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 The SS Andrea Doria and MS 
Stockholm collision (1956)  

 The RMS Titanic allision (1912)  
 The SS Edmund Fitzgerald—sunk either 

by a storm or a collision with the SS  
Arthur M. Anderson (1958) 

 The Exxon Valdez oil spill allision (1989) 
 The Costa Concordia allision (2012) 
 

Remember any of these maritime disasters? 
Every year, many people are injured or killed 
when maritime vessels collide (both vessels 
are in motion) or are involved in an allision (a 
moving vessel impacts a stationary vessel or 
a fixed object). According to the Insurance  
Information Institute (www.iii.org), shipping 
losses around the world over the last decade 
included over 700 vessels—the bulk of these 
by S. China, Indochina, Indonesia, and the 
Philippines. But shipping losses as a category doesn’t give 
us the “big picture.” Marine vessel incidents between 2014 
and 2021 included 11,000+ cargo ships, 5000+ passenger 
ships, 4000+ fishing vessels, 2200+ service ships, and 660+ 
“others” (www.SAFETY4SEA.com). According to the 
United States Coast Guard, the top contributing factors to 
these collisions are operator inattention and/or inexperience 
and an improper lookout. 
 

At the risk of stating the obvious, anything that can     
reduce the number of incidents and losses should be evalu-
ated and considered. Case in point: ARPA (Automatic   
RADAR Plotting Aid systems), required by the larger    
commercial vessels to automatically detect potential colli-
sions and provide audio/visual alerts. The problem, though, 
is cost; owners of smaller vessels—such as those used by 
average recreational boaters—simply are not able to afford 
such systems. It is possible, however, to implement a low-
cost ARPA-like system using open source software in con-

junction with con-
sumer-grade, com-
mercially available 
RADAR systems. 
 
In the 20th century, 
the Decca Naviga-
tor System launched 
its first hyperbol-
ic radio naviga-
tion system that 
allowed ships and 
aircraft to determine 

their position by using radio signals from a 
dedicated system of static radio transmit-
ters. LORAN (LOng RAnge Naviga-
tion) was  another hyperbolic radio naviga-
tion system developed in the United 
States during World War II and offered an 
improved range, up to 1500 miles. More 
modern methods of ship collision avoidance 
include the following. 
 
 ECDIS (Electronic Chart Display and 

Information  System) 
A GPS-based system used for route 
planning and automat-
ic ETA computations as well as     
pinpointing tricky or congested routes. 

 AIS (Automatic Identification System) 
Transmits real-time ship data in order 
to detect vessels in poor weather.  

 
 RADAR (RAdio Detection And Ranging) 

Detects obstacles and vessels in low visibility, such as 
nighttime navigation in crowded harbors. 

 COLREGS (International Regulations for Preventing 
Collisions at Sea) 
COLREGS-mandated lights are specific configurations 
of navigation and signaling lights for indicating a    
vessel’s position, status, and intent to nearby ships. 

 
In our featured article (p.5), the authors evaluate aspects 

associated with such an implementation and discuss the use 
of the OpenCV computer vision library to automatically 
extract target information from a standard commercial   
RADAR system and render it on a navigational display for 
visualization. In addition, the authors present the implemen-
tation of target tracking using the multiple hypothesis track-
ing (MHT) algorithm in conjunction with a Kalman filtering 
algorithm to predict the position of a detected target via a 
simulated example. 
 
The goal of their paper is 
to present a framework 
that facilitates the imple-
mentation of ARPA capa-
bilities in small vessels 
using consumer-grade 
sensors and RADAR   
systems by integrating 
open source software for 
target detection and     
rendering with target-
tracking algorithms. 

I  T  I  ( .5) 
M  V  N  S  

Philip Weinsier, IJME Manuscript Editor 
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A typical shipboard ARPA/radar system.  DECCA navigation system.  
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Abstract  
 

Every year, many people are injured or even lose their 
lives, when small maritime vessels collide with other     
vessels or fixed objects. According to the United States 
Coast Guard, the top contributing factors to these collisions 
are operator inattention and/or inexperience and an improp-
er lookout that could be prevented by using Automatic   
RADAR Plotting Aid (ARPA) systems. It is worth noting 
that, while larger commercial vessels are required to have 
RADAR systems with ARPA capabilities to automatically 
detect collisions and alert the vessel operator to alter 
course, the cost of such systems can be prohibitive for small 
vessels used by average recreational boaters. Nevertheless, 
it is possible to implement a low-cost ARPA- like   
system by using open source software in conjunction with 
consumer-grade RADAR systems that are commercially 
available for use on small vessels. In this study, the      
authors evaluated aspects associated with such an imple-
mentation and, in this paper, discuss the use of the OpenCV 
computer vision library to automatically extract target infor-
mation from a standard commercial RADAR system and 
render it on a navigational display for visualization. In addi-
tion, the authors present the implementation of target track-
ing using the multiple hypothesis tracking (MHT) algorithm 
in conjunction with a Kalman filtering algorithm to predict 
the position of a detected target via a simulated example. 
 

Introduction 
 

Operating small vessels in open waters can be challeng-
ing, especially when poor situational awareness hinders 
their maneuvering around other vessels or fixed obstacles. 
According to the latest recreational boating statistics    
released by the United States Coast Guard (USCG, 2022) 
there were 1085 collisions involving small recreational  
vessels leading to 39 deaths and 512 injuries. According to 
the USCG (2022), the top three known primary contributing 
factors for accidents were operator inattention and/or 
inexperience and an improper lookout, causing 1453       
accidents that resulted in 136 deaths and 791 injuries. 
While no solution is perfect in reducing accidents on the 
open seas, technology can be used to augment the skills and 
capabilities of boat operators. A marine RADAR system is a 
very important tool for small vessels, when it comes to safe-
ty, as it can assist navigators when poor visibility conditions 
exist, when navigation by sight is not possible. In such 
scenarios, a RADAR system with ARPA capability can 
automatically detect nearby obstacles, plot their course, and 

warn operators of imminent collisions (Bole, Wall, Norris & 
Dineley, 2005). However, while commercial vessels are 
required to be equipped with RADAR systems that have 
ARPA capabilities to provide warnings against potential 
collisions, most recreational boats and small vessels lack 
such capabilities. This is due to various factors, such as the 
cost of the system, the additional weight, and the power 
requirements if installed systems. It is theorized that, if this 
technology were more available and affordable, more vessels 
would be equipped with it and the number of accidents on 
the water would be reduced. 
 

One of the main challenges in implementing ARPA capa-
bilities on marine RADAR systems for small vessels is  
being able to provide an accurate platform heading to the 
ARPA tracking algorithm. This is because the dynamic  
nature of a vessel operating on water leads to uncertainties 
regarding the vessel’s orientation with respect to the yaw 
axis; Figure 1 illustrates how this is commonly represented 
as noise and is combined with the uncertainties due to the 
RADAR sensor. These uncertainties are much more prob-
lematic on smaller vessels, which are not fitted with preci-
sion instruments to take vessel bearing measurements, but 
generally rely on inexpensive consumer-grade sensors to 
determine their heading. Nevertheless, being able to use the 
rough information provided by these sensors in conjunction 
with affordable small marine RADAR systems would allow 
the implementation of collision detection capability on more 
vessels, resulting in a safer navigation environment both on 
shore and on the open seas. 

Figure 1. Yaw uncertainty due to the vessels’ heading (yellow) 
adds to the uncertainty of the RADAR sensor (green) to increase 
the range of variation in the position of a detected vessel. 
 

The goal of this paper is to be a platform for the authors 
to present a framework that facilitates the implementation of 
ARPA capabilities in small vessels using consumer-grade 
sensors and RADAR systems by integrating open source 
software for target detection and rendering with target-
tracking algorithms. The authors were not able to find such 
a framework in the open literature; thus, providing one will 

F   I  A  
R  P -A  C   

S  M  V  
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enable the expansion and improvement of the safety       
features of small vessels.  In this paper, the authors begin 
with a brief overview of sensors that are available on the 
consumer market and may be used to provide heading 
information, augmenting the basic information obtained 
from simple RADAR systems commonly available on small 
vessels. This is followed by a discussion outlining how the 
RADAR system obtains information about targets that are 
present in the environment and how this information is  
rendered for target detection and visualization using the 
OpenCV library. Finally, the authors present a discussion on 
target tracking, illustrated through simulations. 
 

Heading Sensors for Small Vessels 
 

Small maritime vessels, as defined in this paper, do not 
exceed 60 feet in length, and include personal watercraft  
generally owned by individuals for recreational purposes. 
Such vessels may be easily transported on land, using trail-
ers and commercial off-the-shelf RADAR systems available 
for these types of comparatively small watercraft, which are 
relatively inexpensive, costing only a few thousand dollars 
in the United States. Due to their low cost and size, these 
RADAR systems usually have no ARPA functionalities for 
automatically detecting targets and warning operators of 
potential collisions. However, many modern systems     
designed for small vessels may include some collision-
avoidance functions referred to as Mini ARPA (or 
MARPA), which are essentially simplified versions of the 
ARPA used on larger vessels (SIMRAD, 2024). These are 
available as advanced features usually not included in the 
price of the RADAR system, and they use information from 
additional onboard sensors such as a compass or global  
positioning system (GPS) and require displays with control 
units (McMillan, 2024).  
 

Nevertheless, implementing ARPA capabilities on       
commercial off-the-shelf RADAR systems used in small 
vessels can be accomplished using information that can be 
obtained from affordable consumer-grade micro-electro-
mechanical systems (MEMS) that are already incorporated 
into most smartphones and can be interfaced with Arduino 
microcontrollers or Raspberry Pi single-board computers at 
a fraction of the cost (Abankwa, Johnston, Scott & Cox, 
2015). MEMS technology became popular during the 
1990s, when it started to be used on a large scale in the auto-
motive industry (Yazdi, Ayazi & Najafi, 1998). Currently, 
MEMS are considered to be low-cost devices and various 
types of MEMS sensors are constructed using different 

techniques (Lin, Xiong, Dai & Xia, 2017), as shown in  
Figure 2. 
 

Accelerometers are used to measure acceleration and are 
constructed by using a mass suspended between two small 
springs. The mass acts as a capacitive plate and, as its rela-
tionship changes with respect to a fixed plate, the change in 
capacitance can be converted to an acceleration value (Rao, 
Wei, Zhang, Zhang, Hu, Liu & Tu, 2019). Gyroscopes are 
constructed by combining two accelerometers, such that the 
accelerometer that is furthest away from the center of rota-
tion will register a larger acceleration, thereby allowing for 
the measurement of orientation or angular velocity. Torsion-
al magnetometers are formed by building a plate with a coil 
suspended by a torsion bar, such that when a current is 
passed through the coil of wire, the Lorentz force will apply 
a torsion to the plate altering the capacitance with respect to 
two fixed capacitive plates underneath (Wu, Tian, Ren & 
You, 2018). 

Figure 2. Diagrams of MEMS accelerometers, gyroscopes, and 
torsional magnetometers. 
 

In recent years, low-cost inertial measurement units 
(IMUs) that combine accelerometers, gyroscopes, and    
magnetometers, have been used to determine the orientation 
of an object (such as a vessel or a gaming controller) with 
relatively good performance (Patonis, Patias, Tziavos,   
Rossikopoulos & Margaritis, 2018). It is worth noting that the 
individual components in an IMU are able to complement 
each other for accurate determination of the orientation in 
the three-dimensional space of the object: the accelerom-
eter provides information that can be used to determine the 
direction in which the sensor platform moves; the magne-
tometer is able to determine a true measurement with 
respect to magnetic North; and the gyroscope detects small 
changes in the orientation of the sensor platform. Table 1 
shows update rates and resolutions corresponding to      
commonly used low-cost IMUs, which are at a         
sub-second scale (tens or hundreds of Hz update rates with 
a few thousands of a degree of angular resolution). 

  
Device 

Magnetometer Gyroscope 

Update rate [Hz] Resolution [mT] Update rate [Hz] Resolution [°/s] 

MPU-9250 100 0.59 8000 0.076 

ICM-20948 100 0.15 9000 0.076 

BNO 055 30 0.3 400 0.038 

Table 1. Magnetometer and gyroscope specifications for popular consumer-grade IMUs. 



——————————————————————————————————————————————–———— 

And, while the corresponding data can be used for     
compensating yaw variations (Yi, Wu, Yue, Zhang, Chen & 
Wan, 2020), it will have to be down sampled for use in  
determining the heading of a small vessel, as the vessel’s 
heading changes at sub-second scales, which is considered 
irrelevant for the sea-keeping ability of the vessel. Sensor 
fusion algorithms are able to combine accelerometer,    
magnetometer, and gyroscope data to achieve an absolute 
heading resolution of approximately one degree RMS 
(Tomasch & Winer, 2019), with a limiting factor for getting 
accurate heading data implied by calibration of the sensors. 
In this direction, the gradient-descent algorithm presented 
by Madgwick, Harrison, and Vaidyanathan (2011) is an 
excellent choice for sensor fusion, as it performs on par 
with alternative proprietary algorithms (Tomasch & Winer, 
2019). 
 

Target Detection and Rendering for ARPA 
Visualization 
 

RADAR systems used on small vessels are monostatic, 
with the RADAR transmitter and receiver collocated on the 
vessel, and which usually employ frequency modulated 
continuous wave (FMCW) sensing to probe the environ-
ment for target presence. These RADAR systems are only 
capable of scanning the environment in the azimuth direc-
tion at a constant rate (usually around 48 revolutions/
minute) and do not have the ability to focus on specific  
targets. In FMCW radar systems, the transmitter sends a 
chirp signal, which is a pulse of duration T whose frequency 
varies linearly over its duration between frequencies F1    
and F2. The chirp reflection off the target is delayed by a 
certain amount of time td that depends on the distance to the 
target that is present in the environment and is given by 
Equation 1: 
 

(1) 
 
 
where, d is the distance to the target and c is the speed of 
light.  
 

At any given instant in time, the offset frequency between 
the transmitted and reflected chirp signals is given by  
Equation 2: 
 

(2) 
 
 
 
 
 
 

corresponds to the smallest frequency 
offset between the transmitted and reflected chirp signals 
and defines the resolution bandwidth (RBW) of the        
RADAR system. This depends on the sampling rate and the 

size of the fast Fourier transform (FFT) used by the RA-
DAR receiver and determines also its range resolution, 
which corresponds to the smallest distance between two 
targets for which they can The power Pr of 
the chirp signal reflected by a target that is present in the 
environment at distance d from the RADAR transmitter is 
given by the radar equation (Skolnik, 1981) of Equation 3: 
 
 

(3) 
 
 
where, Pt is the power of the transmitted chirp, Gt and 
Gr are the transmit and receive antenna gains, respective-
ly, Ae is the effective area of the receive antenna, and σ 
is the radar cross-section (RCS) of the target.  
 

The RCS is also referred to as the radar signature and is a 
measure of how detectable an object is by radar, and direct-
ly affects the power of the reflected chirp signal at the radar 
receiver, with larger RCS values implying larger reflected 
powers, indicating that the corresponding objects are more 
easily detected. The RCS depends on the frequency range of 
the chirp signal and is determined by measurement for prac-
tical targets. For small vessels, the RCS measured at micro-
wave frequencies is on the order of 0.02m2 for small open 
boats and 2m2 for recreational boats and cabin cruisers 
(Skolnik, 1981), which indicates that, for the latter type of 
small vessels, the power of the reflected signal at the radar 
receiver is two times larger than for the former. The range 
of the RADAR system is implied by Equation 3 and is   
given by Equation 4, such that, in practical scenarios, it is 
guaranteed that the radio frequency (RF) power of the 
chirp reflection Pr is above the sensitivity of the     
RADAR receiver Pmin from a target located at distance   
d dmax, given that the RF power at the RADAR transmitter 
is at least at the Pt level. Note that the RADAR system can 
detect both moving and fixed targets (such as anchored 
ships), and that the RADAR range corresponds to the rela-
tive distance between the vessel and the detected target. 
 
 

(4) 
 
 

Visualizing RADAR Information 
 

To sense the environment for the presence of a target, the 
RADAR system performs scans at given azimuth angles 
relative to the vessel’s direction and returns information in 
the form of spoke data, which consists of a vector at the 
given azimuth whose elements represent the power strength 
of the reflected chirp signal at specific distances away from 
the vessel. Figure 3 illustrates how spoke data corresponds 
to quantized values of the RF power of the signal reflected 
by the target and is rendered for visualization in the form 
of a heat map image, with warm colors indicating bins   
corresponding to larger reflected power values and cooler 
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colors indicating bins in which the reflected power is lower. 
Specifically, a spoke corresponds to a fraction of a degree 
in azimuth, and range bins are used to specify distance. 
The value of the cell is indicated by its color and corre-
sponds to the returned signal strength for that cell, with red 
denoting the largest power value and blue the lowest power 
equal to the receiver sensitivity. Occasionally, the received 
RF power may be split among multiple cells, thereby reduc-
ing the overall signal-to-noise (SNR) ratio of the target 
(Richards, 2005; Oppenheim & Schafer, 1975) and provid-
ing only an approximate location of the target in terms of its 
azimuth angle θ and range d. Modern small RADAR       
systems are capable of returning several thousand spokes 
per revolution, resulting in an angular resolution that can be 
on the order of a fraction of a degree. 

Figure 3. Illustration of RADAR spoke data. 
 

Figure 4 shows that, given the inherent uncertainties of 
small-vessel RADAR systems mentioned earlier, the spoke 
number and range bin do not reflect the actual position of 
the target, but rather place it anywhere inside an ellipse, 
where the minor axis a implies the uncertainty of the range 
bins occupied by the target and is determined by the RBW 
of the RADAR system plus noise, and the major axis of the 
ellipse b depends on the RADAR beam and is determined 
by the RBW of the RADAR system plus noise. The major 
axis of ellipse b depends on the RADAR beam width at the 
specified range plus the associated noise. 
 

Target Detection Using OpenCV 
 

For target detection, a RADAR scan that consists of 
360° of spoke data is used, and its analysis to deter-
mine targets is performed by employing standard digital 
image processing techniques such as blob detection. This 
can be accomplished using an open source toolkit such as 
the Open Computer Vision (OpenCV) library, which     
supports a class called “SimpleBlobDetector” for extracting 
blobs from an image. The SimpleBlobDetector class uses 
the “findContours” function, which is an implementation of 
the algorithm for border detection (Suzuki & Abe, 1985). 
Once a blob is detected, OpenCV can filter the results to 
only return blobs that meet area, threshold, circularity, 
inertia, or convexity requirements. To implement an auto-
matic target extraction method, filtering based on threshold 
would allow OpenCV to only return blobs with a certain 

signal strength. It should be noted that the findContours 
function works only with greyscale images, and the first step 
in detecting a target is to convert the color RADAR scan 
image into a greyscale image, followed by inverting the 
image colors using the OpenCV “bitwise_not” function, 
since the SimpleBlobDetector function attempts to find 
blobs that are darker. 

Figure 4. Illustrating uncertainty in target position for two distinct 
targets located at azimuth θ1 = θ2 = 45°, one with range d1 = 1 
nautical mile (NM) and the other with range d2 = 3.5 NM. 
 

The final step is to call the SimpleBlobDetector function, 
which detects the blobs followed by the “drawKeypoints” 
function, which allows for an easy rendering of the detected 
blobs. Figures 5 and 6 illustrate this process on a simulated 
RADAR scan that includes a singular RADAR return corre-
sponding to a single target with a reflected power of approx-
imately 20 dB above the noise floor. It is important to note 
that one of the limiting factors of the SimpleBlobDetector 
function in the OpenCV library is that the greyscale input 
that it expects is limited to 8 bits. This means that the 
dynamic range of the function may be considerably more 
limited than the raw amplitude data returned by the       
RADAR system, and, as a consequence, targets that are 
very small or are very far away from the RADAR system 
may be quantized to an image that is close to the noise level 
of the system after the conversion to greyscale, resulting in 
a potential missed detection by the SimpleBlobDetector 
function.  
 

The OpenCV SimpleBlobDetector function uses two 
thresholds for detecting blobs, starting at the low threshold 
value and stepping its way up to the high threshold value, 
resulting in a series of detected blobs that are then 
pruned to identify those blobs that are inside of other blobs 
that correspond to higher detection thresholds. This process 
is similar to a gradient descent algorithm. For the simula-
tions shown in Figures 5 and 6, the minimum threshold  
value was set to zero, and the maximum threshold value 
was set to two standard deviations below the mean of the 
cell values in the RADAR return. 



——————————————————————————————————————————————–———— 

a) Simulated RADAR display with 64 range bins 
and a resolution of showing a single target. 

b) Corresponding greyscale OpenCV image. 
 
Figure 5. Simulated RADAR display. 
 

It should be noted that, in the case of large threshold   
values, the targets that have low reflected powers at the  
RADAR receiver will be missed, resulting in an increased 
probability of missed detection, while, for low threshold 
values, false targets may be detected, resulting in an       
increased probability of false alarms. In practical settings, 
the threshold values may be adjusted automatically to    
ensure a constant false alarm rate (CFAR) (Skolnik, 1981). 
This uses a cell averaging technique in which the value of 
the returned power for each cell in the RADAR display is 
compared against that of the surrounding cells that are 
situated at a distance of at least two cells to accommodate 
situations such as those illustrated in Figure 3, where the 
return power from a target is split across multiple cells. 

Skolnik (1981) noted that a 1 dB change in the value of the 
detection threshold can result in a change of three orders of 
magnitude in the probability of false alarm and, therefore, 
automatic target detection systems can typically handle less 
than a 1 dB increase in the noise level (Skolnik, 1981). To 
determine how effective this technique is for automatic  
target extraction from RADAR data, a divide-and-conquer 
algorithm was implemented to simulate RADAR data for a 
single target with decreasing SNR, and it was determined 
that this target technique works effectively when the target 
signal has a SNR of approximately 12 dB or more, support-
ing ship detection within a range of two nautical miles with 
an accuracy that approaches 97% (Yulian, Hidayat, 
Nugroho, Lestari & Prasaja, 2017). 

a) Simulated RADAR image of a single target 
showing OpenCV target detection as a dark blob. 

b) Annotation of Figure 6(a) using the “drawKeypoints” function. 
 
Figure 6. Further processing of the simulated RADAR display. 
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Target Tracking 
 

A RADAR tracking algorithm is an essential component 
of an ARPA system that takes the coordinates correspond-
ing to multiple observations of detected targets to form a 
visual track of the target positions in the environment. In 
this direction, the multiple hypotheses tracking (MHT) 
algorithm (Reid, 1979; Kim, Li, Ciptadi & Rehg, 2015) has 
been widely used in radar tracking systems (Blackman & 
Popoli, 1999). Compared to alternative approaches for   
target tracking, such as those using nearest neighbors and 
probabilistic data association (Blackman & Popoli, 1999), 
the MHT algorithm uses a successive iteration approach that 
works well in a multitude of scenarios, including track initi-
ation, data clustering with multiple targets, missing meas-
urements and/or false alarms. Blackman and Popoli (1999) 
found that the MHT algorithm performs significantly better 
when dealing with dense target environments, which makes 
it ideal for use in marine applications, since it will work in 
the dense cluttered target environments of a harbor as well 
as on the open seas. Figure 7 shows a block diagram of a 
tracking system based on the MHT algorithm, which details 
the main steps of the algorithm (Werthmann, 1992). 
 

 
 
 

Figure 7.  Block Diagram of the tracking algorithm. 
 

The algorithm takes input observations of detected tar-
get locations provided by the RADAR system in terms of 
the target azimuth and range, which are converted to a Car-
tesian coordinate system for visualization (as discussed ear-
lier). To predict how the location of a detected target is    
expected to change, the algorithm models the target dynam-
ic using a state-space model that includes the target coordi-
nates x and y along with the corresponding speeds sx and sy 
on the coordinate axes, and uses a Kalman filter for state 
estimation (also discussed earlier). The observations and the 
track’s predicted locations are processed as part of the    
gating step, which determines the distance between them 
and compares it to the gating threshold. The next step     
consists of track initiation/association in which observations 
whose distances to the predicted location fall below the 
threshold, are assigned to existing tracks, while observa-
tions whose distances to the predicted location are above the 
threshold are recorded as possible new tracks. 
 

Following the track initiation/association step, the track 
maintenance step calculates track scores, eliminating      
unlikely tracks and confirming surviving ones for track  
prediction and visual output. Note that in the case of 
multiple targets that are located close to each other, the 
SimpleBlobDetector function may end up combining them 

into a single target, which would result in one or more of 
the tracks being dropped. However, as the target vessels 
would maneuver to get away from each other, the Simple-
BlobDetector function would eventually be able to distin-
guish them as separate targets, creating new observations 
that are not associated with existing tracks. These new     
observations would prompt the creation of new possible 
tracks and, over time, the algorithm would build its confi-
dence in the quality of these new tracks, ultimately confirm-
ing or disproving them as valid tracks. In order for the    
RADAR tracking system to work properly it needs to have 
an accurate location of the target that it is tracking. The 
signal processing system in the RADAR receiver provides 
information about the target location in terms of the target 
azimuth angle and range, which include uncertainties in the 
tracking platform orientation for range and azimuth, dnoise 
and θnoise, respectively, such that the observations provided 
to the tracking system are given by Equation 5: 
 

(5) 
 
where, d and θ denote the actual values of the target range 
and azimuth, respectively.  
 

It is assumed that the uncertainties in the tracking plat-
form orientation for range and azimuth are uncorrelated, 
that is E[dnoise · θnoise] = 0, and that they have zero mean and 
variances equal to σ2 and σ2, respectively. For target location 
and visualization on a two-dimensional display, the        
observed range and azimuth values are converted to a posi-
tion vector   containing the Cartesian coordinates of the 
target, as shown in Equation 6: 
 
 

(6) 
 
 

Vector p, shown in Equation 7, represents the actual posi-
tion of the target and includes the Cartesian coordinates of 
the target: 
 
 

(7) 
 
 

Vector v, shown in Equation 8, is the vector containing 
the uncertainties in the target’s coordinates, with covariance 
matrix R shown in Equation 9: 
 
 

(8) 
 
 
 
 

(9) 
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The elements of matrix R are given in Equations 10-12, 
(Longbin, Xiaoquan, Yiyu, Kang & Bar-Shalom, 1998; 
Duan, Han & Li, 2004): 
 

 
(10) 

 
 
 
 

  (11) 
 
 
 
 

(12) 
 
 
 

To predict how the location of a detected target is       
expected to change and to estimate where the observation 
for a given track is expected, the target dynamic was     
modeled using a state-space model, and a state estimation 
algorithm was used to predict the target position r, as shown 
in Equation 13: 
 
 
 

(13) 
 
 
 
 

The state-space model included the actual coordinates of 
the target x and y along with the target speed values sx and 
sy on the coordinate axes, which were combined in the   
target state vector such that the evolution of the target state 
is given by Equation 14: 
 

(14) 
 

The state transition matrix F is given in Equation 15: 
 
 
 

(15) 
 
 
 
where, ∆t is the time interval between state updates.  
 

The initial state vector is shown in Equation 16: 
 
 
 

(16) 
 
 

where, the initial coordinates of the detected target are  
given by x(0) and y(0) along with zero values for the 
speeds on the coordinate axes. 
 

The vector containing the target coordinates at time k is 
given by Equation 17: 
 

(17) 
 
where, H is the observation matrix given in Equation 18: 
 

(18) 
 
 
and where, v is the observation noise in Equation 8 that  
includes the uncertainties in the target coordinates. 
 

The state estimate for the linear system, described by 
Equations 14 and 17, is obtained using a Kalman filter and 
is given by Equations 19-23, (Grewal & Andrews, 2001): 
 

(19) 
 
 

(20) 
 
 

(21) 
 
 

(22) 
 
 

(23) 
 
where, the “minus” subscript indicates the a priori values of 
the variables (before the current observations at time  
instant k are used) and the “plus” subscript indicates the a 
posteriori values of the variables (after the current observa-
tions at time instant k are used). 
 

Simulations and Discussion 
 

To illustrate target tracking using the approach outlined in 
the previous section, Figure 8 shows a simulation scenario 
that was set up with three moving vessels and one vessel 
serving as the observation vessel, where RADAR infor-
mation was used to track the other two vessels that repre-
sented the moving targets. The trajectories of the three   
vessels, indicated with lines of different colors in Figure 8, 
are as follows: 

• The red-colored trajectory corresponds to the       
Observer vessel, which moves along a straight line 
from South to North at 20 knots. 

• The blue-colored trajectory corresponds to target   
Vessel 1, which moves from West to East, also at 20 
knots. 
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• The yellow-colored trajectory corresponds to target 
Vessel 2, which moves along a straight line from 
North to South at 20 knots. It should be noted that the 
trajectories of the two target vessels were chosen to 
illustrate two different tracking scenarios. 

• Target Vessel 1 is shown on a course that intersects 
with the Observer vessel, and the bearing from the 
Observer vessel to Vessel 1 remains the same until 
they intersect, when it changes as they then move 
away from each other. 

• Target Vessel 2 is shown on a course that passes the 
Observer vessel on the starboard side, and the bear-
ing from the Observer vessel to Vessel 2 is constantly 
changing as they approach and then pass each other. 

Figure 8. Simulated tracking scenario with one Observer vessel 
and two target vessels. 
 

For the RADAR system located on the Observer vessel, 
the bandwidth was set to = 10 MHz, which implies a 
range bin resolution of approximately 15m, an antenna 
beam width chosen to be °, a transmit antenna array scan-
ning the environment at 48 RPM, and a total simulation 
time of 7.5 minutes, which resulted in 563 observations of 
the two targets.  For tracking, the implementation was 
based on the MHT algorithm that used Kalman filtering 
for track prediction, as discussed in the section on Kalman 
filtering for track prediction. The gating threshold for the 
MHT algorithm was set to 30m, and the yaw variances 
corresponding to the uncertainties in the vessels’ head-
ings were chosen to be 0.062° for Vessel 1 and 0.016° for 
Vessel 2. These values were found using a trial-and-error 
approach in which the MHT algorithm was simulated  
multiple times with different values for the yaw variance 
to determine if it was able to maintain a successful track 
in 50% of the cases (Harris, 2023). 

For comparison, a particle filtering approach for track 
prediction was also implemented as an alternative to      
Kalman filtering (Harris, 2023; Ristic, Arulampalam & 
Gordon, 2004; Elfring, Torta & Van De Molengraft, 2021). 
Figure 9 shows the simulation results from which it was 
noted that it took several observations for both the Kalman 
filter and the particle filter to produce accurate estimates for 
the positions of the two vessels, with the Kalman filter    
converging faster than the particle filter to accurate esti-
mates. Moreover, once the Kalman filter converged, the 
accuracy of the position estimates did not vary significantly, 
as the position of the Observer vessel changed relative to 
the two vessels. By contrast, the accuracy of the position 
estimates produced by the particle filter changed signifi-
cantly, as the position of the Observer vessel changed    
relative to the two vessels.  

a) Estimated positions for Vessel 1. 

b) Estimated positions for Vessel 2. 
 
Figure 9. Estimated positions for Vessels 1 and 2. 
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It should also be noted from Figure 9 that it was easier for 
the Observer vessel to acquire a good track for Vessel 1 
than for Vessel 2. This was due to the relative position 
of the Observer vessel as it got closer to the tracked     
vessel: the bearing from the Observer vessel to Vessel 1 
remained the same as the two vessels got closer to each 
other, whereas the bearing from the Observer vessel to 
Vessel 2 was changing as the two vessels got closer. Thus, 
in order to obtain a good track, knowing the orientation 
of the tracked vessel at all times improves tracking perfor-
mance. Obtaining this information requires the use of gyro-
scopes that are capable of producing rapid updates, such as 
those mentioned in Table 1, that would supplement the  
position updates observed at slower time scales using     
consumer-grade GPS. 
 

Conclusions 
 

In this paper, the authors presented a framework for    
implementing ARPA capabilities on small vessels—for 
which sophisticated RADAR systems, such as those       
required for use on large commercial vessels, might prove 
to be cost prohibitive. Such small-scale, ARPA-capable 
systems can automatically detect vessels on a collision 
course and alert the operators to alter their heading. ARPA 
requires capabilities for target detection and visualization, 
along with target tracking, to display target positions and 
predict their paths, which can also be implemented on small 
vessels using existing affordable technologies. While similar 
features may be available for small vessels as MARPA to 
augment the capabilities of their RADAR systems, MARPA 
is only a basic form of ARPA that requires manual selection 
of targets before they can be tracked for collision avoidance. 
Furthermore, MARPA features rely on information from 
additional onboard sensors and use proprietary algorithms 
to obtain the vessel heading, and they are usually not      
included in the base price of the RADAR system, but rather 
are provided at an additional cost. By contrast, the ARPA 
implementation presented in the paper can be realized at a 
fraction of the cost by using consumer-grade MEMS      
sensors and open source software running on affordable 
platforms powered by microcontrollers or single-board 
computers. 
 

Also presented here was how information about targets 
present in the environment is obtained by using consume- 
grade RADAR systems, such as the FMCW radars        
commonly used in small vessels, low-cost MEMS sensors 
for vessel attitude determination, and the open source 
computer vision library OpenCV. Specifically, the RF  
power of the signal reflected by a target is quantized in 
terms of range and azimuth, and then is rendered for  
visualization in the form of a heat map image on which 
the presence of targets can be detected using functions in 
the OpenCV library. Also discussed was how the coordi-
nates of detected targets are located in a two-dimensional 
coordinate system for tracking, and how the MHT algorithm 
with Kalman filtering can be implemented to provide a track 

of detected targets. The proposed tracking approach was 
illustrated with a simulation that involved three moving 
vessels, including one Observer vessel and two detected 
target vessels, one that was upcoming and another that was 
crossing from the side. Additional scenarios, such as one in 
which a vessel is slowly coming up from an angle behind 
the Observer vessel, will be the object of future work. 
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Abstract 
 

Suspensions are a critical part of vehicle design, as they 
greatly influence the experience that drivers and passengers 
have when they are riding in a vehicle. One of the major 
components of these suspensions is the suspension spring. 
The springs used in suspensions can take many different 
forms, including leaf springs, helical springs, and other 
types. In this current study, the authors used a helical spring, 
which is the case for many current suspension designs. The 
focus of the study was on improving the spring, given    
performance characteristics that were required and subject 
to a set of constraints to ensure that the spring would not fail 
in regular operation. FEA analyses were performed on 36 
spring designs. At the conclusion of the analyses, the     
authors found that the suspension could be improved 
through variations in the spring, in particular by changing 
the cross section from circular to oval. 
 

Introduction 
 

Suspension systems have a strong impact on both road 
handling and ride quality of vehicles. Part of their purpose is 
to ensure that the wheels remain in contact with the road 
during a vehicle’s motion, even when the road is not smooth 
and has irregularities. Another part of their purpose is to 
isolate the passengers and cargo from the irregularities in 
the road, preventing damage to the vehicle and cargo and 
providing a good experience to the passengers. The type of 
suspension system used depends in part on the type            
of vehicle, and the multiple purposes that the                  
suspension serves may result in conflicting constraints. 
These systems vary both in their mechanical design and in 
whether they are purely passive or have some active      
components, which would involve a controller (Peters,   
Papalambros & Ulsoy, 2013; Tseng & Hrovat, 2015;      
Riduan, Tamaldin, Sudrajat & Ahmad, 2018). Again, in this 
current study, the authors  considered a purely passive    
suspension. 
 

In passive suspensions, the performance depends on the 
type and parameters of the springs and dampers used. In 
existing suspension designs, three basic types of springs are 
used: leaf springs (Baviskar, Bhamre & Sarode, 2013;    
Mahanthi & Murali, 2017), torsion bars (Tavares, Molina, 
Al Sakka, Dhaens & Ruderman, 2019; Karuppiah, Ganesan, 
Kasavan & Sambasivam, 2023), and coil springs (Bartolozzi 
& Frendo, 2011; Lavanya, Rao & Reddy, 2014). At times, 
air springs, rubber springs, or hydropneumatic springs are 
also used. (De Melo, Pereira & Morais, 2018; Lijun, Zengli-
ang & Zhuoping, 2010; Joo, 1991). 

Suspension designs can be categorized based on their 
overall goals and principles. One such type of suspension is 
the set of anti-dive/anti-squat designs. These suspensions 
typically have differences between the front and rear      
suspensions, and are designed to counteract the tendency of 
the vehicle for the front to dive under braking and the rear 
to squat during acceleration (Campbell, 1981; Sondkar & 
Jammulamadaka, 2021). Another type is the load-leveling 
suspension, which counteracts the tendency of the vehicle to 
be non-level, due to heavy cargo in specific locations 
(Elmadany, 1990). Yet another is designed to provide isola-
tion from high-frequency shock (Islam & Ahmed, 2006). 
Other design considerations include the space occupied, 
with MacPherson struts being a typical compact arrange-
ment (Hales, 1964; Kodati, Reddy & Bandyopadhyay, 
2015; Reddy, Kodati, Chatra & Bandyopadhyay, 2016), the 
force distribution, air resistance—due to the airflow around 
any exposed suspension components—and of course the 
cost. 
 

One advantage of the leaf spring is its ability to be      
attached directly to the chassis. This may contribute to its 
status as one of the oldest and most widely used springs in 
suspension systems. The leaf spring’s characteristics can be 
changed to match the requirements of the design by chang-
ing the width, thickness, and length of the leaves of the 
springs. In addition, the lead spring provides a damping 
effect, due to friction in the mechanism. The torsion bar 
design, in which the spring is simply a round bar designed 
to twist as a force is applied to the suspension, is used in 
some vehicles, depending on the space constraints available. 
Typically, the torsion bars are approximately four feet long, 
with the tension in the bar controlled by a threaded screw 
adjustment. Coil springs occupy a relatively small space 
and, therefore, can be used in a variety of suspension      
designs, including the MacPherson strut, a solid axle with a 
trailing arm, independently sprung rear axle, or any short-
long-arm (SLA) suspension system using a spring or coil-
over shock absorber configuration. The coil spring’s charac-
teristics are determined by the wire gauge, spring length, 
overall diameter of the spring, and the number of coils. Coil 
springs can also have a variable rate, with the load-bearing 
capability increasing as it is compressed; such springs are 
often used in chassis configurations that occasionally carry 
heavy loads. 
 

In this current study, the authors decided to focus on coil 
spring suspensions and conducted a review of the existing 
literature and research on this specific aspect of suspen-
sions; they found that much of it focuses on manufacturing 
and design. In a study by Serbino and Tschiptschin (2011), 
the authors focused on fatigue, in particular the benefits of 
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austempering of springs and the benefits of this process over 
quenched springs, in order to better handle cyclic loads. 
This specific paper focused on springs in automotive valves, 
but the loading conditions and mechanisms were similar for 
suspension springs, albeit with different magnitudes of the 
loads. Virnich and Muhr (1985) focused on fatigue, but  
centered their work specifically on suspensions. In that 
study, the authors compared different alloys and found a 
new Si-Cr-V steel alloy to be effective. Vaillant and       
Ferlicca (1985) studied the impact of a variable diameter or 
tapered spring, and found it to be beneficial for packing 
reasons, though it did present a cost increase.  
 

Sakakibara, Kusakari, Nakano, Yasuda, Sugimoto and 
Watanabe (1993) also addressed the questions of materials 
and manufacturing, with a FE-C-Si-Mn-Ni-Cr-Mo-V alloy 
that was able to provide weight reduction due to its        
improved mechanical properties. Miyamura, Kunou, Saitoh, 
Matsumoto, Yamamoto, Tsurui, and Homma (1993)       
performed a study on ovate wire helical springs, specifically 
looking at two types of wire cross sections: one elliptical 
and one a Fuch’s egg-shaped cross section. This work indi-
cated that the elliptical spring was superior. And, finally, 
Pawar, Patil and Zope (2016) conducted the design and 
analysis of a coil spring specifically for the front suspension 
of a three-wheel vehicle. This work involved theoretical 
analysis and software simulations, including finite element 
analysis, in order to ensure that the design requirements 
were met. 
 

Methods 
 

In order to improve an automotive suspension, the authors 
of this current study decided that the specific design to be 
considered would be one with a coil spring, as they are a 
common configuration and that the specific component to 
be studied would be the spring itself, as it has a large impact 
on the overall suspension. The spring must be designed such 
that it has a spring constant that leads to good performance, 
but it also must be able to withstand the stress imposed by 
the loads on it. Figure 1 shows a schematic of these loads. 
 

Equations 1 and 2 give the maximum stress and maxi-
mum displacement for the spring, respectively (Edwards 
and McKee, 1991): 
 

(1) 
 
 
 

(2) 
 

where, D is the diameter of the coil, d is the diameter of the 
wire, L is the length of the spring, F is the load, Ks is the 
shear stress correction factor, G is the shear modulus of 
elasticity of the material, and N is the number of active 
coils.  

Figure 1. Schematic of loading on a coil spring. 
 

Under typical loading conditions, stress is greatest at the 
inner portion of the spring. In considering the loading    
conditions, the authors assumed that the weight distribution 
on each wheel was nominally one fourth of the vehicle 
weight at rest, and that through weight shifts in maneuvers it 
could increase to as much as double that, or half of the vehi-
cle weight. This was judged to provide a substantial margin 
of safety, as a vehicle maneuver that would put half the 
weight on a single wheel would be quite aggressive. Based 
on the range of weights seen for a variety of different types 
of vehicles, three values were chosen for the final loading, 
at 2015 N, 4320 N, and 5150 N (Dave, 2018). The analysis 
was conducted using the Siemens NX software package. 
The procedure for doing so was as follows: 
 
Step 1: Generation of the CAD model for the spring, includ-
ing full constraints. 
 
In this step, the 3D model was created and structured in 
such a way that it could be easily changed. This involved 
the relationship between key dimensions of the spring,   
ensuring that minimal independent changes would be need-
ed to create a new spring, and that impossible configura-
tions (e.g., ones where the wire diameter was greater than 
the spring diameter) would not occur. The loading and   
constraints were placed on the top and bottom surfaces.  
Figure 2 shows a CAD model of the spring (Dave, 2018). 
 
Step 2: Analysis Setup 
 
At the end of the first step, the part would be in the model-
ing section of the program. To set up the  analysis, the pre-
post section was selected and used. A new finite element 
model (FEM) and simulation was started, and appropriate 
settings were selected. These included unchecking the 
“idealized part” option, selecting the solution type as SOL 
101 Structural Analysis, and the solver type as NX Nastran. 
This then generated three files: a *.prt part file, a *.fem  
finite element method file, and a *.sim simulation file. 

max 3
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8 sK NFD
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Figure 2. CAD model of the spring (Dave, 2018). 
 
Step 3: Setting up the Finite Element Modeling File 
 
The next step involved setting up the FEM file. A material 
was selected for the spring from a list of options, and then a 
mesh was chosen. A tetrahedral mesh was applied to the 
part. While the software is capable of estimating mesh size, 
in order to ensure that the mesh was not too large, the     
recommended size was reduced by a factor of two. Figure 3 
shows the meshed spring (Dave, 2018). 

Figure 3. Meshed spring model (Dave, 2018). 
 
Step 4: Setting up the Simulation File 
 
Setting up the simulation file involved providing loads and 
constraints. The load category selected was “force,” and the 
load value in Newtons was specified, in accordance with the 
three load values listed above. Figure 4 shows how this load 
was applied to one of the divided faces (Dave, 2018), which 
was the face that was assumed to be directly connected to 
the vehicle chassis or upper control arm. 
 

Constraints were also applied as part of the simulation file 
setup. A fixed constraint was applied to the other side of the 
divided face of the spring, which was assumed to be       
connected to the axle or the lower control arm. Only vertical 

linear motion of the top of the spring was allowed by the 
constraint that was applied to the top of the spring, which 
was a user-defined constraint. Figure 5 shows the fully   
constrained file (Dave, 2018). 

Figure 4. Forces (red arrows) applied to the top of the spring 
(Dave, 2018). 

Figure 5. Fully constrained spring (Dave, 2018). 
 
Step 5: Analysis 
 
In the final step, the analysis was carried out for each of the 
36 cases considered in this study. This consisted of simply 
running the analysis that had been set up in these steps, 
which yielded results for both the stress and displacement. 
Figure 6 gives typical results (Dave, 2018). 
 

Design Conditions 
 

In the initial analysis plans, the authors intended to look at 
tapered springs as well as those with non-symmetric cross 
sections. However, as discussed in the Results section, these 
possibilities were eliminated, based on preliminary analyses 
that involved different possibilities for the coil diameter, 
wire cross section (shape and size), and applied load; the 
length of the spring was held constant at 450 mm. A coding 
scheme was used to designate the springs, where the first 
two characters indicated coil diameter, the next two indicat-
ed the wire cross section, and the final two characters indi-
cated the loading condition. Table 1 provides the values 
corresponding to each code. 
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              a) Deformation                                   b) Stress 
 
Figure 6. Typical results of analysis (Dave, 2018). 
 

Initially, it was intended that the symmetric ovate should 
utilize both d1 and d2 diameters, but preliminary analysis 
resulted in the symmetric ovate being limited to the d2   
diameter, as noted in the Results section, hence resulting in 
three options for coil diameter, three for applied load, and 
four for wire cross section, or 36 total combinations. These 
combinations were coded as described previously, such that 
a design condition designated as D2d1L3 would indicate 
that the coil diameter was 100 mm, the wire cross section 
was circular with a diameter of 16 mm, and the applied load 
was 5150 N. 
 
Table 1. Conditions for analysis. 

Subsequently, the best choices of springs for two condi-
tions, one of low displacement and one of high displace-
ment, were subjected to optimization, with the length and 
pitch of the spring chosen as design variables. The objective 
for the optimization was to minimize weight, with          
constraints on the stress and displacement. Finally, the   
designs that were optimized were analyzed to determine 
whether they would withstand fatigue loads. This analysis 
was carried out for three different alloys:                            
Fe-C-Si-Mn-Ni-Cr-Mo-V, Si-Cr-V, and Cr-V. Material 
properties for these alloys can be found in the study by   

Sakakibara et al. (1993). In that analysis, the authors      
assumed that the life of the spring should be at least 2 x 105 
cycles in order to be considered acceptable. This analysis 
was also carried out in NX, using the software’s tools for 
fatigue analysis in the “durability wizard” provided in the 
software. In setting up the analysis, the yield strength was 
selected as the stress criteria, with the stress type selected as 
Von Mises. The solution type was selected as SOL103, and 
the remainder of the finite element setup was the same   
process as for the stress analysis (i.e., Step 3). Instead of an 
applied load, however, an enforced motion constraint was 
used to cycle the spring. 
 

Analysis and Results 
 

Initial analysis was conducted on the full range of possi-
ble designs that would be present if the conditions included 
a tapered spring, non-symmetric ovate cross section, and a 
symmetric ovate with both d1 and d2 used for their cross 
sections for the value of d, in addition to the conditions in 
Table 1. Test runs were conducted, with the goal of deter-
mining whether some possible designs could be eliminated 
outright from consideration; it was found that this was in 
fact the case. As stated in the literature, an ovate cross    
section reduces the stress value dramatically. It was hypoth-
esized that an ovate section, based on the value of d1, could 
be eliminated, since, if a spring using d1 for a circular cross 
section was an optimum design, then an ovate cross section 
based on that value would be under-designed. It was further 
reasoned that a spring using d2 would provide better results 
than one using d1, independent of what other values were 
selected, and this was tested for multiple cases for verifica-
tion. The non-symmetric section has a comparatively blunt 
side on one end, compared to the other. It was predicted that 
the blunt end would provide a reduction of stress concentra-
tion. Therefore, before attempting final analysis, a compari-
son was made between non-symmetric and symmetric    
designs.  
 

After performing analyses on several samples, it was seen 
that the stress values in non-symmetric springs were higher 
than those for symmetric springs. Therefore, it was decided 
that the use of the non-symmetric design would not satisfy 
the aim of the project; hence, this design condition was 
dropped from consideration. In fact, analysis showed that 
the non-symmetric ovate design resulted in stress values 
that were almost double in some cases. A number of tapered 
spring designs were included in the initial test cases; howev-
er, it was noted that those designs invariably had high 
stresses compared to corresponding designs with a constant 
coil diameter. This particular spring design was meant to 
provide a reduction in length, but it was judged that this did 
not provide a significant advantage in the context of this 
study. Figures 7 and 8 show comparisons of stress results 
for the constant diameter and tapered springs, respectively 
(Dave, 2018). In this case, there was little difference, but 
also little advantage, and thus the tapered springs were not 
included in the systematic analysis. 

Coil Diameter 

D1 80 mm 

D2 100 mm 
D3 120 mm 

Wire Cross 
Section 

Circular 
d1 16 mm 
d2 18 mm 

Symmetric 
Ovate 

S1 1.5d 
S2 2d 

Applied Load 

L1 3015 N 
L2 4320 N 
L3 5150 N 
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              a) Displacement                                  b) Stress 
 
Figure 7. Constant diameter spring (Dave, 2018). 

              a) Displacement                                  b) Stress 
 
Figure 8. Results for tapered spring (Dave, 2018). 
 

Analysis of the Set of 36 Cases 
 

When the 36 cases (described in the Methods section) 
were analyzed, each was categorized based on their safety 
factor. While a safety factor had already been built into the 
problem via the assumption of half the vehicle weight being 
on one tire, an additional safety factor was considered, due 
to simplifications and uncertainties in the problem. If the 
safety factor was less than 2, then the design was considered 
as one that may fail. Those with safety factors between        
2 and 3 were considered to be marginal, and those with a 
safety factor of 3 were considered to be optimal. Two types 
of designs were considered for further consideration, based 
on either high displacement or low displacement. Table 2 
gives the full set of results (Dave, 2018); note that red    
denotes values at the stress limit, white rows represent fail-
ing designs, and tan are the marginal designs. The designs 
shown in green are the springs with a high displacement, 
while those shown in blue have a low displacement. The 
spring D1d2L1 was chosen as the starting point for the high

-displacement version of the suspension. After carrying out 
the optimization procedure described in the Methods section 
and then checking the stress and displacement to ensure that 
constraints were not violated, it was found that the pitch of 
the spring had changed from 30 mm to 60 mm, and the 
length changed from 450 mm to 346 mm. Figure 8 shows 
the displacement and stress for this design (Dave, 2018). 

              a) Displacement                                  b) Stress 
 
Figure 9. Results for spring D1d2L1 with a pitch of 60 mm and a 
length of 346 mm (Dave, 2018). 
 

For the low-displacement version of the design, the spring 
D2S2L2 was used as a starting point. When the optimiza-
tion was carried out, the pitch of the spring was set at        
60 mm and the length became 225 mm. Figure 10 shows the 
displacement and stress for this design (Dave, 2018). 

              a) Displacement                                  b) Stress 
 
Figure 10. Results for spring D2S2L2 with a pitch of 60 mm and a 
length of 225 mm (Dave, 2018). 
 

In the final step, where a fatigue analysis was carried out, 
the authors found that the best choice of material for fatigue 
life was the Cr-V alloy, followed by the Si-Cr-V alloy, with 
the last choice being the Fe-C-Si-Mn-Ni-Cr-Mo-V alloy. 
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 Displacement (mm) Stress (Mpa) Bumping stress Bumping Disp. Total stress Total Disp 

D1d1L1 41.7 296.34 29.85 3.76 326.19 45.46 

D1d1L2 59.75 424.6     

D1d1L3 71.23 506.18     

D1d2L1 26.44 230.91 25.62 2.388 256.53 28.828 

D1d2L2 37 330.86 25.25 2.384 356.11 39.384 

D1d2L3 45.16 394.43 23.39 2.356 417.82 47.516 

D1s1L1 11.89 139.53 17.24 2.863 156.77 14.753 

D1s1L2 17.05 199.92 16.96 2.861 216.88 19.911 

D1s1L3 20.33 238.33 17.09 2.746 255.42 23.076 

D1s2L1 7.16 103.94 10.413 1.633 114.353 8.793 

D1s2L2 10.26 148.93 12.26 1.7 161.19 11.96 

D1s2L3 12.23 177.55 10.278 1.701 187.828 13.931 

D2d1L1 56.85 366.05 37.25 4.87 403.3 61.72 

D2d1L2 81.46 524.49     

D2d1L3 97.11 625.26     

D2d2L1 35.27 254.08 27.56 3.176 281.64 38.446 

D2d2L2 50.54 364.05 27.69 3.62 391.74 54.16 

D2d2L3 60.25 434     

D2s1L1 16.48 152.82 17.82 2.765 170.64 19.245 

D2s1L2 23.61 218.96 17.8 2.746 236.76 26.356 

D2s1L3 28.14 261.03 17.88 2.653 278.91 30.793 

D2s2L1 10.07 110.98 10.446 1.7 121.426 11.77 

D2s2L2 14.43 159.02 13.2 1.716 172.22 16.146 

D2s2L3 17.2 189.57 12.75 1.698 202.32 18.898 

D3d1L1 97.76 394.99 25.2 4.97 420.19 102.73 

D3d1L2 140.07 565.96     

D3d1L3 166.99 674.69     

D3d2L1 60.94 300.58 28.84 5.25 329.42 66.19 

D3d2L2 87.31 430.68     

D3d2L3 104.09 513.42     

D3s1L1 16.48 152.82 17.74 2.653 170.56 19.133 

D3s1L2 23.61 218.96 17.96 2.652 236.92 26.262 

D3s1L3 28.14 261.03 17.12 2.633 278.15 30.773 

D3s2L1 17.97 132.37 10.559 1.699 142.929 19.669 

D3s2L2 25.74 189.67 13.3 1.715 202.97 27.455 

D3s2L3 30.69 226.11 12.7 1.629 238.81 32.319 

Table 2. Summary of design analysis results (Dave, 2018). 



——————————————————————————————————————————————–———— 

Conclusions 
 

In this study, the authors subjected the springs in an auto-
motive suspension to analysis and optimization. The proce-
dure used here involved first analyzing multiple cases, then 
selecting the best ones for further optimization and a final 
analysis for fatigue life. It was found that changes in the 
springs could result in improved suspensions, with the   
definition of improvement depending on whether a high or 
low displacement was chosen for the suspension. As vehicle 
types and the desired suspension characteristics are       
complex, this leads to many options for future work. 
 

Future work could include both further focus on the 
springs themselves as well as a more holistic look at the 
suspensions in which they are used. An optimization proce-
dure that includes the coil diameter, wire diameter, length, 
and pitch might produce better results than those seen here, 
albeit with the added complexity of a larger optimization 
problem. Furthermore, an optimization that includes the 
design characteristics of the springs as well as other compo-
nents of the suspension could result in finding synergies 
between different elements of the suspension design, which 
may provide even more improvements. In addition, in the 
design and analysis of a more extensive suspension, an  
active suspension with a controller could be implemented, 
with a co-design approach to the design and control, like 
that set forth in the study by Peters et al. (2013). This future 
work could also be tested through production of the designs 
and physical testing, in order to validate the theoretical  
results found through this work and its extensions. In addi-
tion, future work should consider a detailed analysis of  
vehicle dynamics, including handling and comfort. Such an 
analysis should include a full model of the suspension and 
require multiple test cases to adequately cover the range of 
operating conditions. 
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Abstract  
 

There are many studies of approximations using deep 
neural networks. In this paper, the authors provide yet an-
other proof that deep neural networks are universal approxi-
mators. In their earlier work, the authors showed that an 
arbitrary binary target function can be effectively rewritten 
in terms of a set of strings, or a set of subsets, and that a 
single hidden neuron can identify and only identify a single 
string or a single subset. Therefore, an arbitrary binary tar-
get function can be effectively rewritten in the form of a 
neural network with one hidden layer. In this study, the au-
thors imposed locality on the deep neural network, and will 
show here that an arbitrary binary target function can be 
effectively rewritten in the form of a locally connected deep 
neural network that can have many hidden layers. Although 
it will increase the neural network size, as a neural network 
is localized, it will generally increase the speed of training 
for large networks. 
 
Key words: AI, Universal Approximator, Completeness, 
Deep Neural Network, Machine Learning, Supervised 
Learning, Unsupervised Learning, Locally Connected.  
 

Introduction 
 

Neural networks provide good solutions to many super-
vised learning problems. Neural networks have a long histo-
ry, but there have been two main developments in recent 
years, deep learning and transforming (Amari, Kurata & 
Nagaoka, 1992; Byrne, 1992; Kubat, 2015). In 2006,      
authors in several other studies introduced the idea of 
“deep” neural networks (Hinton, Osindero & Teh, 2006; 
LeCun, Bengio & Hinton, 2015; Bengio, 2009; Coursera, 
2017; Bengio, Courville & Vincent, 2013; Schmidhuber, 
2015; Ciresan, Meier & Schmidhuber, 2012). Examples of 
software include TensorFlow (TensorFlow, 2017), Torch 
(Torch 2017), and Theano (Theano, 2017). Layers in deep 
neural networks (DNNs) serve as the building blocks of the 
architecture, enabling the model to learn from the data. Each 
layer has a specific function in transforming the input into 
an output, progressively extracting higher-level features. 
For example, early layers might detect edges or simple   
patterns (e.g., in images), while middle layers may capture 
more complex patterns (e.g., shapes or textures), and deeper 
layers identify task-specific, high-level features (e.g., faces 
or objects). The transformer model, introduced by Vaswani 
et al. (2017), represents a significant advancement in deep 
learning architectures, particularly in natural language    
processing. Each layer in the DNN is replaced by a trans-
former (Vaswani et al., 2017).  

The transformer leverages a fully self-attentive mecha-
nism to model complex dependencies between elements of a 
sequence. This architecture enables the transformer to be 
trained more efficiently and with greater parallelism, lead-
ing to faster training times and improved scalability. As a 
result, the transformer has become the backbone of numer-
ous state-of-the-art models, including Chat GPT (OpenAI, 
2023) and Claude (Anthropic, 2023), profoundly influencing 
the development of modern deep learning systems. Studies 
of the neural network as universal approximators have a 
long history. Hornik, Stinchcombe, and White (1989) estab-
lished models showing that multi-layer feed-forward      
networks with hidden layers using arbitrary squashing func-
tions are capable of approximating any measurable function 
from one finite dimensional space to another to any desired 
degree of accuracy, provided that a sufficient number of 
hidden units are available. In this sense, multi-layer feed-
forward networks are a class of universal approximators. 
 

Hinton, Osindero, and Teh (2006) introduced the idea that 
deep belief networks (DBN) are generative neural network 
models with many layers of hidden explanatory factors, 
along with a greedy layer-wise unsupervised learning algo-
rithm. The building block of a DBN is a probabilistic model 
called a restricted Boltzmann machine (RBM), which is 
used to represent one layer of the model. Restricted Boltz-
mann machines are interesting, because they have been suc-
cessfully used as building blocks for training deeper models. 
Le Roux and Bengio (2008) proved that adding hidden units 
yields a strictly improved modeling power, and that RBMs 
are universal approximators of discrete distributions. 
 

Liu and Wang (Liu, 1993; Liu, 1995; Liu, 1997; Liu, 
2002; Liu & Wang, 2018; Liu, 2018a/b) proved that DNNs 
implement an expansion and the expansion is complete; a 
complete expansion can be used to expand any target func-
tions. Cheng, Li, and Lu (2019) introduced a type of convo-
lutional neural network (CNN) that can implement the   
Fourier and local Fourier transformations for approximation 
in a large class of problems. Cybenko (1989) showed that a 
finite sum of any continuous sigmoid function can be used 
to approximate any univariate function using functional 
analysis. Liu and Yousuf (2020) showed that DNNs are 
effective universal approximators. An arbitrary binary target 
function can be effectively rewritten in the form of a DNN; 
thus, proving that DNNs can implement any target        
mappings. An example of a locally connected network is the 
convolutional neural network (CNN) (LeCun, Bottou,   
Bengio & Haffner, 1998; Krizhevsky, Sutskever & Hinton, 
2012), which is a specialized type of deep learning model 
particularly well-suited for processing images.  

D  N  N   
U  A  II 

——————————————————————————————————————————————–———— 
Ying Liu, Savannah State University; Majid Bagheri, Savannah State University; 

Antonio Velazquez, Savannah State University; Asad Yousuf, Savannah State University 

 ——————————————————————————————————————————————————
Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024                                         23 



——————————————————————————————————————————————–———— 

——————————————————————————————————————————————–———— 
24                                        Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024 

2024). One of the main reasons that transformer models use 
far more power than biological neurons is that the biological 
systems are locally connected networks. In this paper, the 
authors show that, as the models transit from globally    
connected networks to locally connected networks, the  
computing power will not be decreased, but the amount of 
data transfer can be reduced. 
 

Review:  Effectively Rewriting a Mapping 
with One Hidden Layer  
 

An arbitrary binary target function can be effectively  
rewritten in terms of a set of strings, or a set of subsets.      
A single string or a single subset can be identified by a single 
hidden neuron, and this neuron will only identify the string or 
the subset; therefore, an arbitrary binary target function can be 
effectively rewritten in the form of a neural network with one 
hidden layer (Liu, Yousuf, 2020). A binary-neuron input    
instance is 00 … 0, or, 0 … 01, … (Amari et al., 1992; Byrne, 
1992; Kubat, 2015) and an instance space (Kubat, 2015) is a 
set of all instances given by Equation 1: 
 

(1) 
 

Given an arbitrary binary target function, it can be effec-
tively rewritten in terms of a set of strings, or a set of     
subsets given by Equations 2 and 3: 
 

(2) 
 

(3) 
 

Example. Given a function in Table 1, the mapping can 
be rewritten using Equations 4 and 5: 
 
Table 1. A sample binary function with three inputs. 

 
(4) 

 
(5) 

 
where, y is overloaded with a table, a mapping, a set of 
strings, and a set of subsets, and si in Equation 3 is over-
loaded with a string and a subset. 

It utilizes convolutional layers that apply filters across the 
input data to capture spatial hierarchies of patterns. This 
architecture allows the network to automatically learn and 
detect features such as edges, textures, and objects within 
images, making them highly effective for tasks such as  
image classification, object detection, and segmentation. 
Several approaches can be applied for reducing computation 
times of neural networks, including model optimization, 
hardware utilization, and algorithmic refinement. 1) Model 
optimization techniques, such as pruning, quantization, and 
knowledge distillation, reduce model size while maintaining 
performance (Han, Pool, Tran & Dally, 2015). Weight shar-
ing and sparse representations are also effective in minimiz-
ing redundancy in parameters. 2) Efficient architectures, for 
example MobileNet (Howard et al., 2017) and EfficientNet 
(Tan & Le, 2019) were explicitly designed to reduce     
computational overhead through depth-wise separable    
convolutions and scaling strategies. 3) Hardware-specific 
optimizations are accelerators—such as GPUs, TPUs, and 
custom ASICs—that exploit parallelism and optimized 
memory access patterns to enhance speed (Jouppi et al., 
2017). 4) Training techniques, such as mixed precision 
training (Micikevicius et al., 2018), reduce floating-point 
precision for faster computation, while learning rate    
schedulers and gradient accumulation ensure efficient    
convergence. 
 

In this paper, the authors will show that an arbitrary    
binary target function can be effectively rewritten in the 
form of a locally connected DNN. The result opens a     
discussion for exploring an approach of locally connected 
neural networks as an alternative to globally connected 
models. Additionally, the authors will build on their earlier 
work (Liu & Yousuf, 2020); in particular, locality, will be 
imposed on the neural network. As a comparison, the earlier 
work had a single globally connected network with one  
hidden layer, while the work presented here represents 
many hidden layers with locally connected neural networks. 
The author will show that an arbitrary binary target function 
can be effectively rewritten in the form of a locally connect-
ed DNN. To prove this result: 1) the earlier work by the 
authors will be briefly reviewed foundational to this current 
study; 2) the result is proof for a special case—a binary  
locally connected network; and, 3) the result will be proven 
by removing the binary condition. For a given target func-
tion, there are many effective ways to construct a locally 
connected DNN. 
 

The results, then, open a discussion for exploring an   
approach of locally connected neural networks as an alter-
native to globally connected models. The von Neumann 
bottleneck refers to the limitation in computing systems that 
stems from the separation of the central processing unit 
(CPU) and memory in the von Neumann architecture.    
Increasingly, both computation times and electric powers 
are spent on moving data from one place to another. For 
example, electric power consumption has been increasing 
rapidly for the transformer models. (Wall Street Journal, 
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Without loss of generality, it can be assumed that there is 
only one output variable for now. For the case of multiple 
output variables, it can be treated as multiple mappings. The 
neural network used in this review section will have one input 
layer, one output layer, and one hidden layer. The neuron val-
ues are given by Equation 6 (Amari, Kurata & Nagaoka, 
1992; Byrne, 1992; Kubat, 2015): 
 

(6) 
 
where, f is a sigmoid function given define by Equation 7: 
 

(7) 
 

 
To compute the connection weights, a constant L is intro-

duced; without a loss of generality, set L = 10. For an      
arbitrary target function, it can be rewritten in the form of 
Equations 2 and 3. The rules for construction of a DNN are: 

1. The DNN will have one input layer, one output layer, 
and one hidden layer. The input layer has d neurons.  

2. Each neuron in the hidden layer identifies one string in a 
target function, h = {s0, s1, …, }, so the number of 
neurons in the hidden layer is |h|, which is the     
number of strings or the number of subsets. 

3. The output layer has one neuron; the neuron value is 
1, if any one of the hidden layer neurons is 1. 

4. Assume that s is a subset in a mapping, h; and      
assume a hidden neuron will identify s; the subset, 
then, is given by Equations 8 and 9: 

 
(8) 

 
(9) 

 
The hidden neuron has weights and biases as follows: 

set weight = L, for input neurons {j0, j1, j2, …} 
set weight = – L, for all other input neurons 
set bias = - (|s| - 1) · L 
 
It has been proven that this simple ANN will implement a 

target function (Liu & Yousuf, 2020). To summarize:  
1. An arbitrary binary target function can be effectively 

rewritten in terms of a set of strings, or a set of     
subsets, given by Equations 2 and 3: 

2. A single hidden neuron can identify and only identify 
a single string or a single subset. The weights and 
biases are directly determined from a given target 
function by the rules in this section. 

3. An arbitrary binary target function can be effectively 
rewritten in the form of a neural network with one 
hidden layer. 

 

Binary Locality or Bilocality 
 

In a locally connected neural net, let the maximum number 
of connections of a hidden neuron be N. To simplify the     
discussion, let the locality be extreme: N = 2; from Figure 1, 

this is called binary locality or simply bilocality. Once N is 
restricted, the size of connection matrices is restricted, at the 
cost of increasing the number of matrices. This reduction of 
one large matrix into many smaller matrices has its implica-
tions in computation efficiency, especially when the matrix is 
very large. 

Figure 1. A hidden neuron has two input neurons.  
 
The following naming convention will be adopted: 
 The hidden layer closest to the input is the first hidden 

layer. 
 The hidden layer closest to the output is the last hidden 

layer. 
 
Assumption 1:  
The DNN (deep neural network) is bilocally connected, where 
each hidden neuron can have only two or fewer connections. 
 
Assumption 2:  
The number of neurons in the input layer is a power of 2    
(e.g., 2, 4, 8, 16, …). 
 

These two assumptions will be removed later. Furthermore, 
Assumption 1 only applies to the hidden neurons; the connec-
tions of the single output neuron are determined by the number 
of strings in a target function in Equation 2, |h|. Without loss of 
generality, it can be assumed that there is only one output 
variable for now. For the case of multiple output variables, 
it can be treated as multiple mappings. In a binary locally 
connected network (bilocal network), it is only natural to 
group the connection weights of a neuron with the neuron 
rather than group them into connection matrices. A binary 
locally connected neural net is a set of neurons; a neuron 
has a neuron value, two connection weights, and a bias 
(called neuron-based computation): NN1 = {Neuron},   
Neuron = {value, w0, w1, b}. This is in contrast to the view 
that a neural net is a set of neurons (where each neuron has 
a single value), a set of connection matrices, and a set of 
bias vectors (called matrix-based computation):              
NN2 = {Neurons, Matrix, Bias}. To compute the connec-
tion weights, a constant L will be introduced; without a loss 
of generality, set L = 10. A binary function is then rewritten 
in terms of a set of strings of 0’s and 1’s. A string in the set 
is directly imposed to the input neurons. For a bilocal net-
work, two input neurons are grouped  together and its two-
bit pattern is passed to a hidden neuron in the first hidden 
layer.  

——————————————————————————————————————————————————– 
Dൾൾඉ Nൾඎඋൺඅ Nൾඍඐඈඋඌ ൺඇൽ Uඇංඏൾඋඌൺඅ Aඉඉඋඈඑංආൺඍඈඋඌ II                                                                                                  25 

  , 1,2,3,i ij j iy f w x b i   

  1

1 x
f x

e


 0 1 2, , ,s j j j 

 0,1, 2, 1s d 



——————————————————————————————————————————————–———— 

——————————————————————————————————————————————–———— 
26                                        Iඇඍൾඋඇൺඍංඈඇൺඅ Jඈඎඋඇൺඅ ඈൿ Mඈൽൾඋඇ Eඇංඇൾൾඋංඇ | Vඈඅඎආൾ 25, Nඎආൻൾඋ 1, Fൺඅඅ/Wංඇඍൾඋ 2024 

Let a sample string be x0x1x2x3, where the pattern x0x1 can be 
identified by a hidden neuron, h1, in the next layer, and the 
pattern x2x3 can be identified by a hidden neuron, h2. The iden-
tification of x0x1 is propagated to the next layer via h1, and the 
identification of x2x3 to h2 . To identify the entire pattern 
x0x1x2x3, h1 and h2 are further propagated to a hidden neuron in 
the next layer, say h3, which only needs to identify the pattern 
“11” (i.e., both h1 and h2 have identified their required patterns). 
This is the basic idea of the newly proposed algorithm. The 
new rules for the network   construction are: 

1. The input layer has d = 2K neurons. The DNN has one 
input layer, one output layer, and O (log d) hidden   
layers. 

2. Each neuron in the last hidden layer identifies one string 
in a target function, h = {s0, s1, …, }, so the number of 
neurons in the last hidden layer is |h|, which is the 
number of strings in Equation 2 or the number of 
subsets. 

3. The output layer has one neuron; the neuron value is 
1, if any one of the last hidden layer neurons is 1. 

 
Rule 1 states that there are d input neurons. The condition,    

d = 2K, is for the sake of easy discussion and will be removed 
later. Rule 2, together with several other rules, describes the 
overall hidden neuron structures; each layer has a specific func-
tion in transforming the input into an output, progressively 
identifying bigger bit patterns for strings in a target function.  
In particular, Rule 2 specifies the last hidden layer, and its role 
is: a) the number of hidden neurons in the last hidden layer is 
the same as the number of strings in a given target function, 
and b) each hidden neuron in the last hidden layer will identify 
and only identify one string in the target function. Rule 3    
describes the output layer. For the sake of this discussion,   
assume that there is only one output variable, per our earlier 
assumption, so there is only one output neuron. If an input 
string is one of the strings in a target function, one of the     
hidden neuron values in the last hidden layer is 1, which will 
cause the output neuron to be 1. If an input string is not in the 
target function, all of the hidden neurons in the last hidden  
layer will be 0, which will cause the output neuron to be 0. 
 

Single String Identification 
 

To identify a single string or a single subset, let the input 
layer have d neurons; let the first hidden layer have d/2 hidden 
neurons; let the second hidden layer have d/4 hidden neurons; 
and, let the last hidden layer have one hidden neuron. The input 
layer and all hidden layers together then form a binary tree, 
called a hidden tree. A hidden tree will identify one string in a 
target function later. In a complete binary tree, there exist   
relationships between the height, the number of edges, and the 
number of nodes in each layer from which a complete binary 
tree has: 
 d input neurons 
 log(d) hidden layers  
 2d – 2 weights 
 d – 1 hidden neurons  

By way of example, Figure 2 shows a hidden tree that has: 
 d = 4 input neurons 
 log(d) = 2 hidden layers  
 2d – 2 = 6 weights 
 d – 1 = 3 hidden neurons 

Figure 2. An example of a hidden tree with 4 input neurons. 
 

In a complete binary tree, there exist relationships between 
the height, the number of edges, and the number of nodes in 
each layer. The four input neurons are drawn in column 1; thus, 
d = 4. Shown in Figure 2, the number of hidden layers is log 
(d) = 2: column 2 and column 3. Also shown in Figure 2 as 
edges is the number of weights: 2d – 2 = 6. The number of 
hidden neurons is d – 1 = 3: the 3 nodes in columns 2 and 3. 
This is the tradeoff between a globally connected network and 
a locally connected network. There are two costs of locality:   
1) from using a single hidden neuron to identify a single 
string in a fully connected network to d – 1 neurons; 2) from 
using d weights to identify a single string in a fully connected 
network to 2d – 2 weights.  
 

The first hidden layer identifies the input patterns. Each  
neuron in the first hidden layer identifies two input bits 
(bilocal). The number of neurons in the first hidden layer has 
d/2 neurons. After all of the 2-bit patterns are identified, the 
results propagate up, eventually to one single neuron in the last 
hidden layer. The role of the first hidden  layer is to identify a 
single string or a single subset, and the roles of the rest of 
the hidden layers are to pass the results of the first hidden 
layer to a single root of a hidden tree in the last hidden   
layer. 
 

Target Function Identification 
 

Each neuron in the last hidden layer identifies one string in a 
target function, h = {s0, s1, …, }, so the number of neurons in 
the last hidden layer is |h|, which is the number of strings or 
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the number of subsets. Figure 3 shows how each of the  
neurons in the last hidden layer grows a binary tree all the 
way to the input neurons. 

Figure 3. An example of two hidden trees for two strings. 
 

In this example, the input layer has d = 4 input neurons and 
the target function has two strings to be recognized. There are 
two neurons in the last hidden layer; each is responsible for 
identifying one string. Each of the two neurons in the last   
hidden layer forms a binary tree. Within each tree, there are     
d – 1 hidden neurons in log(d) hidden layers and d input     
neurons. The rules for the hidden trees are: 

4. Each of the neurons in the last hidden layer grows a 
binary tree all the way to the input layer neurons. There 
are log(d) hidden layers, where d is the number of input 
neurons. There are (d – 1) hidden neurons in each hid-
den binary tree. 

5. The first hidden layer identifies the input patterns. Each 
neuron in the first hidden layer identifies two input bits 
(bilocal). 

 
Let s be a single subset that is given in Equations 2 and 3, 

such that the rule for neurons in the first hidden layer is: 
6. Assume that s is a subset in a mapping, h; further 

assume that a hidden neuron identifies s. In this case, 
the subset is given by Equations 8 and 9: 

 
The hidden neuron has weights and biases as follows: 

set weight = L, for input neurons {j0, j1, j2, …} 
set weight = – L, for all other input neurons  
set bias = - (|s| - 1) · L 

 
After all of the 2-bit patterns are identified in the first hidden 

layer, based on the rules above, the results will propagate up, 
eventually to one single neuron in the last hidden layer for one 
string/subset in Equations 2 and 3. The rule for neurons in the 
rest of the hidden layers is: 

7. For the rest of the hidden layers (other than the first), 
all connection weights are L and all biases are            
- (|s| - 1) · L, which is -L for bilocal hidden neurons. 

 
This is an effective construction of a bilocal DNN from a 

given target function, which will be justified in the next      
section. 
 

Effectively Rewriting a Mapping in Terms 
of a Bilocal Deep Neural Network  
 

In the earlier review section, it was noted that a 2-bit pat-
tern can be identified correctly by a hidden neuron. In this 
paper, the authors first identify a 2-bit pattern by one neuron 
in the first hidden layer, which has been proven to be cor-
rect. Second, the above step is repeated for all 2-bit patterns in 
the input layer. For d-input neurons, there are d/2 neurons in 
the first hidden layer. This step is already different from the 
authors’ previous study in which they used one neuron instead 
of d/2 neurons. Third, the results of the first hidden layer simp-
ly propagate up. Let h1 and h2 be two neurons in the first hidden 
layer, the weights and the biases of a bilocal neuron, h3, in the 
next hidden layer are simply (L, L), and -L, respectively, 
which identify the pattern “11” (i.e., both h1 and h2 have identi-
fied their required patterns). Each neuron in the second hidden 
layer identifies a 4-bit pattern. Fourth, each neuron in the third 
hidden layer identifies an 8-bit pattern, …, eventually, each 
neuron (root of a hidden tree) in the last hidden layer identifies 
one string or one subset. Finally, the output layer has one neu-
ron; the neuron value is 1, if any one of the last hidden layer 
neurons is 1. 
 

Since bilocal neurons are so simple, details can be worked 
out from the beginning in just a few lines. One bilocal hidden 
neuron is given in Equation 10: 
 

(10) 
 
where, f is given in Equation 7.  
 

Each hidden neuron in the first hidden layer has two weights 
and there are d/2 neurons. Since there are only four possible 
patterns to be identified, Table 2 lists the parameters in     
Equation 10 required for each case. 
 
Table 2. Bilocal hidden neuron parameters for all 2-bit identifications. 

Take, for example, one instance in detail. Assume that a  
neuron, m, can identify a pattern, “10”; from Table 2, Equation 
10 is changed to Equation 11. All possible inputs and outputs 
for Equation 11 are listed in Table 3. 

 0 0 1 1m f a x a x b  

Pattern to be identified a0 a1  b 

00 -L -L L 

01 L -L 0 

10 -L L 0 

11 L L -L 
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(11) 

 
Table 3. Inputs and outputs for Equation 11. 

 
Column 1 shows all possible inputs for 2-bit patterns.      

Column 2 is the intermediate step. Column 3 shows the neuron 
values. Column 4 takes the integer part of Column 3. In Table 
3, int(m) is the integer function in C# language. The hidden 
neuron identifies the correct string, “10”, by Equation 12: 
 

(12) 
 
 

If there is a single bit difference (“00”, “11”), the hidden 
neuron has a value given by Equation 13: 
 

(13) 
 

If there is a 2-bit difference (“01”), the hidden neuron has a 
value given by Equation 14: 
 

(14) 
 

In general, if an input string differs from the string, s, by 0 
bits, 1 bit, 2 bits, 3 bits, etc., the hidden neuron identifies the 
string with values given in Equation 15: 
 

(15) 
 

This hidden neuron can clearly identify, and only identify, 
one string or one subset, s. Consider this next example. Let a 
given target function hold the four inputs given in Table 4. 
 
Table 4. A sample binary function with four inputs. 

 
The rest of the rows in Table 4 all have y(x) = 0.          

The strings are y = {0011, 1001}, and the set of subsets is   
y = {{2,3}, {0,3}}. Table 5 gives the weights and biases of 
the hidden neurons (a0, a1, b in Equation 10) in two hidden 
trees. Each row specifies all parameters in a hidden tree. 
Column 1 is the input string. Column 2 (m0) and Column 3 
(m1) are hidden neurons in the first hidden layer. Column 4 
(m2) is the hidden neuron in the last hidden layer.  

Here, m0 and m1 are hidden neurons in the first hidden 
layer and m2 is the one in the last hidden layer. Figure 4 
shows that there is one tree for each string/subset. 
 
Table 5. The weights and biases of the hidden neurons for two 
strings. 

Figure 4. An example of two hidden trees for two strings: 0011 and 
1001.  
 

A target function is written in terms of a set of strings. For 
each string in the target function, there is one hidden tree that 
can identify it and only it. In this example, there are four   
inputs: x0, x1, x2, and x3 and the strings in a target function 
are y = {0011, 1001}. Here, m0 and m1 are hidden neurons 
in the first hidden layer and m2 is in the last hidden layer. 
The output layer is omitted in this figure. The connection 
weight is written next to the edges and the bias is written on 
top of the hidden neurons. In neuron-based computing,  
connection weights are members of neurons rather than 
members of the connection matrix; so, whenever possible, 
the weights are drawn closer to its owners. A target function 
is written in terms of a set of subsets. For each subset in the 
target function, there is one hidden tree that can identify it and 
only it. The last hidden layer has one neuron for each subset, so 
the neural network can implement any target function. 
 

Why locally Connected? A Time and 
Space Complexity Analysis 
 

Time complexity measures how the running time of an algo-
rithm grows as the size of its input increases. Space complexity 
measures the amount of memory or storage required by an 
algorithm relative to the size of its input. The implicit assump-
tion here is that the comparison between a fully connected  
network and locally connected network is based on the fact that 

Input ̶  Lx0 + Lx1 m int (m) 

00 0 1/2 0 

01 -L 0 0 

10 L 1 1 

11 0 1/2 0 

 0 1m f Lx Lx  

 0 1

1
1

1 L
m f Lx Lx

e    


0

1
0.5

1
m

e
 



1
0

1 L
m

e
 



1,0.5,0,0,m  

x0 x1 x2  x3 y 

0 0 1 1 1 

1 0 0 1 1 

String m0 m1  m2 

0011 (-L,-L,L) (L,L,-L) (L,L,-L) 

1001 (-L,L,0) (L,-L,0) (L,L,-L) 
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the same target function can be identified by both. Let d be the 
number of input neurons; let h = {s0, s1, …, } be a target 
function; and, let |h| be the number of strings in set h. In the 
fully connected network, there are d neurons from the input 
layer, |h| neurons from the hidden layer, and one neuron 
from the output layer for a total of d + |h| + 1 neurons. The 
hidden layer has d*|h| connections and the output layer has 
|h| connections. For one pass of training, the time and space 
complexities are T = O (d*|h|) and S = O (d*|h|). 
 

For bilocal networks, there are d neurons from the input 
layer, |h| * (d-1) neurons from the |h| hidden trees, and one 
neuron from the output layer for a total of d + |h| *(d-1) + 1 
neurons. The number of hidden neurons is significantly 
higher, which is increased by a factor of O(d), from |h| to   
|h| * (d-1). There are also |h| binary trees, where each tree 
has 2 * d – 2 connections. The hidden layer has                  
(2 * d – 2 ) * |h| connections, and the output layer has |h| 
connections. The number of connection weights is roughly 
doubled. This trade-off has the potential of improving time 
complexity at a minor cost of more neurons and connection 
weights. The space complexity is primarily determined by 
connection weights, not by the number of neurons, so the 
space complexity does not increase when the number of 
neurons is increased by a factor of O(d). Doubling the 
weights will also not change the space complexity, which 
measures the order of magnitude, and a constant of 2 will 
not change the space complexity. For one pass of training, 
both the time and space complexities are T’ = O (d*|h|) and 
S’ = O (d*|h|). 
 

From the time and space complexity analyses, there are 
no advantages for the locally connected network; however, 
this is not true for the following reasons. First, the DNN  
itself attempts to localize the network by dividing the network 
into many layers; the deeper the network, the more locally con-
nected the network will become. Second, the von Neumann 
bottleneck, which refers to the limit of computing systems that 
stems from the separation of the central processing unit (CPU) 
and RAM, is another problem. Training of large networks  
demands substantial hardware because: 
1) Parameters: the scale of these models is immense and the 

memory requirements to store and process these parame-
ters are significant, prompting the transition from CPU to 
GPUs and from GPU to IPU, TPU, and NPU (Brown et 
al., 2020). The computational complexity is primarily driv-
en by the extensive matrix multiplications and gradient 
descent calculations involved in backpropagation, which 
require multiple passes through the entire network 
(Goodfellow, Bengio, & Courville, 2016).  

2) Training data: training on vast datasets requires not only 
significant storage but also powerful computational     
resources to handle the iterative processes involved in 
training (Devlin, Chang, Lee & Toutanova, 2018). 

3) Training: high throughput for data processing necessitates 
advanced storage systems and network infrastructure to 
efficiently feed data to the model. The distributed nature of 

training across multiple GPUs/TPUs adds further        
complexity (Rajbhandari, Rasley, Ruwase & He, 2020). 

4) Power: high energy consumption can also be a problem 
(Jouppi et al., 2017). Simply speaking, it is impossible for 
the cache memory to hold so much data, so most of the 
time and power are consumed by moving data. It can be 
significantly helpful if the computations are basically  
local. This reduction of thrashing will not reduce the accu-
racy of the computation. 

 
It is essential to emphasize the significance of incorporat-

ing locality in neural networks and its implications for  
computation efficiency. Using the earlier example in this 
section, in a fully connected network, there are d neurons 
from the input layer and |h| neurons from the hidden layer; 
the hidden layer has d*|h| connections. For one pass of train-
ing, the time and space complexities are T = O (d*|h|) and   
S = O (d*|h|). When both d and |h| are very large, the       
connection matrix (d x |h| dimension) is very large, and only 
a small portion of this matrix can be held in RAM. To   
complete a matrix multiplication, a portion of a large matrix 
is loaded into RAM, then removed from RAM to make 
room, only to find that it will need to be reloaded again. 
Increasingly, computation times are spent on moving data 
from one place to another. Assuming the same matrix will 
need to be reloaded R times on average, the mathematical 
time complexity of T = O (d*|h|), which assumes unlimited 
RAM, is actually T = O (d*|h|*R), where R is the average 
number of reloads for a large matrix. R is 1 only if the 
memory is as large as d*|h|, which is simply not the case for 
large matrices. 
 

For bilocal networks, the number of hidden neurons is 
significantly higher, which is increased by a factor of O(d); 
however, the number of connection weights is roughly the 
same order of magnitude. It is the connection weights that 
determine the time and space complexities. The number of 
connection weights is roughly doubled, but there is no large 
matrix here so the data does not need to be loaded and    
unloaded over and over again. Why is there no connection 
matrix in a neuron-based computation? The connection 
weights are members of neurons. There are two computa-
tions: forward computations of neuron values and backward 
computations of weight updates. 
1) When neuron values in the first hidden layer are calcu-

lated, they can be calculated one neuron at a time; this 
is because all weights of a neuron are properties of this 
neuron. To update a neuron value, the members of this 
neuron alone are enough to complete the neuron value 
calculation. When all of the neurons are updated in the 
first hidden layer, the process can be repeated for the 
second hidden layer, again one neuron at a time. Note 
that there is no matrix. 

2) Similarly, when new weights are calculated, they can 
be calculated in such a way that only one neuron is 
used at a time; this is because the weight update train-
ing related to one neuron is based on all of the weights 
connected to this neuron in a backward direction. When 
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all of the neurons in the output layer are processed, one 
can repeat the process for the last hidden layer, again 
one neuron at a time, gradually moving backward. Note 
that there is again no matrix. For example, one can 
compute the responsibility of a neuron based on all the 
weights connected to this neuron in a backward direc-
tion. In both cases, only one-dimensional arrays are 
used because only one neuron is processed at a time 
and these arrays will be loaded into RAM only once. 
For one pass of training, the time complexity is           
T’ = O (d*|h|), which can be significantly faster than    
T = O (d*|h|*R), in the case of fully connected neural 
networks, where R is the average number of reloads for 
a large matrix. 

 
Incorporating locality in neural networks can increase 

computation efficiency by a factor of R. It is this factor of R 
that opens a discussion for exploring an approach of locally 
connected neural networks as an alternative to globally  
connected models. OpenAI’s GPT-3, the architecture under-
lying ChatGPT-3, is one of the largest and most sophisticat-
ed language models developed with known size (Brown     
et al., 2020). The largest GPT-3 model, often referred to as 
GPT-3 175B, has 96 layers (transformer blocks) and        
175 billion parameters. Each layer has an Attention block 
and a Feedforward Network.  
 

The attention block has four 12,288 x 12,288 matrices, 
where three of the matrices will multiply (Vaswani et al., 
2017). The Feedforward Network (FFN) has two        
12,288 x 49,152 matrices. Together, these matrices give the 
majority of the 175 billion parameters. The number of    
parameters in GPT-4 is not officially disclosed by OpenAI, 
but it is expected that the cost of training ChatGPT-4 is an 
order of magnitude higher than ChatGPT-3 and the cost of 
training ChatGPT-5 will be an order of magnitude higher 
than ChatGPT-4 (Wall Street Journal, 2024). Therefore, it is 
important to increase computation efficiency. 
 

In a locally connected network, the basic computation unit is 
a neuron rather than a connection matrix. In the extreme case 
of a bilocal network, a neuron value, a few weights, and a bias 
form the foundation of computation, irrespective of how large 
the network is. This is in contrast to the connection-matrix-
based computation unit that grows with the network size.       
As a reference, biological neural networks are locally          
connected, where data movement is minimum and the number 
of neurons is large. The biggest difference between fully     
connected networks and bilocal networks is that one uses    
matrix-based computation and the other uses neuron-based 
computation; one uses matrices as a computation unit and the 
other uses neurons as computation units. As a reference, the 
neuroscience textbook by Kandel, Schwartz, and Jessell (2013) 
states that individual neurons in the human brain typically form 
between 1000 and 10,000 synaptic connections. The biological 
neural net has two features: it has a large number of neurons 
and is locally connected. 

Discussion 
 

Earlier, the authors made two assumptions for easy discus-
sion: bilocal and 2K input neurons. Now these assumptions will 
be removed. 
 
Arbitrary number of input neurons: 
To move from 2K to an arbitrary number, the process is stand-
ard and well-known, such as binary search and merge sort. For 
example, let the input layer have 11 neurons: 
 

[0,1,2,3,4,5,6,7,8,9,10] 
 

Following the binary search or merge sort process, the    
division for an integer interval [a, b] is [a, m] and [m+1, b], 
where m = (a + b)/2 is an integer division. The division process 
then is: 
 

[0,1,2,3,4,5,6,7,8,9,10] 
[0,1,2,3,4,5], [6,7,8,9,10] 
[0,1,2], [3,4,5], [6,7,8], [9,10] 
[0,1], [2], [3,4], [5], [6,7], [8], [9,10] 

 
Now there are some singleton neurons left in the input layer. 

A single neuron can be identified by a hidden neuron using the 
same rule noted previously. 
 
N-ary tree: 
N-ary tree is a tree in which a node can have at most                
N children. Binary trees are specific cases where N = 2. The 
binary connections are merely for easy discussion. By using an 
N-ary tree, all the restrictions that were imposed, for the sake of 
easy discussions, are removed. The rules allow one hidden 
neuron to identify arbitrary numbers of bits; therefore, all of the 
rules apply to the N-ary trees, which is: let s be a subset given 
by Equations 8 and 9, and assume that a hidden tree will 
identify s; the neurons in the first hidden layer then have 
weights and biases as follows: 
 

set weight = L, for input neurons {j0, j1, j2, …}  
set weight = – L, for all other input neurons  
set bias = - (|s| - 1) · L 
 
Neurons in the rest of hidden layers have weights and biases 

determined by the above rule for identification of patterns: 
“11…1”. 
 

Universal Approximator with Two and 
Three Hidden Layers 
 

For a given input number, d, and a given number of layers, 
there are numerous constructions, where the number of neurons 
in the hidden layers depends on the construction. Figure 5 
gives an example of a single hidden tree for d = 8, two   
hidden layers, and the maximum localization construction (the 
number of edges is maximum). The figure shows the input 
layer, the first hidden layer, and the last hidden layer. The   
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output layer is omitted. Figure 6 gives an example of a single 
hidden tree for d = 8, two hidden layers, and the minimum 
localization construction (the number of edges is minimum). 
Again, the figure shows the input layer, the first hidden layer, 
and the last hidden layer. The output layer is omitted. 

Figure 5. An example of maximum localization construction.  
 

As d grows larger, the diagram gets harder to read, so a new 
notation will be introduced:  
 
 Let the input neurons be labeled by “Input Layer: 0, 1, 

2, …, 15”; 
 Let the neurons in the first hidden layer be labeled by 

“First Hidden Layer: 0, 1, 2, ….”; 
 Let the neurons in the second hidden layer be labeled by 

“Second Hidden Layer: 0, 1, 2, …”;  
 Let the neurons in the last hidden layer be labeled by 

“Last Hidden Layer: 0, 1, 2, …”; and, 
 Let “[...]” be used to group neurons together to be    

identified by a neuron in the next layer. 
 

For example, Input layer: [0,1] [2,3] means input neurons 0 
and 1 will be identified by neuron 0 in the first hidden layer and 
input neurons 2 and 3 will be identified by neuron 1 in the first 
hidden layer. Under this notation, Figure 5 can be rewritten as: 
 

Input layer: [0,1] [2,3] [4,5] [6,7] 
First hidden layer: [0,1,2,3] 
Last hidden layer: [0] 

Figure 6. An example of minimum localization construction.  
 
Figure 6 can be rewritten as: 
 

Input layer: [0,1,2,3] [4,5,6,7]  
First hidden layer: [0,1] 
Last hidden layer: [0] 

 
The following example will be more interesting, which is     

d = 16 and two hidden layers. In this example, let d = 16 and let 
a network have two hidden layers. The maximum localization 
construction looks like this: 
 

Input layer: [0,1] [2,3] [4,5] [6,7][8,9][10,11][12,13][14,15] 
First hidden layer: [0,1,2,3,4,5,6,7] 
Last hidden layer: [0] 

 
where, 
 input neurons [0,1] are identified by neuron 0 of the first 

hidden layer,  
 input neurons [2,3] are identified by neuron 1 of the first 

hidden layer,  
 …, and  
 first-hidden-layer neurons, [0, …, 7], are identified by 

neuron 0 of the last hidden layer. 
 
The minimum localization looks like this: 
 

Input layer: [0,1,2,3,4,5,6,7] [8,9,10,11,12,13,14,15] 
First hidden layer: [0,1] 
Last hidden layer: [0] 
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The intermediate localization looks like this: 
 

Input layer: [0,1,2,3] [4,5,6,7] [8,9,10,11] [12,13,14,15] 
First hidden layer: [0,1,2,3] 
Last hidden layer: [0] 

 
Clearly, there are many other constructions. As a compari-

son, with two hidden layers and minimum localization, it    
basically divides the original fully connected network into two 
networks, which reduces the weight connection matrix. With 
two hidden layers and maximum localization, it basically    
reduces the size of the original fully connected network by half 
by taking the average of two inputs and combining it into one 
input, which again reduces the connection matrix. In either 
case, it is a small deviation from the original network. As more 
and more layers are added, the difference between fully      
connected networks and locally connected networks will get 
bigger and bigger; eventually, it will transit from a matrix-
based computation to a neuron-based computation. Universal 
approximators with three hidden layers can be constructed in a 
similar way. 
 

Conclusions 
 

In earlier work by the authors, they showed that an     
arbitrary binary target function can be effectively rewritten 
in terms of a set of strings, or a set of subsets, and that a 
single hidden neuron can identify and only identify a single 
string or a single subset; therefore, an arbitrary binary target 
function can be effectively rewritten in the form of a neural 
network with one hidden layer, thus proving that deep    
neural networks can effectively implement any target    
mappings. In this paper, the authors imposed locality on the 
neural network and showed that an arbitrary binary target func-
tion can be effectively rewritten in the form of a locally       
connected DNN, which can have many hidden layers. When 
locality is imposed on the network, the basic computation unit 
can be shifted to neurons rather than connection matrices.  
Continuous loading of batches of data from storage into 
memory to processing units can be significantly reduced. By 
imposing locality, the computation power of the DNN is not 
decreased, but it can reduce thrashing, thus significantly      
increasing computation speed. 
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The latest impact factor (IF) calculation (Google Scholar method) for IJME of 3.0 moves 

it even higher in its march towards the top 10 engineering journals. 




