself attempts to localize the network by dividing the network
into many layers; the deeper the network, the more locally con-
nected the network will become. Second, the von Neumann
bottleneck, which refers to the limit of computing systems that
stems from the separation of the central processing unit (CPU)
and RAM, is another problem. Training of large networks
demands substantial hardware because:
1) Parameters: the scale of these models is immense and the

memory requirements to store and process these parame-
ters are significant, prompting the transition from CPU to
GPUs and from GPU to IPU, TPU, and NPU (Brown et
al., 2020). The computational complexity is primarily driv-
en by the extensive matrix multiplications and gradient
descent calculations involved in backpropagation, which
require multiple passes through the entire network
(Goodfellow, Bengio, & Courville, 2016).

2) Training data: training on vast datasets requires not only
significant storage but also powerful computational
resources to handle the iterative processes involved in
training (Devlin, Chang, Lee & Toutanova, 2018).

3) Training: high throughput for data processing necessitates
advanced storage systems and network infrastructure to
efficiently feed data to the model. The distributed nature of

training across multiple GPUs/TPUs adds further
complexity (Rajbhandari, Rasley, Ruwase & He, 2020).

4) Power: high energy consumption can also be a problem
(Jouppi et al., 2017). Simply speaking, it is impossible for
the cache memory to hold so much data, so most of the
time and power are consumed by moving data. It can be
significantly helpful if the computations are basically
local. This reduction of thrashing will not reduce the accu-
racy of the computation.

It is essential to emphasize the significance of incorporat-

ing locality in neural networks and its implications for
computation efficiency. Using the earlier example in this
section, in a fully connected network, there are d neurons
from the input layer and |h| neurons from the hidden layer;
the hidden layer has d*|h| connections. For one pass of train-
ing, the time and space complexities are T = O (d*|h|) and
S = O (d*|h|). When both d and |h| are very large, the
connection matrix (d x |h| dimension) is very large, and only
a small portion of this matrix can be held in RAM. To
complete a matrix multiplication, a portion of a large matrix
is loaded into RAM, then removed from RAM to make
room, only to find that it will need to be reloaded again.
Increasingly, computation times are spent on moving data
from one place to another. Assuming the same matrix will
need to be reloaded R times on average, the mathematical
time complexity of T = O (d*|h|), which assumes unlimited
RAM, is actually T = O (d*|h|*R), where R is the average
number of reloads for a large matrix. R is 1 only if the
memory is as large as d*|h|, which is simply not the case for
large matrices.

For bilocal networks, the number of hidden neurons is
significantly higher, which is increased by a factor of O(d);
however, the number of connection weights is roughly the
same order of magnitude. It is the connection weights that
determine the time and space complexities. The number of
connection weights is roughly doubled, but there is no large
matrix here so the data does not need to be loaded and
unloaded over and over again. Why is there no connection
matrix in a neuron-based computation? The connection
weights are members of neurons. There are two computa-
tions: forward computations of neuron values and backward
computations of weight updates.
1) When neuron values in the first hidden layer are calcu-

lated, they can be calculated one neuron at a time; this
is because all weights of a neuron are properties of this
neuron. To update a neuron value, the members of this
neuron alone are enough to complete the neuron value
calculation. When all of the neurons are updated in the
first hidden layer, the process can be repeated for the
second hidden layer, again one neuron at a time. Note
that there is no matrix.

2) Similarly, when new weights are calculated, they can
be calculated in such a way that only one neuron is
used at a time; this is because the weight update train-
ing related to one neuron is based on all of the weights
connected to this neuron in a backward direction. When

——–
Dൾൾඉ Nൾඎඋൺඅ Nൾඍඐඈඋඌ ൺඇൽ Uඇංඏൾඋඌൺඅ Aඉඉඋඈඑංආൺඍඈඋඌ II 29

——–————

——–————
30 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

all of the neurons in the output layer are processed, one
can repeat the process for the last hidden layer, again
one neuron at a time, gradually moving backward. Note
that there is again no matrix. For example, one can
compute the responsibility of a neuron based on all the
weights connected to this neuron in a backward direc-
tion. In both cases, only one-dimensional arrays are
used because only one neuron is processed at a time
and these arrays will be loaded into RAM only once.
For one pass of training, the time complexity is
T’ = O (d*|h|), which can be significantly faster than
T = O (d*|h|*R), in the case of fully connected neural
networks, where R is the average number of reloads for
a large matrix.

Incorporating locality in neural networks can increase

computation efficiency by a factor of R. It is this factor of R
that opens a discussion for exploring an approach of locally
connected neural networks as an alternative to globally
connected models. OpenAI’s GPT-3, the architecture under-
lying ChatGPT-3, is one of the largest and most sophisticat-
ed language models developed with known size (Brown
et al., 2020). The largest GPT-3 model, often referred to as
GPT-3 175B, has 96 layers (transformer blocks) and
175 billion parameters. Each layer has an Attention block
and a Feedforward Network.

The attention block has four 12,288 x 12,288 matrices,
where three of the matrices will multiply (Vaswani et al.,
2017). The Feedforward Network (FFN) has two
12,288 x 49,152 matrices. Together, these matrices give the
majority of the 175 billion parameters. The number of
parameters in GPT-4 is not officially disclosed by OpenAI,
but it is expected that the cost of training ChatGPT-4 is an
order of magnitude higher than ChatGPT-3 and the cost of
training ChatGPT-5 will be an order of magnitude higher
than ChatGPT-4 (Wall Street Journal, 2024). Therefore, it is
important to increase computation efficiency.

In a locally connected network, the basic computation unit is
a neuron rather than a connection matrix. In the extreme case
of a bilocal network, a neuron value, a few weights, and a bias
form the foundation of computation, irrespective of how large
the network is. This is in contrast to the connection-matrix-
based computation unit that grows with the network size.
As a reference, biological neural networks are locally
connected, where data movement is minimum and the number
of neurons is large. The biggest difference between fully
connected networks and bilocal networks is that one uses
matrix-based computation and the other uses neuron-based
computation; one uses matrices as a computation unit and the
other uses neurons as computation units. As a reference, the
neuroscience textbook by Kandel, Schwartz, and Jessell (2013)
states that individual neurons in the human brain typically form
between 1000 and 10,000 synaptic connections. The biological
neural net has two features: it has a large number of neurons
and is locally connected.

Discussion

Earlier, the authors made two assumptions for easy discus-
sion: bilocal and 2K input neurons. Now these assumptions will
be removed.

Arbitrary number of input neurons:
To move from 2K to an arbitrary number, the process is stand-
ard and well-known, such as binary search and merge sort. For
example, let the input layer have 11 neurons:

[0,1,2,3,4,5,6,7,8,9,10]

Following the binary search or merge sort process, the
division for an integer interval [a, b] is [a, m] and [m+1, b],
where m = (a + b)/2 is an integer division. The division process
then is:

[0,1,2,3,4,5,6,7,8,9,10]
[0,1,2,3,4,5], [6,7,8,9,10]
[0,1,2], [3,4,5], [6,7,8], [9,10]
[0,1], [2], [3,4], [5], [6,7], [8], [9,10]

Now there are some singleton neurons left in the input layer.

A single neuron can be identified by a hidden neuron using the
same rule noted previously.

N-ary tree:
N-ary tree is a tree in which a node can have at most
N children. Binary trees are specific cases where N = 2. The
binary connections are merely for easy discussion. By using an
N-ary tree, all the restrictions that were imposed, for the sake of
easy discussions, are removed. The rules allow one hidden
neuron to identify arbitrary numbers of bits; therefore, all of the
rules apply to the N-ary trees, which is: let s be a subset given
by Equations 8 and 9, and assume that a hidden tree will
identify s; the neurons in the first hidden layer then have
weights and biases as follows:

set weight = L, for input neurons {j0, j1, j2, …}
set weight = – L, for all other input neurons
set bias = - (|s| - 1) · L

Neurons in the rest of hidden layers have weights and biases

determined by the above rule for identification of patterns:
“11…1”.

Universal Approximator with Two and
Three Hidden Layers

For a given input number, d, and a given number of layers,
there are numerous constructions, where the number of neurons
in the hidden layers depends on the construction. Figure 5
gives an example of a single hidden tree for d = 8, two
hidden layers, and the maximum localization construction (the
number of edges is maximum). The figure shows the input
layer, the first hidden layer, and the last hidden layer. The

——–————

output layer is omitted. Figure 6 gives an example of a single
hidden tree for d = 8, two hidden layers, and the minimum
localization construction (the number of edges is minimum).
Again, the figure shows the input layer, the first hidden layer,
and the last hidden layer. The output layer is omitted.

Figure 5. An example of maximum localization construction.

As d grows larger, the diagram gets harder to read, so a new
notation will be introduced:

 Let the input neurons be labeled by “Input Layer: 0, 1,

2, …, 15”;
 Let the neurons in the first hidden layer be labeled by

“First Hidden Layer: 0, 1, 2, ….”;
 Let the neurons in the second hidden layer be labeled by

“Second Hidden Layer: 0, 1, 2, …”;
 Let the neurons in the last hidden layer be labeled by

“Last Hidden Layer: 0, 1, 2, …”; and,
 Let “[...]” be used to group neurons together to be

identified by a neuron in the next layer.

For example, Input layer: [0,1] [2,3] means input neurons 0
and 1 will be identified by neuron 0 in the first hidden layer and
input neurons 2 and 3 will be identified by neuron 1 in the first
hidden layer. Under this notation, Figure 5 can be rewritten as:

Input layer: [0,1] [2,3] [4,5] [6,7]
First hidden layer: [0,1,2,3]
Last hidden layer: [0]

Figure 6. An example of minimum localization construction.

Figure 6 can be rewritten as:

Input layer: [0,1,2,3] [4,5,6,7]
First hidden layer: [0,1]
Last hidden layer: [0]

The following example will be more interesting, which is

d = 16 and two hidden layers. In this example, let d = 16 and let
a network have two hidden layers. The maximum localization
construction looks like this:

Input layer: [0,1] [2,3] [4,5] [6,7][8,9][10,11][12,13][14,15]
First hidden layer: [0,1,2,3,4,5,6,7]
Last hidden layer: [0]

where,
 input neurons [0,1] are identified by neuron 0 of the first

hidden layer,
 input neurons [2,3] are identified by neuron 1 of the first

hidden layer,
 …, and
 first-hidden-layer neurons, [0, …, 7], are identified by

neuron 0 of the last hidden layer.

The minimum localization looks like this:

Input layer: [0,1,2,3,4,5,6,7] [8,9,10,11,12,13,14,15]
First hidden layer: [0,1]
Last hidden layer: [0]

——–
Dൾൾඉ Nൾඎඋൺඅ Nൾඍඐඈඋඌ ൺඇൽ Uඇංඏൾඋඌൺඅ Aඉඉඋඈඑංආൺඍඈඋඌ II 31

——–————

——–————
32 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

The intermediate localization looks like this:

Input layer: [0,1,2,3] [4,5,6,7] [8,9,10,11] [12,13,14,15]
First hidden layer: [0,1,2,3]
Last hidden layer: [0]

Clearly, there are many other constructions. As a compari-

son, with two hidden layers and minimum localization, it
basically divides the original fully connected network into two
networks, which reduces the weight connection matrix. With
two hidden layers and maximum localization, it basically
reduces the size of the original fully connected network by half
by taking the average of two inputs and combining it into one
input, which again reduces the connection matrix. In either
case, it is a small deviation from the original network. As more
and more layers are added, the difference between fully
connected networks and locally connected networks will get
bigger and bigger; eventually, it will transit from a matrix-
based computation to a neuron-based computation. Universal
approximators with three hidden layers can be constructed in a
similar way.

Conclusions

In earlier work by the authors, they showed that an
arbitrary binary target function can be effectively rewritten
in terms of a set of strings, or a set of subsets, and that a
single hidden neuron can identify and only identify a single
string or a single subset; therefore, an arbitrary binary target
function can be effectively rewritten in the form of a neural
network with one hidden layer, thus proving that deep
neural networks can effectively implement any target
mappings. In this paper, the authors imposed locality on the
neural network and showed that an arbitrary binary target func-
tion can be effectively rewritten in the form of a locally
connected DNN, which can have many hidden layers. When
locality is imposed on the network, the basic computation unit
can be shifted to neurons rather than connection matrices.
Continuous loading of batches of data from storage into
memory to processing units can be significantly reduced. By
imposing locality, the computation power of the DNN is not
decreased, but it can reduce thrashing, thus significantly
increasing computation speed.

Acknowledgments

This work was supported by the Department of Energy
Minority Serving Institution Partnership Program
(EM-MSIPP) managed by the Savannah River National
Laboratory under BSRA contract TOA Number:
0000663608 and National Science Foundation under Award
Number 2348805. The authors would like to thank Gina
Porter for proofreading this paper.

References

Amari, S., Kurata, K., & Nagaoka, H. (1992). Information Ge-

ometry of Boltzmann Machine. IEEE Trans., Neural Net-
work, 3(2), 260-271.

Anthropic. (2023). Claude: A Language Model for Conversa-
tional AI. https://www.anthropic.com/index/claude

Bengio, Y. (2009). Learning Deep Architectures for AI. Foun-
dations and Trends in Machine Learning, 2(1), 1-127.
http://dx.doi.org/10.1561/2200000006

Bengio, Y., Courville, A., & Vincent, P. (2013). Representa-
tion Learning: A Review and New Perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 35 (8), 1798-1828. doi:10.1109/tpami.2013.50
https://ieeexplore.ieee.org/document/6472238

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P. ... & Amodei, D. (2020). Language mod-
els are few-shot learners. Advances in Neural Infor-
mation Processing Systems, 33, 1877-1901.

Byrne, W. (1992). Alternating Minimization and Boltzmann
Machine Learning. IEEE Trans., Neural Network, 3(4),
612-620.

Cheng, X., Li, Y., & Lu, J. (2019). Butterfly-Net: Optimal
Function Representation Based on Convolutional Neu-
ral Networks. https://arxiv.org/pdf/1805.07451

Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-
column deep neural networks for image classification.
Proceedings of the 2012 IEEE Conference on Comput-
er Vision and Pattern Recognition, 3642-3649.
doi:10.1109/cvpr.2012.6248110 https://
ieeexplore.ieee.org/document/6248110

Coursera. (2017). Coursera, Your Course to Success. https://
www.coursera.org/

Cybenko, G. (1989). Approximation by Superposition of a
sigmoid function. Mathematics of Control, Signals, and
System, 2, 303-314.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).
BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. https://doi.org/10.48550/
arXiv.1810.04805

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
Learning. MIT Press.

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning
both weights and connections for efficient neural net-
works. Advances in Neural Information Processing
Systems, 28, 1135-1143.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A Fast
Learning Algorithm for Deep Belief Nets. Neural Com-
putation, 18, 1527-1554.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer
Feedforward Networks are Universal Approximators.
Neural Networks, 2, 359-366.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T. ... Adam, H. (2017). MobileNets: Effi-
cient convolutional neural networks for mobile vision
applications. https://doi.org/10.48550/arXiv.1704.04861

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R. ... Yoon, D. (2017). In-datacenter performance

——–————

analysis of a tensor processing unit. Proceedings of the
44th Annual International Symposium on Computer Ar-
chitecture, 1-12.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2013). Princi-
ples of Neural Science (5th ed.). McGraw-Hill Education.

Kubat, M. (2015). An Introduction to Machine Learning. (1st
ed.). Springer.

Le Roux, N., & Bengio, Y. (2008). Representational Power of
Restricted Boltzmann Machines and Deep Belief Net-
works. Neural Computation, 20(6), 1631-1649.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11), 2278-2324.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learn-
ing. Nature, 521(7553), 436-444.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E.,
Garcia, D. ... Wu, H. (2018). Mixed precision training.
International Conference on Learning Representations.
https://doi.org/10.48550/arXiv.1710.03740

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet classification with deep convolutional neural
networks. Advances in Neural Information Processing
Systems, 25, 1097-1105.

Liu, Y. (1993). Image Compression Using Boltzmann Ma-
chines. Proc. SPIE, 2032, 103-117.

Liu, Y. (1995). Boltzmann Machine for Image Block Coding.
Proc. SPIE, 2424, 434-447.

Liu, Y. (1997). Character and Image Recognition and Image
Retrieval Using the Boltzmann Machine. Proc. SPIE,
3077, 706-715.

Liu, Y. (2002). Attrasoft Image Retrieval. US Patent,
7,773,800. http://www.google.com/patents/US7773800

Liu, Y., & Wang, S. H. (2018). Completeness Problem of the
Deep Neural Networks. American Journal of Computa-
tional Mathematics, 8, 184-196. https://doi.org/10.4236/
ajcm.2018.82014

Liu, Y. (2018a). Linear Neurons and Their Learning Algo-
rithms. Journal of Computer Science and Information
Technology, 6(2), 1-14.

Liu, Y. (2018b). Square Neurons, Power Neurons, and Their
Learning Algorithms. American Journal of Computational
Mathematics, 8, 296-313. https://doi.org/10.4236/
ajcm.2018.84024

Liu, Y., & Yousuf, A. (2020). Deep Neural Network and Uni-
versal Approximators. International Journal of Modern
Engineering, 20(2), 45-50. https://ijme.us/issues/
spring2020/X__IJME%20spring%202020%20v20%
20n2.pdf#page=47

OpenAI. (2023). ChatGPT: Language Model for Dialogue
Applications. https://openai.com/chatgpt

Rajbhandari, S., Rasley, J., Ruwase, O., & He, Y. (2020). Ze-
RO: Memory Optimization Towards Training A Trillion
Parameter Models. https://doi.org/10.48550/
arXiv.1910.02054

Schmidhuber, J. (2015). Deep Learning in Neural Networks:
An Overview. Neural Networks, 61, 85-117. https://
doi.org/10.1016/j.neunet.2014.09.003

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model
scaling for convolutional neural networks. Proceedings
of the 36th International Conference on Machine
Learning, 6105-6114.

Theano. (2017). Theano 1.0. https://en.wikipedia.org/wiki/
Theano_(software)

Tensorflow, (2017). Tensorflow. https://www.tensorflow.org
Torch, (2019). Torch, A scientific computing framework for

LuaJIT. http://torch.ch/
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N. … Polosukhin, I. (2017). Attention is
all you need. Advances in Neural Information Pro-
cessing Systems, 5998-6008.

Wall Street Journal. (2024). Eric Schmidt Walks Back
Claim Google Is Behind on AI Because of Remote
Work. https://www.wsj.com/tech/ai/google-eric-
schmidt-ai-remote-work-stanford-f92f4ca5

Biographies

YING LIU is an Associate Professor of Computer
Science Technology at Savannah State University. He
received his master’s degree and PhD in physics from
Carnegie-Mellon University, and a Master’s in Computer
Science degree from the University of South Carolina. Dr.
Liu has multiple Microsoft Certifications, including MCSE
(Microsoft Certified System Engineer) and MCDBA
(Database Administrator). He has published over 60
research papers, holds one patent, and over 30 software
copyrights. Dr. Liu has extensive experience in software
research and development in image recognition. Dr. Liu
may be reached at liuy@savannahstate.edu

MAJID BAGHERI is an Assistant Professor of Civil
Engineering Technology at Savannah State University. He
received his PhD in Civil Engineering (environmental
focus) from Missouri University of Science and Technolo-
gy. Dr. Bagheri’s expertise is in the modeling of environ-
mental systems and environmental remediation using novel
technologies such as artificial intelligence (AI) and machine
learning (ML). He has developed several AI and ML
models to improve the efficiency of treatment systems and
assess the fate of environmental contaminants. Dr. Bagheri
may be reached at bagherim@savannahstate.edu

ANTONIO VELAZQUEZ is an assistant professor at
Savannah State University. He earned his BS in Civil
Engineering (Structures and Construction) from Metropoli-
tan Autonomous University (UAM-Mexico), a MEng in
Structures from National Autonomous University of
Mexico, a MSc in Computer Systems from National
Polytechnic Institute (Mexico), a MSc in Wind Engineering
from Northeastern University, a MSc in Fluid Dynamics
(Hurricane Engineering) from Florida Institute of Technolo-
gy, a PhD in Engineering Mechanics/Structures/MechEng
from Michigan Technological University, and a post-doc in
Machine-learning-based Engineering Education from
Jackson State University. His research interests include

——–
Dൾൾඉ Nൾඎඋൺඅ Nൾඍඐඈඋඌ ൺඇൽ Uඇංඏൾඋඌൺඅ Aඉඉඋඈඑංආൺඍඈඋඌ II 33

——–————

——–————
34 Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024

broad fields of engineering and computational mechanics.
He is the author of several homemade CAD-like engineer-
ing software platforms developed at a commercial quality
level. Dr. Velazquez has published research articles in inter-
national journals, conference proceedings, and workshops
such as IWSHM, Journal of Sound and Vibration, Journal of
Intelligent Material Systems and Structures, Journal of
Computers (IEEE), and Journal of Engineering Structures.
Dr. Velazquez may be reached at velazque-
za@savannahstate.edu

ASAD YOUSUF is the department chairman for the
Engineering Technology Department at Savannah State
University. He received his BS in Electrical Engineering
from NED University, MS in Electrical Engineering from
the University of Cincinnati with emphasis on computer
systems, and his doctorate from the University of Georgia.
He has published several papers in technical journals and
conference proceedings. He has years of experience in
managing federally funded grants, having received over
$2.5M in grant awards in the last few years. Dr. Yousuf
may be reached at yousufa@savannahstate.edu

I A :
M F R

The INTERNATIONAL JOURNAL OF MODERN
ENGINEERING is an online/print publication designed for
Engineering, Engineering Technology, and Industrial Tech-
nology professionals. All submissions to this journal, sub-
mission of manuscripts, peer-reviews of submitted docu-
ments, requested editing changes, notification of acceptance
or rejection, and final publication of accepted manuscripts
will be handled electronically. The only exception is the
submission of separate high-quality image files that are too
large to send electronically.

All manuscript submissions must be prepared in
Microsoft Word (.doc or .docx) and contain all figures, im-
ages and/or pictures embedded where you want them and
appropriately captioned. Also included here is a summary of
the formatting instructions. You should, however, review
the sample Word document on our website (http://ijme.us/
formatting_guidelines/) for details on how to correctly for-
mat your manuscript. The editorial staff reserves the right to
edit and reformat any submitted document in order to meet
publication standards of the journal.

The references included in the References section of
your manuscript must follow APA-formatting guidelines. In
order to help you, the sample Word document also includes
numerous examples of how to format a variety of scenarios.
Keep in mind that an incorrectly formatted manuscript will
be returned to you, a delay that may cause it (if accepted) to
be moved to a subsequent issue of the journal.

1. Word Document Page Setup: Two columns with ¼"

spacing between columns; top of page = ¾"; bottom of
page = 1" (from the top of the footer to bottom of
page); left margin = ¾"; right margin = ¾".

2. Paper Title: Centered at the top of the first page with a

22-point Times New Roman (Bold), small-caps font.

3. Page Breaks: Do not use page breaks.

4. Figures, Tables, and Equations: All figures, tables,

and equations must be placed immediately after the first
paragraph in which they are introduced. And, each must
be introduced. For example: “Figure 1 shows the opera-
tion of supercapacitors.” “The speed of light can be
determined using Equation 4:”

5. More on Tables and Figures: Center table captions

above each table; center figure captions below each
figure. Use 9-point Times New Roman (TNR) font.
Italicize the words for table and figure, as well as their
respective numbers; the remaining information in the
caption is not italicized and followed by a period—e.g.,
“Table 1. Number of research universities in the state.”
or “Figure 5. Cross-sectional aerial map of the forested
area.”

6. Figures with Multiple Images: If any given figure

includes multiple images, do NOT group them; they
must be placed individually and have individual minor
captions using, “(a)” “(b)” etc. Again, use 9-point TNR.

7. Equations: Each equation must be numbered, placed in

numerical order within the document, and introduced—
as noted in item #4.

8. Tables, Graphs, and Flowcharts: All tables, graphs,

and flowcharts must be created directly in Word; tables
must be enclosed on all sides. The use of color and/or
highlighting is acceptable and encouraged, if it provides
clarity for the reader.

9. Textboxes: Do not use text boxes anywhere in the doc-

ument. For example, table/figure captions must be reg-
ular text and not attached in any way to their tables or
images.

10. Body Fonts: Use 10-point TNR for body text through-

out (1/8" paragraph indention); indent all new para-
graphs as per the images shown below; do not use tabs
anywhere in the document; 9-point TNR for author
names/affiliations under the paper title; 16-point TNR
for major section titles; 14-point TNR for minor section
titles.

11. Personal
Pronouns: Do not use personal pronouns (e.g., “we”
“our” etc.).

12. Section Numbering: Do not use section numbering of

any kind.

13. Headers and Footers: Do not use either.

——
Iඇඌඍඋඎർඍංඈඇඌ ൿඈඋ Aඎඍඁඈඋඌ: Mൺඇඎඌർඋංඉඍ Sඎൻආංඌඌංඈඇ Gඎංൽൾඅංඇൾඌ ൺඇൽ Rൾඊඎංඋൾආൾඇඍඌ 35

14. References in the Abstract: Do NOT include any ref-
erences in the Abstract.

15. In-Text Referencing: For the first occurrence of a giv-

en reference, list all authors—last names only—up to
seven (7); if more than seven, use “et al.” after the sev-
enth author. For a second citation of the same refer-
ence—assuming that it has three or more authors—add
“et al.” after the third author. Again, see the sample
Word document and the formatting guide for references
for specifics.

16. More on In-Text References: If you include a refer-

ence on any table, figure, or equation that was not cre-
ated or originally published by one or more authors on
your manuscript, you may not republish it without the
expressed, written consent of the publishing author(s).
The same holds true for name-brand products.

17. End-of-Document References Section: List all refer-

ences in alphabetical order using the last name of the
first author—last name first, followed by a comma and
the author’s initials. Do not use retrieval dates for web-
sites.

18. Author Biographies: Include biographies and current

email addresses for each author at the end of the docu-
ment.

19. Page Limit: Manuscripts should not be more than 15

pages (single-spaced, 2-column format, 10-point TNR
font).

20. Page Numbering: Do not use page numbers.

21. Publication Charges: Manuscripts accepted for publi-

cation are subject to mandatory publication charges.

22. Copyright Agreement: A copyright transfer agree-

ment form must be signed by all authors on a given
manuscript and submitted by the corresponding author
before that manuscript will be published. Two versions
of the form will be sent with your manuscript’s ac-
ceptance email.

Only one form is required. Do not submit both forms!

The form named “paper” must be hand-signed by each
author. The other form, “electronic,” does not require
hand signatures and may be filled out by the corre-
sponding author, as long as he/she receives written per-
mission from all authors to have him/her sign on their
behalf.

23. Submissions: All manuscripts and required files and
forms must be submitted electronically to Dr. Philip D.
Weinsier, manuscript editor, at philipw@bgsu.edu.

24. Published Deadlines: Manuscripts may be submitted

at any time during the year, irrespective of published
deadlines, and the editor will automatically have your
manuscript reviewed for the next-available issue of the
journal. Published deadlines are intended as “target”
dates for submitting new manuscripts as well as revised
documents. Assuming that all other submission condi-
tions have been met, and that there is space available in
the associated issue, your manuscript will be published
in that issue if the submission process—including pay-
ment of publication fees—has been completed by the
posted deadline for that issue.

Missing a deadline generally only means that your
manuscript may be held for a subsequent issue of the
journal. However, conditions exist under which a given
manuscript may be rejected. Always check with the
editor to be sure. Also, if you do not complete the sub-
mission process (including all required revisions) with-
in 12 months of the original submission of your manu-
script, your manuscript may be rejected or it may have
to begin the entire review process anew.

——–————
36 Iඇඌඍඋඎർඍංඈඇඌ ൿඈඋ Aඎඍඁඈඋඌ: Mൺඇඎඌർඋංඉඍ Sඎൻආංඌඌංඈඇ Gඎංൽൾඅංඇൾඌ ൺඇൽ Rൾඊඎංඋൾආൾඇඍඌ

INTERNATIONAL JOURNAL OF
ENGINEERING RESEARCH AND INNOVATION

CUTTING EDGE JOURNAL OF RESEARCH AND INNOVATION IN ENGINEERING

 Mark Rajai, Ph.D.

Editor-in-Chief
California State University-Northridge
College of Engineering and Computer Science
Room: JD 4510
Northridge, CA 91330
Office: (818) 677-5003
Email: mrajai@csun.edu

Contact us:

www.iajc.org www.ijeri.org

www.ijme.us www.tiij.org

Print ISSN: 2152-4157
Online ISSN: 2152-4165

• Manuscripts should be sent electronically to
the manuscript editor, Dr. Philip Weinsier,
at philipw@bgsu.edu.

For submission guidelines visit
www.ijeri.org/submissions

 IJERI SUBMISSIONS:

• The International Journal of Modern Engineering (IJME)
For more information visit www.ijme.us

• The Technology Interface International Journal (TIIJ)

For more information visit www.tiij.org

 OTHER IAJC JOURNALS:

• Contact the chair of the International
Review Board, Dr. Philip Weinsier, at
philipw@bgsu.edu.

For more information visit
www.ijeri.org/editorial

a TO JOIN THE REVIEW BOARD:

• IJERI is the second official journal of the International
Association of Journals and Conferences (IAJC).

• IJERI is a high-quality, independent journal steered by
a distinguished board of directors and supported by an
international review board representing many well-
known universities, colleges, and corporations in the
U.S. and abroad.

• IJERI has an impact factor of 1.58, placing it among

an elite group of most-cited engineering journals
worldwide.

 ABOUT IJERI:

INDEXING ORGANIZATIONS:

• IJERI is currently indexed by 16 agencies.
For a complete listing, please visit us at
www.ijeri.org.

THE LEADING JOURNAL OF ENGINEERING, APPLIED

SCIENCE AND TECHNOLOGY

IJME IS THE OFFICAL AND FLAGSHIP JOURNAL OF THE

INTERNATIONAL ASSOCATION OF JOURNALS AND CONFERENCE (IAJC)
www.iajc.org

The International Journal of Modern Engineering (IJME) is a highly-selective, peer-reviewed
journal covering topics that appeal to a broad readership of various branches of engineering and related technologies.

IJME is steered by the IAJC distinguished board of directors and is supported by an international review board
consisting of prominent individuals representing many well-known universities, colleges,

and corporations in the United States and abroad.

IJME Contact Information
General questions or inquiries about sponsorship of the journal should be directed to:

Mark Rajai, Ph.D.

Editor-in-Chief

Office: (818) 677-5003

Email: editor@ijme.us

Department of Manufacturing Systems Engineering & Management

California State University-Northridge

18111 Nordhoff St.

Northridge, CA 91330

The latest impact factor (IF) calculation (Google Scholar method) for IJME of 3.0 moves

it even higher in its march towards the top 10 engineering journals.

