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EDITOR’S NOTE: SPECIAL CONFERENCE ISSUE                                                                                                                            3 

The editors and staff at IAJC would like to thank you, our readers, for 

your continued support, and we look forward to seeing you at the upcoming 

IAJC conference. For this fifth IAJC conference, we will again be partner-

ing with the International Society of Agile Manufacturing (ISAM). This 

event will be held at the new Embassy Suites hotel in Orlando, FL, Novem-

ber 6-8, 2016. The IAJC/ISAM Executive Board is pleased to invite facul-

ty, students, researchers, engineers, and practitioners to present their latest 

accomplishments and innovations in all areas of engineering, engineering 

technology, math, science, and related technologies. 

 

In additional to our strong institutional sponsorship, we are excited this 

year to announce that nine (9) high impact factor (IF) ISI journals asked to 

sponsor our conference as well, and wish to publish some of your best pa-

pers. But I would be remiss if I didn‘t take this opportunity to remind you 

of the excellent impact factors (Google Scholar method) for our own three 

journals. The International Journal of Modern Engineering (IJME) has a 

remarkable IF = 3.00. The International Journal of Engineering Research 

and Innovation (IJERI) has an IF = 1.58, which is noteworthy, as it is a 

relatively young journal, only in publication since 2009. And the Technolo-

gy Interface International Journal (TIIJ) with an IF = 1.025. Any IF above 

1.0 is considered high, based on the requirements of many top universities, 

and places the journals among an elite group. 

 

Selected papers from the conference will be published in the three IAJC-

owned journals and possibly the nine ISI journals. Oftentimes, these pa-

pers, along with manuscripts submitted at-large, are reviewed and pub-

lished in less than half the time of other journals. Publishing guidelines are 

available at www.iajc.org, where you can read any of our previously pub-

lished journal issues, as well as obtain information on chapters, member-

ship, and benefits. 

EDITOR'S NOTE 

Philip Weinsier, IJME Manuscript Editor 

http://www.iajc.org
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Abstract 
 

In this paper, the authors present the design and compari-

son of two methods to control and balance an inverted pen-

dulum system based on the classical control theory and the 

modern control theory, respectively. These two control 

methods share the same mathematical model essentially 

derived from Newton‘s laws of motion. A PID controller 

and a pole placement controller were designed and com-

pared in this study. After these two controllers were calcu-

lated theoretically, simulations were run on MALAB to 

verify the validity of the designed controllers. Once each 

parameter of the controllers passed the simulation test, a 

comparison of their performance was studied. Then, the PID 

controller was tested in a LabVIEW-based control system, 

since PID controllers are always the simplest and most pop-

ular control method used in manufacturing systems. Future 

studies will focus on testing the pole placement controller 

on a real system to evaluate its feasibility, reliability, and 

robustness. 

 

Introduction 
 

Figure 1 shows that the inverted pendulum system is a 

classic problem in the theory of control systems. It is always 

used to demonstrate concepts in linear control such as the 

stabilization of unstable systems. Since the system is inher-

ently nonlinear, it also has been useful in illustrating some 

of the ideas in nonlinear control. In this system, an inverted 

pendulum was attached to a cart equipped with a motor that 

drives it along a horizontal track. The task is to make sure 

that the pendulum does not fall and is kept straight by mov-

ing the cart left or right. The study of the inverted pendulum 

has significant meaning for research on such topics as biped 

robot‘s walking problem, rocket‘s flight attitude adjustment, 

aircraft‘s landing, the stability of offshore oil platforms, etc.  

 

The inverted pendulum is also a classic problem in dy-

namics and control theory and is widely used as a bench-

mark for testing control algorithms. To design a stabilizing 

controller for a single inverted pendulum is a typical prob-

lem in control system design based on the state space ap-

proach. A stabilized pendulum is useful for showing the 

power of a control mechanism to laymen of the state space 

theory [1]. The inverted pendulum system is a typical unsta-

ble, higher-order, multivariable, strongly coupling non-

linear system. It has two main purposes: first, as an inher-

ently unstable nonlinear system, the inverted pendulum con-

trol system is the ideal platform to teach control theory and 

do research. Many typical problems such as nonlinear sys-

tems, robustness, follow-up, etc. are included in the study of 

the inverted pendulum system. Secondly, due to the features 

of the inverted pendulum system, new control methods can 

be tested on the inverted pendulum to see it they are able to 

deal with the system which is nonlinear and unstable.  

Figure 1. A Single Inverted Pendulum System 

 

The design and comparison of a PID controller and a pole 

placement controller based on a single inverted pendulum 

system will provide supportive evidence for controller se-

lection and implementation in real industry environment and 

reference for further studies in control systems. 

 

Review of Literature  
 

Research on classic pendulum system controllers has been 

conducted and applied since as early as the 1970s. In a 

study by Mori et al. [2], the authors successfully controlled 

a single pendulum system considering the overall character-

istics, including its nonlinear property which represented the 

real system more closely. In a study by Furuta et al. [1], the 

authors designed a controller using CAD to stabilize a dou-

ble-inverted pendulum on an inclined rail. In 1984, Furuta et 

al. [3] realized the control of a triple-inverted pendulum 

system consisting of three arms. This pendulum was a good 

analogy of a human standing on a single leg without a foot; 

the results of that study contributed to the development of a 

biped locomotive machine. In 1992, Furuta et al. [4] pro-

posed a robust swing-up control using a subspace projected 

from the whole state space. Based on the projected state 

——————————————————————————————————————————————–———— 
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space or pseudo-state, the control input was determined 

depending on the partitioning of the state as a bang-bang 

type control. The control algorithm was applied in a new 

type of pendulum (TI Tech Pendulum), and the effective-

ness and robustness of the proposed control were examined 

by additional experiments. 

 

Now, most research involving the inverted pendulum is 

from Asian research institutions, such as Beijing Normal 

University, University of Science and Technology of China, 

Beijing University of Aeronautics and Astronautics 

(Beihang University) in China, Tokyo Institute of Technolo-

gy, Tokyo Denki University, Tokyo University in Japan, 

and Pusan National University, Chungnam National Univer-

sity in Korea. Besides, St. Petersburg University in Russia, 

University of Eastern Florida in the U.S., the Russian Acad-

emy of Sciences, Poznan University in Poland, University 

of Florence in Italy and so on also have correlative research 

in this field. The experimental study of pendulum system 

controllers has contributed significantly to different fields of 

industry [5]. In this study, a PID controller and a pole place-

ment controller were designed and compared on a single 

pendulum system. The result of this study can be used to 

determine the use of these controllers in manufacturing con-

trol systems. 

 

Methodology 
 

Mathematical Modeling 
 

A descriptive model of the system was built to show that 

the system would work. This could help to estimate how an 

unforeseeable event could affect the system. Here, New-

ton‘s laws of motion were used to derive the mathematical 

model so that it could be more convenient to analyze and 

study the system‘s controllability and observability. As 

mentioned previously, the inverted pendulum system is a 

typical unstable, higher-order, multivariable, strongly cou-

pling non-linear system. So, in order to simplify the mathe-

matical model, some assumptions were made: 1) all compo-

nents in the system are rigid; 2) the air resistance and the 

friction are neglected; and, 3) the entire mass of the pendu-

lum is concentrated at the center of the mass [6]. Figure 2 

and Table 1 show and list the model of a single inverted 

pendulum and its physical parameters and values, respec-

tively. 

 

The kinetic equations of the inverted pendulum system 

can be derived from Equations (1) and (2): 

 

 

(1) 

 

(2) 

 

Figure 2. The Mechanical Analysis of the Inverted Pendulum 

System 
 
Table 1. Values and Parameters of the Inverted Pendulum 

System 

 

Since  is usually quite small while the inverted pendu-

lum is working, the equations can be further simplified. And 

after substituting the variables with values from Table 1, the 

results are shown in Equations (3) and (4): 

 

(3) 

 

(4) 

 

Taking the Laplace transforms of the above equations, the 

transfer functions could be derived as in Equations (5) and 

(6): 

 

(5) 

 

 

 

(6) 

m (kg) Pendulum‘s mass 0.18 

M(kg) Cart‘s mass 0.94 

l (m) Pendulum‘s half length 0.30 

J(kg·m2) Pendulum's moment of inertia 0.0054 

F (N) Force on the cart  

x (m) Cart‘s position  

Φ(rad) Pendulum‘s angle  
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System Stability 
 

Generally speaking, most systems are unstable in open 

loop but stable in closed-loop configurations. In contrast, it 

is also possible that the system is stable in open loop but 

unstable in closed loop, even if this case is quite rare. Figure 

3 shows the pole zero map of the open-loop system, which 

shows that one of the poles of the transfer function lies on 

the right-half side, or RHP, of the s-plane, meaning that the 

system is unstable. For the closed-loop situation, the root 

locus of the system in Figure 4 indicates that the closed-

loop system is not stable, either due to the value of the loop 

gain or because one branch of the locus remains on the RHP 

of the s plane. This reveals that this system can never be 

controllable by unity feedback [7]. Equations (7) and (8) are 

shown below the figures. 

 

Figure 3. The Pole Zero Maps of the Open-Loop System 

 

 

 

(7) 

 

 

 

 

(8) 

 

 

Figure 4. The Root Locus of the Closed-Loop System 

 

The step response of the systems also confirmed what was 

mentioned above. So, in summary, the uncompensated sys-

tems, whether open-loop or closed-loop, are unstable [8]. 

 

 

2

( ) 2.538

( ) 27.86

s

U s s

 




2

2

( ) 9.800 0.400

( )

X s s

s s






2

( ) 2.538

( ) 27.86

s

U s s

 




2

2

( ) 9.800 0.400

( )

X s s

s s






——————————————————————————————————————————————————– 

DESIGN AND COMPARISON OF SINGLE INVERTED PENDULUM SYSTEM CONTROLLERS                                                              7 



——————————————————————————————————————————————–———— 

——————————————————————————————————————————————–———— 

8                                INTERNATIONAL JOURNAL OF MODERN ENGINEERING | VOLUME 16, NUMBER 2, SPRING/SUMMER 2016 

Control Strategy: PID Control 
 

For the PID controller, a double-closed-loop control sys-

tem was designed and implemented. There are two variables 

that need to be controlled: angle of the pendulum and posi-

tion of the cart. Figure 5 shows the block diagram, in which 

G1(s), the angle, is the transfer function of the inner loop, 

while G2(s), the position, is the outer loop. 

Figure 5. Block Diagram of Double Closed-Loop Control 

 

Equation (9) shows the closed-loop transfer function: 

 

(9) 

 

where, K = -30. 

 

Equation (10) shows the standard second-order transfer 

function model: 

 

(10) 

 

 

where,  = 0.707, n = 8.726, Equation (11) demonstrates 

the results: 

 

(11) 

 

Equations (12) and (13) show the compensated system 

was verified to see if it met expectations: 

 

(12) 

 

 

 

(13) 

 

 

The controller was deemed acceptable. By using a PID 

controller, the root locus can be relocated to the left side of 

the s-plane and also change the system to a standard type II 

system. Therefore, the open-loop transfer function of the 

entire double-loop feedback system is shown in Equation 

(14). Figure 6 shows the root locus of G(s). Apparently, all 

of the poles are in the left half of the plane, which means 

that the system is stable when the locus is on the left half 

plane. 

Figure 6. The Root Locus of the Entire Closed-Loop System 

 

 

(14) 
 

 

In order to see the step response of the closed-loop sys-

tem, the simulation was done on Simulink in MATLAB [9]. 

The full diagram of the inverted pendulum system was cre-

ated based on the block diagram. And the results show that 

the system will return to the stable state in about six se-

conds. 

 

Pole Placement 
 

The expectations of the system are the same as the ones in 

PID control [10]: 

a. Take the optimum damping coefficient 0.707 

b. Overshoot Mp ≤ 5% 

c. Settling time ts ≤ 2s 

 

Actually, Equation (15) shows that the damping coeffi-

cient is 0.707, such that the Mp will definitely be less than 

5%: 

 

 

(15) 

 

 

Equation (16) shows the value of ts is required to be less 

than two seconds: 
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(16) 

 

As explained in the previous section, two variables, angle 

and position, were selected to control the system [11]. Equa-

tions (17) and (18) shows how the state space expression of 

the system can be written: 

 

 

(17) 

 

 

 

 

 

(18) 

 

 

 

Figures 7 and 8 show the step response simulated by Sim-

ulink in MATLAB. 

Figure 8. Step Response of the System 

 

The results show that the system will return to the stable 

state in about 3.5 seconds. 
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Figure 7. Simulation Diagram of the Single Inverted Pendulum System 
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Implementation of the PID Controller 
 

A LabVIEW-based control system was developed to im-

plement the controller on a single inverted pendulum. Due 

to the limitations of the lab equipment, only one closed-loop 

feedback was implemented in the single inverted pendulum 

system. The controller will adjust the speed of the motor 

that drives the cart according to the changes of the pendu-

lum angle. Figures 9 and 10 show the schematic and wiring 

diagrams, respectively. 

Figure 9. Schematic Diagram of the System 

Figure 10. Wiring Diagram for the Single Stage Inverted 

Pendulum System 

 

The controller receives signals from the encoder and 

sends out the pulse width modulation (PWM) signal to con-

trol the speed of the motor. The National Instruments PCI-

6229 is a multifunction M Series data acquisition (DAQ) 

board. This board has two counters—one to read the pulse 

signal from the encoder and interpret the two-phase pulse 

trains to angle value, and the other to generate the PWM 

signal. 

 

Findings and Conclusions 
 

Testing 
 

When tested in the LabVIEW environment, the real-time 

curve in Figure 11 shows that the angle could be sensed 

precisely, yielding an acceptable response time.  

Figure 11. Test of the Encoder 

 

Also the change of duty cycle on the front panel can be 

detected through the change of the PWM signal. The PWM 

signal shown on the oscilloscope indicated that the PWM 

signal was well adjusted by the assigned duty cycle, as 

shown in Figure 12. 

Figure 12. PWM Signal with Duty Cycles of 0.61 and 0.23 

PC(LabVIEW) NI PIC-6229 NI SCB-68 

Encoder 

H-Bridge Circuit 

DC Motor 
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At the same time, the speed of the motor will change ac-

cordingly with the duty cycle. When the direction was set to 

1, the motor would rotate clockwise; for 0, the motor would 

rotate counter-clockwise. Figure 13 shows how the speed of 

the motor can be easily modified in the LabVIEW environ-

ment, according to the sensed encoder angle. 

Figure 13. Test of the Motor Controlling by Setting the Duty 

Cycle 

 

When the angle became negative, the direction of the mo-

tor changed immediately. Also, the more offset on the an-

gle, the higher speed the motor would get. In Figure 13, a 

simulated sinusoidal signal was added on the angle input to 

observe the system‘s response. In order to let the inverted 

pendulum become balanced, proper PID parameters were 

assigned. The values of the PID parameters were obtained 

by PID tuning. Figure 14 shows that the pendulum returned 

to the upright position after a disturbance occurred. This 

basically demonstrated the self-balance of the system. 

Figure 14. Motor Speed Varies from the Angular Position 

 

Advantages and Disadvantages 
 

Due to the time and condition limit, one of the control 

methods cannot be tested on the real inverted pendulum 

system. However, from the simulation, it is apparent that 

both methods have advantages and disadvantages. For the 

PID control, the principle and algorithm of the control 

method are quite straightforward. Each part of the controller 

has different functions and, as long as they can coordinate 

perfectly, the system will become stable. The parameters 

could be adjusted while the system is working and the per-

formance of the response is fast and clear. This is a classic 

and traditional control method that has been widely used in 

the manufacturing industry. However, the calculation of 

each parameter of the controller is very complicated. This 

requires the designer to be very familiar with not only clas-

sical control theory but also physics and mathematics. If any 

of the parameters like c, , or K are not chosen properly, 

almost all the work will need to be redone. Usually it is time 

consuming to finally find suitable and proper parameters for 

the system.  

 

For the pole placement, the calculation is not a problem 

anymore. The calculation of the PID control method is 

sometimes skillful, but the full-state feedback makes the 

calculation much easier to understand. Full-state feedback 

needs the system to be written in a different way which, to 

most people, is a bit awkward and difficult to understand. 

However, once the theory and how the full-state feedback 

can revise an unstable system are fully understood, it is not 

a problem to design the controller at all. In a word, this 

method tries to find a feedback matrix, K, to modify the 

state matrix, A, so that the new system can be stable. Never-

theless, not all of the state variables are easy to measure. 

Some of them even have no way to be measured. That 

makes this control method not available for practical use 

directly. But, with the introducing of state observer, this 

shortcoming can be overcome. This is one of its biggest 

disadvantages. 

 

Conclusions 
 

Two control methods were implemented and used to de-

sign the controller of a single-inverted pendulum system. 

The simulation results indicated that the design had reached 

the expected targets and the two different control methods 

were compared, which were the two main goals of the 

study. Future work can focus on testing the designed con-

troller by pole placement method on a real inverted pendu-

lum system to study its performance in a practical way.  
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Abstract 
 

Renewable energy portfolios have become part of the 

requirements that utilities in certain states must conform to. 

It is therefore imperative that the availability and quantity of 

renewable energy resources—mostly solar and wind—are 

predicted ahead of time. Wind energy is highly variable and 

a non-stationary source of power. Also, the relationship 

between wind speed and wind power are nonlinear, making 

accurate predictions of wind speed an essential requirement 

for improving the predictions of wind power, especially in a 

day-ahead energy market. Numerical weather prediction 

(NWP) has been employed in forecasting wind speed in the 

short term. NWP forecasting, without any modeling adjust-

ments, produces deterministic, or point, estimates and, 

therefore, may not be appropriate for dealing with stochastic 

problems such as wind prediction whose acquisition can 

also be prohibitive. In this study, the authors explored the 

use of machine learning techniques to predict wind speed 

one day-ahead. Emphasis was placed on decision trees en-

sembles, neural networks, and support vector machines 

(SVM). The ensemble method and SVM yield better predic-

tions than the neural networks. 

 

Introduction 
 

The use of renewable energy has become a tool for miti-

gating global climate change. Renewable energy technolo-

gies such as wind and solar are sometimes very difficult to 

integrate into electrical energy generation systems, given 

the fact that supply has to match demand to maintain the 

stability of the power grid. One of the main challenges of 

renewable energy technologies stems from the fact that their 

power generation depends on environmental factors such as 

wind speed and solar radiation, among others. This makes it 

difficult to plan and control their quantity ahead of time. 

Wind power, for instance, is highly variable and non-

stationary in nature. Being able to accurately predict wind 

speed is sine qua non for the accurate prediction of wind 

energy, as wind speed is a significant contributor to wind 

power and is also non-linearly related as a cubic function. 

Any small deviation from actual wind speed could, there-

fore, amplify fluctuations in generation capacity, which 

could ultimately affect the integrity of the power grid, espe-

cially in a day-ahead energy market.  

Wind resource forecasting for the short-term could be 

done using NWP/physical or statistical methods [1-3]. Un-

fortunately, the NWP model provides deterministic or point 

estimates, thereby limiting its usefulness to deterministic 

rather than stochastic problems, though ensemble methods 

may be developed to circumvent this shortcoming [4]. On 

the other hand, traditional statistical forecasting techniques 

such as regression, autoregressive integrated moving aver-

age (ARIMA), and other time-series models have their limi-

tations when used for predicting renewable energy re-

sources. These techniques [5] are referred to as data models. 

Where complex systems are involved and there is an abun-

dance of data, machine learning (ML) techniques are more 

suitable for prediction [6, 7]. These techniques may be 

grouped into supervised and unsupervised techniques [6]. 

Supervised machine learning (SML) techniques are used in 

predictive modeling, whereas the unsupervised techniques, 

such as clustering techniques, are used for information or 

knowledge discovery. The focus of this study was on SML 

techniques. Several methods are available for solving SML 

problems including neural networks, support vector ma-

chines, and ensemble methods (e.g., random forest, bagging, 

and boosting techniques). 

  

Perera et al. [8] reviewed different types of ML tech-

niques used for predicting renewable energy. Artificial neu-

ral networks (ANN) have been used in modeling renewable 

energy resources such as solar and wind [9-13]. A compari-

son of different forecasting methods for predicting wind 

speed has also been conducted [14, 15]. Artificial intelli-

gence methods, including ANN, support vector machines 

(SVMs), and nearest neighbor search (NNS) have been used 

to predict day-ahead and hourly wind power for single wind 

farms [14]. The gradient descent with the backpropagation 

algorithm was used in training the ANN model. The varia-

ble selection in the NNS model was carried out using parti-

cle swarm optimization. Individual models were also used 

to create an ensemble model for prediction. The ensemble 

model was found to perform better than any of the individu-

al models. The use of the random forest ensemble technique 

in predicting solar radiation for renewable energy applica-

tions was also carried-out [16]. A comparison made with the 

feedforward neural model showed that the random forest 

model and its special case, the bagging technique, outper-

formed the feedforward neural network. 

SHORT-TERM WIND SPEED PREDICTION USING 

SUPERVISED MACHINE LEARNING TECHNIQUES 
——————————————————————————————————————————————–———— 
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Sfetos [15] used hourly data over the course of one month 

to predict wind speed and noted that ML techniques per-

formed better than their traditional statistical counterparts 

such as the ARIMA models. The model‘s one month of 

data , however, could not help account for seasonal varia-

tions in the model. A review of wind-speed and wind-power 

forecasting models has also been undertaken [17, 18]. 

Carpinone et al. [1] and Potter and Negnevitsky [19]

presented very short-term wind-power forecasting tech-

niques. In addition, Mendes et al. [3] reviewed several tools 

for forecasting very-short-term wind resources. Mohandes 

et al. [20] compared the use of SVMs and ANN was carried 

out by  for predicting wind speed and reported that SVMs 

are better than ANN for predicting wind speed.  

 

Artificial neural networks are often cited as appropriate 

modeling techniques for wind forecasting. In this current 

study, the authors showed that random forests and SVMs 

can perform better than neural network models in predicting 

short-term wind speed. This paper limits discussion to the 

random forest technique, an ensemble method, SVMs, and 

neural networks. 

 

Data Preparation and Modeling 
 

The wind speed data for modeling came from 5-minute  

data samples taken over a one-year period (January 1 – De-

cember 31, 2014), which were acquired from a weather sta-

tion in Greensboro, NC (Lat. 36.08° N, Lon. 79.82° W), 

installed by the authors. A total of 105,120 datasets of 5-

minute samples were aggregated into 8760 hourly datasets 

for training and testing the model. The predictor (input) 

variables included weather data: average, minimum, and 

maximum temperature, dew point, and relative humidity 

(RH). In addition, seasonal variables (month of year; day of 

month; hour of day) were created from the timestamp of the 

data, to capture seasonality. The response (target/output) 

variable was the wind speed (in m/s) that was to be predict-

ed. A separate set of data (Jan. 1 – 4, 2015) that was not 

used in the modeling, was used in predicting hourly and 

daily mean wind speed one to four days ahead. The instru-

ment height of the wind anemometer was 10.54 ft. (3.21 m) 

above ground. The wind speed can be calculated for any 

required elevation, as given by Equation (1):  

 

(1) 

 

 

where, V1 is the wind speed at any given elevation H1; V0 is 

the wind speed at the elevation of the instrument height, H0, 

and, a is the frictional coefficient based on terrain and other 

locational factors. Three main supervised machine learning 

(SML) techniques were used in this study: random forest, a 

multilayer feedforward neural network (FFNN), and a re-

gression support vector machine (SVM). The models may 

be represented as a multivariate forecast, as given in Equa-

tion (2)[3]: 

 

(2) 

 

where, is the variable to be predicted (wind speed in 

m/s) for time step t+k; Yt is the measured value of the re-

sponse variable at current time t; Xt,…Xt-n is the set of meas-

ured (or past) exogenous variables (predictors such as tem-

perature, relative humidity, month of year, etc.) and 

is the corresponding prediction set; et is white 

noise; and, f is a generic function, either linear or nonlinear. 

 

Random Forest Model 
 

A discussion of ensemble techniques by Yeboah et al. 

[16] focused on bagging, boosting, and random forest 

techniques and how these methods evolved from 

clasification and regression trees. This current study used 

random forest. The random forest/bagged decision tree 

(BDT/RF) ensemble method was developed for predicting 

short-term wind speed. The steps involved in BDT/RF mod-

eling include determining the optimal leaf size to grow on a 

tree, selecting the variables of importance, determining the 

optimal number of trees to grow in the forest, determining 

the prediction accuracy (as measured by the mean square 

error of the out-of-bag test samples), and using the model 

for prediction. 

 

Yeboah [16] provided a description of using MATLAB 

Tool in developing ensemble modeling. The concept was 

extended to develop all the three models in this current 

study, namely, BDT/RF, FFNN, and SVM. Figure 1 depicts 

a plot of the number of leaves that can be grown on a tree in 

the forest and their corresponding mean square errors. It can 

be shown that the optimal leaf size is five, corresponding to 

the curve with the lowest out-of-bag (OOB) mean square 

error (MSE) of 0.2558. Figure 2 shows the variables of im-

portance in the model. The importance of each predictor to 

the model is measured by its contribution to the accuracy of 

prediction, based on the training dataset [16]. While the 

DayOfMonth, HrOfDay, and MonthOfYear were much 

more important for modeling, as illustrated in the figure, the 

other remaining variables were also included as being im-

portant and therefore were kept in the model.  

 

A BDT/RF model was developed with 1000 trees in the 

forest and five leaves per tree; the corresponding regression 

error, as measured by the OOB MSE, are plotted in Figure 

3. This produced an OOB MSE of 0.2435 for the model if 

only 200 trees are grown in the forest. If 1000 trees were to 
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be grown in the forest, this would have yielded an OOB 

MSE of 0.2419, which is not significantly different from the 

MSE of a 200-tree forest. Therefore, beyond 200 trees, there 

were no improvements in the model‘s OOB MSE. Since 

more trees are equivalent to more computational time and 

space to store trees and other related model data, a 200-tree 

forest model was used in modeling the BDT/RF.  

Figure 1. Optimal Leaf Size 

Figure 2. Variable Selection/Importance 

 

Neural Network Model 
 

Neural networks have been touted as being one of the 

models suitable for nonlinear regression. There are three 

main types of neural networks: feedforward neural network 

(FFNN), radial basis function, and recurrent neural net-

works. In this study, an FFNN was developed as another 

SML technique. Three main steps are typically used for 

modeling a multilayer FFNN [16]:  

 Designing the network 

 Training the network 

 Testing the validity of the model  

Figure 3. Determining the Number of Trees to Grow 

 

Figure 4 illustrates the network architecture used in the 

FFNN modeling. 

 

A multilayer FFNN involves one or more additional lay-

ers of hidden nodes placed between the input and the output 

layers, unconnected to both the input and output layers. 

Multilayer perceptrons allow nonlinearity to be incorporated 

into the model [21]. Designing a multilayer FFNN involves 

selecting or defining the number of layers and neurons to be 

used in each layer. In addition, transfer functions needed to 

convert the output from each input layer must also be de-

fined.  

 

These include the hyperbolic tangent sigmoid, logistic 

sigmoid, and linear functions [22, 23]. An optimization or 

training algorithm is needed to train the model during the 

backward iteration process, where the input parameters 

(biases and weights) of the feedforward process are revised 

to minimize the errors between the output of the feedfor-

ward process and the target value of the original output data, 

in this case the response variable. The optimization algo-

rithms that may be used in FFNN include the Levenberg-

Marquardt (LM), scaled conjugate gradient, and Bayesian 

regularization. Mean square error, root mean square error 

(RMSE), or mean absolute error (MAE) may be used as 

error functions that need to be minimized during the optimi-

zation process. They are defined mathematically, as given in 

Equations (3-5), respectively.  
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(3) 

 

 

(4) 

 

 

(5) 

 

 

where, N is the forecasting horizon, Yt is the average wind 

speed at time period t measured at the given geographical 

location, and is the predicted wind speed from the mod-

el. 

 

Once the architecture of the FFNN model has been de-

signed, the model could be trained using the selected opti-

mization algorithm (LM in this case), to optimize the select-

ed error function and, hence, the weights and biases of the 

training data. The LM algorithm was selected because it is 

much more efficient [24]. The trained network was tested 

using a new set of data to determine a good balance between 

accuracy and generalization. The choice of the number of 

neurons to use in the hidden layers is an art rather than 

mathematics. When the number of neurons in the hidden 

layer is small, then the correlation of the output and input 

cannot be correctly studied, thereby resulting in increased 

error. On the other hand, an unnecessarily large number of 

neurons will lead to irrelevant noise to be added to the cor-

relation, causing the error to grow [22, 25, 26]. In this study, 

the trial-and-error approach was used to determine the opti-

mal number of neurons, by increasing the number, training 

the model, and observing the corresponding mean square 

error.  

 

Several network architectures were designed and tested. 

The resulting MSE and R-values of both training and testing 

of the models were recorded. The optimal architecture (i.e., 

model with the optimized error functions) is the one that 

used all of the input variables in the model. Based on this, 

FFNN architecture 8-50-50-50-1 was developed as the final 

model (see Figure 4), whose performance is shown in Fig-

ures 5 and 6.  

 

Regression SVM Model 
 

Vapnik [27] developed the foundations of SVMs. Its at-

tractiveness for predictive modeling stems from the fact that 

it is based on the principle of structural risk minimization 

(SRM), which is superior to empirical risk minimization 

(ERM), as employed in traditional neural networks [28]. As 

a consequence, SVM has a better generalization error than 

models based on ERM. Another attraction of SVM is that, 

unlike most data-driven techniques, such as NN, which has 

no functional forms, it has a functional form similar to mod-

el-driven traditional techniques like linear regression or 

ARIMA. While the exact nature of the functional form of 

model-driven techniques has to be assumed a priori, this 

assumption is not necessary in SVM. Also, like other data-

Figure 4. FFNN Model Architecture 
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driven models, SVM can handle complex and nonlinear 

relationships [29]. A comparison of SVM and NN carried 

out by Liong and Sivapragasam [29] to forecast flood levels 

found that the SVM model outperformed the NN model. 

Originally developed to solve classification problems, the 

SVM technique has since been extended to solve regression 

problems, which is the emphasis of this paper.  

Figure 5. FFNN Model Validation—Goodness-of-Fit  

Figure 6. FFNN Model Validation—Residual Analysis  

 

When dealing with nonlinear functions, SVM maps the 

input data, x, in input space, onto a high-dimensional fea-

ture space through a nonlinear mapping function,  This 

allows a linear regression to be performed in the feature 

space [27–31]. The final decision function for implementing 

nonlinear regression using SVM can then be given as in 

Equation (6): 

 

(6) 

 

where, K(x1, x2) = i, j = (x1)  (x2) is a kernel func-

tion, i, i
* are Lagrange multipliers, b is a bias, and l is the 

number of training data.  

 

Datasets corresponding to nonzero Lagrange multipliers 

are referred to as support vectors. The use of kernels allows 

the mapping of the input data into a feature space to be done 

implicitly and makes it possible for training a linear ma-

chine in such. This overcomes the otherwise computational-

ly intensive evaluation of the feature space [27-29]. Accord-

ing to Vapnik [27], any function that satisfies Mercer‘s con-

dition can be used as a kernel function. Typical kernel func-

tions include exponential radial basis function (RBF), 

Gaussian RBF, and polynomial kernels. The Gaussian RBF 

kernel was used in this study and is shown in Equation (7): 

 

(7) 

 

where,  is a tunable parameter (width of RBF) of the 

Gaussian RBF kernel.  

 

The steps involved in developing an SVM regression in-

clude 

 Dividing the data into training and testing sets  

 Training the model using the training set. During the 

training, part of the training data may be set aside for 

validation of the trained model 

 Testing the trained model using a new set of test data  

 Using the model for prediction 

 

In this current study, 70% and 30% of the data, respec-

tively, were training and testing data sets. Selecting an ap-

propriate kernel function is a prerequisite for successfully 

training an SVM model. Kernel functions that may be used 

for nonlinear modeling [27, 28] include the Gaussian RBF, 

exponential RBF, and polynomial kernels. The optimization 

is done using the sequential minimization optimization 

(SMO) solver in MATLAB. This has been found to yield 

optimal results without compromising the time for training 

the model. Other solvers such as the iterative single data 

algorithm (ISDA) did not improve the results and also took 

longer to train. A pattern search global minimization algo-

rithm using 10-fold cross-validation was used to train the 

model to obtain the optimal SVM parameters—Kernel scale 

and upper bound. In this study, several kernels were tested, 

and the corresponding model with the optimal MSE for 

training, testing, and prediction was selected.  

     *

1

,
l

i i i

i

f x K x x b


    

    2
2, / 2i j i jK x x exp x x   
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The Gaussian RBF was selected because it has a mini-

mum prediction error of 0.0522 for one-day-ahead wind 

speed prediction. While the polynomial kernel of order five 

produced the lowest training and testing errors, 0.0079 and 

0.3197, respectively, its prediction accuracy for one day 

ahead of 0.1227 was not better than that of the Gaussian 

RBF (0.0522).  

 

Results and Discussion 
 

This study compared three main supervised machine 

learning (algorithmic) models to predict short-term wind 

speed (i.e., 24-hr or one-day-ahead average wind speed, in 

ms-1). An ensemble model (BDT/RF), an FFNN model, and 

a regression SVM model were developed and used for the 

comparative analysis. Figures 7-9 depict the plots of the 

actual and the predicted hourly mean daily wind speeds for 

each of the three models.  

Figure 7. Predicting Mean Daily Hourly Wind Speed using 

Bagged Decision Tree (BDT)/Random Forest (RF) 

 

As these figures show, all of the models seem to predict 

mean daily wind speed very well using the original data 

(January 1 – December 31, 2014) that were used in develop-

ing the models. The story is, however, very different when it 

comes to predicting with data that are new to the models. 

The efficacy of the models and their prediction accuracy 

were measured using MSE, RMSE, and MAE and may be 

expressed mathematically, as given in Equations (3-5). 

 

Short-Term Prediction of Wind Speed 
 

Table 1 depicts the accuracy of the developed models for 

predicting one-day-ahead mean hourly daily wind speed at 

an elevation of 50 m in Greensboro, NC, on January 1, 

2015. The prediction accuracy for the BDT/RF model was 

the best, followed by the SVM. The prediction from the 

FFNN was very poor, in this case, compared with the en-

semble method (BDT/RF) and SVM.  

Figure 8. Predicting Mean Daily Hourly Wind Speed using 

Feed Forward Neural Network (FFNN) 

Figure 9. Predicting Mean Daily Hourly Wind Speed using 

Regression Support Vector Machines (SVM) 

 
Table 1. Prediction of One-Day-Ahead Hourly Mean Daily 

Wind Speed in Greensboro, NC, for January 1, 2015  

WIND SPEED 

(m/s) 

MODEL 

BDT/RF FFNN SVM 

Actual 1.1309 1.1309 1.1309 

Predicted 1.1172 1.8700 1.0335 

Prediction Error 0.0137 -0.7391 0.0974 



——————————————————————————————————————————————–———— 

 

The models were also used to predict wind speed (hourly 

and average daily) four days ahead, January 1-4, 2015. Fig-

ure 10 depicts the plots of the actual and the predicted hour-

ly mean daily wind speed, for the BDT/RF, FFNN, and the 

regression SVM techniques, respectively. 

Figure 10. Predictions of Four-Day-Ahead Mean Daily Wind 

Speed of the Models 

 

Table 2 gives the prediction errors for one-day-ahead 

hourly mean daily wind speed, as measured by the MAE, 

MSE, and  RMSE, for each of the models.  

 
Table 2. One-Day-Ahead Hourly Prediction Errors of the 

Predictive Models 

From the table, it is clear that, based on MAE, MSE, and 

RMSE, the ensemble method (BDT/RF) and SVM model 

depict better prediction accuracies than the FFNN model. 

Figure 11 illustrates the four-day-ahead prediction MSEs for 

the models and confirms the strength of the ensemble tech-

niques and SVMs in predicting wind speed as compared to  

the neural network. 

 

The previous figures and tables confirm that the ensemble 

method (BDT/RF), and the SVM are better for predicting 

short-term wind speed than the FFNN. FFNN models, like 

most neural network models, normally do show smaller 

errors (better prediction) when predicting data used in de-

veloping the models (refer to Figure 8). They are, however, 

weak in predicting new data different from the original data 

used in developing the models (see Figures 10 and 11). This 

is where the ensemble techniques and SVM have their 

strengths.  

Figure 11. BDT/RF Prediction of Four-Day-Ahead Mean Daily 

Wind Speed 

 

In Figures 7-9, while the FFNN model seems to have a 

lower prediction error when the prediction data come from 

the original data used in developing the model, its generali-

zation error for data the model has never seen before 

(Figures 7-11) tends to be higher than both the BDT/RF and 

SVM models. In other words, the ensemble method and 

regression SVM are better predictors (see Table 1) than the 

FFNN, due to better generalization errors. Another point to 

note is that, while the models from the ensemble method 

and the SVM seem to predict very well in one-day-ahead 

scenarios (or 24-hour period), their accuracy deteriorates as 

the forecasting horizon increases, but the FFNN model dete-

riorates much faster than the ensemble and SVM tech-

niques.  

 

Conclusions 
 

Given the high variability of wind resources over time, 

their prediction in day-ahead energy markets becomes very 

important. In addition, wind speed is related to wind power 

nonlinearly as a cubic function, making the accurate predic-

tions of the former an essential condition for accurately pre-

dicting the latter. Because of these, traditional methods such 

as linear regression and autoregressive integrated moving 

average models are not very appropriate in predicting wind 

resources in the short-term. In this study, the authors ex-

plored use of supervised machine learning techniques such 

as random forests (BDT/RF), a feedforward neural network 

(FFNN), as well as support vector machines (SVM) for pre-

MEASURE 
MODEL 

BDT/RF FFNN SVM 

MAE 0.1945 0.7426 0.2047 

MSE 0.0519 0.7878 0.0522 

RMSE 0.2277 0.8876 0.2284 
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dicting short-term wind speed one day (24 hours) ahead. 

While the BDT/RF and SVM methods give better prediction 

accuracies in day-ahead prediction, the FFNN was deemed 

not to produce better results, as measured by the mean 

square errors of the predicted wind speed. This could be 

attributed to the fact the neural networks employ empirical 

risk minimization and, hence, can give better model accura-

cy, but when it comes time for predicting with data the 

model has not seen before, they falter on generalization ac-

curacy. Future work should consider using other neural net-

work techniques such as radial basis function and recurrent 

neural networks.  
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Abstract  
 

Breast cancer is a malignant tumor commonly found in 

women but rarely in men. A family history analysis and 

genetic test can identify the presence of a potential carrier of 

the gene behind hereditary breast cancers. In this paper, the 

authors discuss a software program that can predict inherita-

ble breast cancer. This program can predict the mutation 

risk in the next generation after analyzing the inheritance 

pattern of the mutated genes. The software tool combines 

National Comprehensive Cancer Network (NCCN) guide-

lines of BRCA1/BRCA2, TP53, and PTEN gene mutations. 

This tool could help people outside the medical field, who 

have the least knowledge about breast cancer and genetic 

inheritance, and help them to identify the presence of the 

mutated gene. The software tool was developed using Ja-

vaScript, HTML, and CSS.  

 

Introduction  
 

Medical data stored in computers present many promising 

advantages in medical research. Thus, research that exploits 

medical data brings new advancements in medical systems. 

In this computer-driven world, genome mapping and medi-

cal technology have made it possible to get genetic infor-

mation at a low cost, which was not possible earlier. There-

fore, exploiting these advancements brings new possibilities 

to assess a person‘s risk factors for any disease that is inher-

ited or related to a genetic defect. As the years go by, family 

health history stored in computers provides better assess-

ments, accuracy, and standardization in forecasting diseases. 

Combining all known diseases, symptoms, and diagnoses 

helps medical practitioners to determine and forecast diseas-

es in current and subsequent generations. A family history 

gives a report about a person and his or her relatives [1]. 

Families have many common factors, such as genes, life-

style, environment, and ethnic background. These common 

factors can relate to some medical conditions that run in 

families. One can use genetic reports, family history, medi-

cal reports, and lab reports to forecast a person‘s probability 

of developing inheritable diseases [2, 3]. Study and research 

about cancer is on the rise for various reasons. The World 

Health Organization (WHO) estimates significant growth in 

cancer patients worldwide, and cancer is poised to overtake 

heart disease as the world‘s top killer. Cancer screening can 

detect early symptoms of cancer. Everyone has the risk of 

developing cancer in his or her lifetime. The factors behind 

developing cancer include age, lifestyle, chemicals, radia-

tion, genetics, immune system, and infection [4,5]. Most 

cancers are non-hereditary, and inherited genetic defects 

commonly cause hereditary cancers [5]. Hereditary cancer 

is associated with highly penetrant genes and passes to the 

next generation through different inheritance patterns [2]. It 

can be predicted earlier based on a pedigree analysis [6]. A 

pedigree is a chart or diagram of family history analysis that 

includes parents, grandparents, and previous generations 

and checks for the occurrence of any inherited diseases. 

  

A family history analysis and genetic test can identify the 

potential carrier gene behind breast cancer [7]. The risk fac-

tors involved with breast cancers are age, gender, genetic 

factors, family history, race/ethnicity, and habits [8]. Breast 

cancer occurs more often in females than in males because 

of female hormones like estrogen and progesterone, which 

help cancer cell growth. The risk of developing breast can-

cer increases with age [9]. 

   

Related Work 
 

The presence of a mutated breast cancer gene is detecta-

ble in any person based on the information gathered from a 

family history [3,7]. Family health history plays a major 

role in determining the risk factors, as it gives a link to he-

reditary, environmental, cultural, and behavioral factors of 

the entire family [7]. Collecting data from close relatives is 

necessary for determining the risk. Small families may limit 

risk prediction. Several hereditary cancers might be perfect 

to include in a family history tool as they can be predicted 

with higher accuracy through a pedigree analysis. Prediction 

of diseases like hereditary breast, ovarian, colorectal, and 

prostate cancers have a high degree of accuracy if devel-

oped based on family history [10]. Mutated genes such as 

BRCA1, BRCA2, PTEN, and TP53 put the individual at a 

high lifetime risk of breast cancer [11]. There are other 

genes, such as PALB1, BRIP, and LKB1, behind breast 

cancer, which contribute moderate risk. However, BRCA1, 

BRCA2, TP53, and PTEN are the genes considered most 

often for clinical studies [12]. 

 

Both the BRCA1 and BRCA2 genes are responsible for 

protein involvement in tumor suppression. BRCA1 is locat-

ed on chromosome 17 and is involved in the repair and reg-

ulation of DNA damage. The BRCA2 gene is located on 

A SOFTWARE TOOL TO PREDICT THE RISK OF 
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chromosome 13 and is involved in DNA breaks and repairs 

[13]. Both genes exhibit high penetrance, ranging from 41% 

to 90% [14], with increased risk of other related cancers 

such as ovarian cancer, epithelial cancer, pancreatic cancer, 

and prostate cancer. Male carriers of the BRCA gene confer 

high risk of breast cancer, especially if the gene is BRCA2 

[15]. The risk of breast cancer increases if the person has 

close blood relatives having breast cancer. The risk increas-

es as the number of affected relatives increases and varies in 

accordance with people‘s race and ethnicity [16]. A woman 

who is an Ashkenazi descendant has more risk of develop-

ing breast cancer if she is a carrier of the mutated genes 

BRCA1 and BRCA2 [16].  

 

PTEN is a tumor suppressor gene that regulates normal 

cell processes including growth, adhesion, migration, inva-

sion, and apoptosis [17]. Approximately 80% of patients 

carry the mutated PTEN gene if they meet NCCN clinical 

criteria for Cowden syndrome [15, 18]. Women identified 

with Cowden syndrome have a high risk of benign fibrocys-

tic breast diseases, and their lifetime risk of breast cancer is 

estimated at 25%-50% with an average age between 38 and 

46 years at diagnosis [15]. 

  

The tumor protein TP53 is another gene that causes breast 

cancer, which is common in women with Li-Fraumeni syn-

drome (LFS) [15]. There are different tumors associated 

with the LFS syndrome [19]. The LFS tumor spectrum in-

cludes soft tissue sarcoma, osteosarcoma, pre-menopausal 

breast cancer, brain tumors, adrenocortical carcinoma, leu-

kemia, and lung bronchioloalveolar cancer (LFS tumor 

spectrum) [15]. The lifetime risk of breast cancer in a wom-

an with the TP53 gene is 49% by the age of 60 [20]. Ac-

cording to clinical studies, a patient with invasive breast 

cancer and no family history of a core cancer has a 0% 

chance of having the p53 mutation. However, a person with 

breast cancer under age 30 and a family history of one or 

more core cancers in a first- or second-degree relative has a 

100% chance of having the p53 mutation [20]. 

 

Many software programs are available for assessing 

breast cancer risk and screening. Based on the Gail model, 

scientists at the National Cancer Institute (NCI) have devel-

oped the Breast Cancer Risk Assessment Tool (http://

www.cancer.gov/BCRISKTOOL) [21]. The IBIS tool (the 

international breast cancer intervention study, also called 

the Tyrer-Cuzick model) is used to calculate a person‘s like-

lihood of carrying the BRCA 1 or 2 mutations, which are 

associated with increased breast cancer risk (http://

www.ems-trials.org/riskevaluator) [22]. The Myriad II risk 

assessment tool (http://www.myriadpro.com/brca-risk-

calculator/calc.htm) was developed based on empirical data 

from 10,000 women with germline mutations in BRCA1/

BRCA2 genes [23]. BOADICEA is another tool used in 

conjunction with MENDEL, pedigree software (http://

ccge.medschl.cam.ac.uk/boadicea/advice-for-the-public/), 

which estimates the risks of breast and ovarian cancer in 

women [15]. This is a free Web-based tool (http://

www.afcri.upenn.edu/itacc/penn2/) that uses logistic regres-

sion based on pedigrees from Europe and North America 

[24]. The Breast Cancer Surveillance Consortium (BCSC) 

risk calculator was created by participating scientists 

(https://tools.bcsc-scc.org/BC5yearRisk/intro.ht) [25]. The 

Hall Detailed Breast Risk Calculator is another open source 

breast cancer risk calculator designed by Dr. Halls (http://

halls.md/breast/risk.ht) [26]. This risk assessment tool in-

cludes many factors not included in the Gail model. 

 

These tools have many limitations and only consider the 

BRCA1 or BRCA2 mutations. None of the existing breast 

cancer tools available considers other high-risk genes such 

as PTEN and TP53 [27] and related diseases [12]. Many of 

the existing tools are proprietary and not available to the 

general public and were developed from data collected from 

particular demography or ethnicity, and many of these tools 

do not consider third-degree relatives and family history. 

This software program combines BRCA1/BRCA2, TP53, 

and PTEN gene risk. It was developed based on the NCCN 

guidelines to predict BRCA1, BRCA2, TP53, and PTEN 

mutation risk.  

 

The NCCN is an association of 25 global leading cancer 

centers. The association develops guidelines for most can-

cers and updates by 47 individual panels, including over 

950 clinicians and oncology researchers from 25 member 

NCCN institutions. The panel members include clinicians 

and researchers from a number of academic disciplines. 

According to NCCN guidelines [15], ―It should be empha-

sized that these guidelines were not developed as a substi-

tute for professional genetic counseling. Although, cancers 

other than breast and ovarian cancers are associated with 

these hereditary syndromes, the main focus of this NCCN 

Guidelines is on the management of breast and ovarian can-

cer risk in these individuals.‖ 

 

Proposed Design for the Software Tool 
 

Figure 1 shows the proposed block diagram of the pro-

gram. This software tool considers different possibilities, 

including inheritance pattern, family history assessments, 

and medical reports, to generate the program. As described 

earlier, this program has three sections (BRCA1/BRCA2 

checking, TP53 checking, and PTEN mutation checking). 

Figure 1 shows how the program analyzes personal history, 

family history, and already known mutation conditions. The 

program checks individual known mutation history, 
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personal history, and family history for BRCA1/BRCA2, 

TP53, and PTEN gene mutations. The results contain the 

risk of passing on the mutation risk, or getting cancer, to the 

next generation. The family history includes first-, second-, 

and third-degree relatives‘ health history. Different models 

and software programs have been developed to predict the 

risk of breast cancer [28, 29]. Existing tools for checking 

hereditary breast cancer only consider the BRCA1/BRCA2 

genes. However, these tools do not consider other genes 

such as TP53 and PTEN that are risk factors in breast can-

cer. Some of the tools do not consider family history. This 

software program includes PTEN and TP53 genes and con-

siders first-, second-, and third-degree relatives. 

Figure 1. Proposed Design for the Software Tool 

 

Software Tool 
 

The backbone of this software program includes the 

NCCN guidelines. The program analyzes the inheritance 

pattern of the gene to check the risk of cancer in the next 

generation. Based on the guidelines, the analysis was divid-

ed into three sessions: 1) hereditary breast/ovarian cancer 

syndrome analysis; 2) Li-Fraumeni syndrome analysis; and, 

3) Cowden syndrome analysis. These three are related to 

germline mutations of BRCA1/BRCA2, TP53, and PTEN 

gene mutations and have a high impact on hereditary breast 

cancer diagnoses. 

 

Hereditary Breast/Ovarian Cancer  

Syndrome Analysis 
 

The logical flowcharts for checking hereditary breast and 

ovarian cancers are explained in this section. This part 

would check different criteria defined by the NCCN to de-

tect the presence of the BRCA1/BRCA2 genes. Based on 

NCCN guidelines, the analysis of the flowchart was divided 

into three sections: 1) individuals with already known or 

diagnosed BRCA1/BRCA2 mutations; 2) checking the per-

sonal history of different types of cancer histories such as 

breast cancer, epithelial ovarian cancer, male breast cancer, 

pancreatic or prostate cancer, and Ashkenazi ancestry; and, 

3) checking family history of the person. 

 

1) Persons with a known mutation: This part will check 

whether an individual has already been diagnosed with 

BRCA mutations or if he or she has a known personal/

family history of a BRCA1/BRCA2 mutation. 

  

2) Personal history: The program analyzes the personal 

history of cancers related to the BRCA1 and BRCA2 

mutations. This section was divided into four subsec-

tions: (a) personal history of breast cancer, (b) epithelial 

ovarian cancer, (c) male breast cancer, and (d) pancre-

atic or prostate cancer. 

(a) The personal history of breast cancer was divided 

into four different age groups: 45 and under, 50 

and under, 60 and under, and diagnosed at any age. 

The tool considers the result positive (at risk) if 

any individual with a personal history of breast 

cancer meets any of the following criteria: 

 Diagnosed at the age of 45 or under. 

 Diagnosed at the age of 50 or under and having 

two breast primaries or with one or more close 

relatives with breast cancer at any age or with 

unknown family history. 

 Diagnosed at the age of 60 or under with triple-

negative breast cancer. 

 Diagnosed at any age with one or more close 

relatives with breast cancer diagnosed at the 

age of 50 years or younger OR with a relative 

with epithelial cancer at any age OR two or 

more relatives with pancreatic cancer or pros-

tate cancer OR having a close relative with 

male breast cancer OR belonging to Ashkenazi 

ancestry. 

 

Figure 2 shows the procedures of personal history analy-

sis of BRCA1 or BRCA2 mutation risk. 

(b) A person diagnosed with epithelial cancer at any 

age will be at risk of hereditary breast cancer. 

(c) Personal history of male breast cancer is a potential 

factor related to hereditary breast cancer. Men with 

breast cancer are more susceptible to the BRCA2 

gene mutation than the BRCA1 mutation. The life-

time risk of breast cancer with the BRCA2 gene is 

6% by the age of 70, but only 1% with the BRCA1 

gene. 
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Figure 2. Flowchart—BRCA1/BRCA2 Personal History Analysis 
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(d) Men with BRCA1 or BRCA2 mutations have a 

higher risk of developing prostate cancer. Both 

men and women with BRCA1 or BRCA2 muta-

tions have a higher risk of pancreatic cancer. The 

result will be ―at risk‖ if the person has a personal 

history of prostate cancer or pancreatic cancer at 

any age, and has two or more close relatives with 

breast, ovarian, pancreatic, or prostate cancer. For 

pancreatic cancer, if the person belongs to Ashke-

nazi Jewish ancestry, only one affected relative is 

sufficient to put the person at risk [15]. 

 

3) Family history: In the next section, the program checks 

the family history. The tool examines the family history 

and determines the risk based on frequency of cancer 

appearing in first-, second-, or third-degree relatives. 

The output is stored based on the analysis of the family 

history. This section was separated into two parts in 

order to qualify the different conditions for the diagno-

sis: 

(a) First- or second-degree relatives, who satisfy the 
conditions. 

(b) Third-degree relatives with breast cancer and/or 

ovarian cancer with two or more close blood rela-

tives with breast cancer (one at least before the age 

of 50) or ovarian cancer. 

 

After collecting the information about already known or 

diagnosed mutations of the BRCA1/BRCA2 gene, the pro-

gram checks the personal history for breast cancer. To do 

this, the flowchart was divided into four groups, based on 

different age categories. The risk criteria are met if the per-

son is under age category ‗a‘ (age <= 45) and there are no 

additional criteria needed to satisfy the ‗at risk‘ condition. 

The criteria are met if the person is under or at the age of 50 

and if he or she has any additional primary breast cancers or 

more than one close blood relative with breast cancer. The 

person is at risk if he or she has an unknown family history. 

The result is stored if the person is identified as having a 

triple-negative breast cancer and is under the age of 60. For 

the at-any-age category, the criteria are met if there is more 

than one close blood relative with breast cancer at age 50 or 

younger, has more than two close blood relatives with 

breast cancer at any age, has more than one close blood rel-

ative with male breast cancer, or has more than one close 

blood relative with pancreatic or prostate cancer. The result 

is stored if the person belongs to Ashkenazi ancestry and if 

the person has a personal history or family history of breast 

or prostate cancer. After checking the personal history for 

pancreatic or prostate cancer, the family history of breast, 

ovarian, pancreatic, and prostate cancers is checked. If two 

or more relatives from the same side of the family are af-

fected with any of these cancers, the result is stored as ―at 

risk.‖ For pancreatic cancer, if the person belongs to Ashke-

nazi ancestry, then only one affected relative is needed to 

meet the criteria. 

 

After collecting the information of already known or di-

agnosed gene mutation, the relative‘s family history is 

checked. For that, the flowchart collects the information 

about first- or second-degree relatives‘ personal history of 

breast cancer. Checking personal history of breast cancer 

was divided into four categories based on age group. The 

information is collected separately for different age catego-

ries. After that, the flowchart checks if the person has a his-

tory of epithelial ovarian cancer. Next, it checks for the 

presence of pancreatic and prostate cancer and if there is a 

history of male breast cancer. If the person has a first- or 

second-degree relative with these cancers, the result is 

stored and entered into the next section.  

 

To check a third-degree relative‘s family history, a differ-

ent method was followed. If a third-degree relative is identi-

fied with breast or ovarian cancer, the flowchart checks the 

number of other relatives identified with breast or ovarian 

cancer on the same side of the family. The result is stored as 

‗at risk‘ if there are more than two people identified with 

breast or ovarian cancer (one at least before the age of 50). 

The risk of breast cancer increases if the person has close 

blood relatives with a history of breast cancer. Figure 3 is an 

image of the software program checking personal history of 

breast cancer; Figure 4 shows the flowchart of a family his-

tory analysis. The same steps that were used for checking 

personal history analysis are used to check the family histo-

ry (only for first- or second-degree relatives) analysis. The 

risk increases as the number of affected relatives increases 

and varies with people‘s race and ethnicity. The next section 

analyzes Li-Fraumeni syndrome (TP53). 

 

Li-Fraumeni Syndrome Analysis  
 

At this stage, the software tool checks the presence of the 

Li-Fraumeni syndrome (LFS), as breast cancer is common 

in these women. The flowchart to check the TP53 mutation 

(LFS) is given in flowchart section b. The program can be 

divided into four parts based on different checking criteria. 

In this section, the software tool checks four different condi-

tions: 1) an individual with known mutations; 2) classic LFS 

criteria; 3) Chompret criteria; and, 4) early age onset crite-

ria. Figure 3 shows how the analysis was done. 

 

1) Individual from a family with known mutation: In this 

part, the program checks to see if the individual is from 

a family that has already been diagnosed with the muta-

tion of TP53. If the individual already has the mutation 

of TP53, then the program would consider the person at 
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Figure 4. Flowchart—BRCA1/BRCA2 Family History Analysis 
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risk and enter into the next section after storing the re-

sult.  

Figure 3. Personal History Analysis—BRCA1/BRCA2 

 

2) Checking classic LFS criteria: To meet NCCN criteria 

for classic LFS criteria, the person should satisfy all 

three of the following conditions:  

(a) The individual was diagnosed with sarcoma 

(cancer related to connective tissues) before the 

age of 45 years. 

(b) The individual has a first-degree relative with can-

cer, and it was diagnosed before the age of 45. 

(c) The individual has one or more first- or second-

degree relatives with cancer diagnosed before the 

age of 45 or with a sarcoma at any age. 

  

3) Checking Chompret criteria: This part of the program 

analyzes the following three conditions. If any of the 

conditions are met, the output is stored, and the program 

exits from the section. 

(a) The individual has a tumor from the LFS tumor 

spectrum (soft-tissue sarcoma, osteosarcoma—

cancer develops in the bone—brain tumor, breast 

cancer, adrenocortical carcinoma, leukemia, lung 

broncho alveolar cancer) before 46 years of age, 

and one or more first- or second-degree relatives 

with cancers that are included in the LFS spectrum 

before the age of 56 years or with multiple prima-

ries at any age. 

(b) The individual has multiple tumors with at least 

two of them belonging to the LFS spectrum and 

diagnosed before the age of 46 years. 

(c) The individual was diagnosed with adrenocortical 

carcinoma (a cancer that begins at the outer layer 

of the adrenal gland) or choroid plexus carcinoma 

(a tumor that arises from brain tissues) at any age 

of onset, regardless of the family history. 

  

4) If the individual was diagnosed with breast cancer be-

fore the age of 35, he or she is a person at risk of TP53 

mutation.  

 

Figure 5 is an image of the software program, and Figure 

6 represents the flowchat for TP53 analysis.  

Figure 5. TP53 Analysis 

 

As Figure 6 shows, the information is collected if the per-

son already has a TP53 mutation. In the next step, it checks 

whether the person meets classic LFS criteria or not. In or-

der to check the classic LFS criteria, the flowchart checks if 

the person has a sarcoma before the age of 45. If the person 

has been diagnosed with sarcoma, a check is made of the 

first or second relative‘s history of cancer before the age of 

50. If the first- or second-degree relative has cancer, it 

checks the additional relative‘s history of cancer. The result 

will be stored as ―at risk‖ if all three criteria have been met. 

Next, the procedure enters into the Chompret criteria section 

and starts by identifying an individual with a tumor that 

belongs to the LFS tumor spectrum before the age of 46. 

The LFS tumor spectrum includes sarcoma, brain tumor, 

breast cancer, leukemia, adrenocortical carcinoma, and lung 

broncho alveolar cancer. Next, the relative‘s history of LFS 

tumors (including breast primaries) is checked if the indi-

vidual is identified as having LFS tumors. After that, it 

checks whether the individual has multiple tumors and if 

two or more of them belong to the LFS spectrum or not. If 

yes, the result is stored as ―at risk.‖ In the final step, the 

flowchart checks to see if the individual has been diagnosed 

with adrenocortical carcinoma or Choroid plexus carcino-

ma. 

 

In the next step, the flowchart checks if the person had 

been diagnosed with breast cancer before or at the age of 

35. If the person meets the criterion, he or she is at risk of 

both TP53 and BRCA gene mutations. The result is collect-

ed and the program enters into PTEN mutation analysis. 
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Figure 6. Flowchart—Tp53 Analysis  

Cowden Syndrome Analysis 
 

In this part, the program checks the PTEN (Cowden syn-

drome) mutation. The Cowden syndrome is related to muta-

tions in the PTEN gene. In order to calculate the risk, the 

flowchart checks four criteria. There are major and minor 

criteria that, if satisfied, would identify the person to be at 

risk. Major criteria include breast cancer, endometrial can-

cer, Follicular thyroid cancer, multiple GI hamartomas or 

ganglioneuromas, macrocephaly (58 cm in adult women, 60 

cm in adult men), macular pigmentation of glans penis, and 

mucocutaneous lesions with one biopsy-proven 

trichilemmoma, or multiple palmoplantar keratosis or multi-

focal or extensive oral mucosal papillomatosis or multiple 

cutaneous facial papules. Minor criteria include esophageal 

glycogenic acanthoses, lipomas, mental retardation, papil-

lary or Follicular variant of papillary thyroid cancer, thyroid 

structural lesions, renal cell carcinoma, single GI hamarto-

ma or ganglioneuroma, testicular lipomatosis, or vascular 

anomalies. 

 

First, the flowchart (see Figure 7) checks to see if the per-

son already has the PTEN gene mutation and then the result 

is collected. In next step, if the individual meets the clinical 

diagnostic criteria for CS/PHTS, the information is collect-

ed. After that, it checks the personal history of Bannayan-
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Riley-Ruvalcaba syndrome, and the information will be 

stored if identified. Next, the flowchart enters into a check 

of personal history for adult Lhermitte-Duclos disease, and 

the result will be stored if the person has or had a history of 

the disease. Then, it checks the personal history for autism 

spectrum disorder and macrocephaly condition. After that, it 

checks for the presence of two or more biopsy-proven 

trichilemmomas as well as if the person meets three major 

clinical diagnostic criteria without macrocephaly.  

 

Next, the flowchart enters into the identification of two or 

more major criteria with macrocephaly or whether the per-

son meets one major criterion and more than three minor 

criteria. In the next step, the flowchart checks whether the 

individual meets more than four minor criteria or not. The 

result is stored if any of the individual‘s family members 

meet one major criterion and two or more minor criteria. In 

the final section, the results stored from different sections 

are combined and displayed. The final output gives a sepa-

rate report based on the three sections. 

 

Figure 7 represents the flowchart to check the PTEN mu-

tation. Figure 8 is a screenshot of the PTEN analysis sec-

tion. Figure 7 shows how the program checks individual 

known mutation history, personal history, and family histo-

ry. The major and minor criteria dropdowns include differ-

ent clinical criteria for PTEN gene testing.  

 

The program has four sections: 1) an individual from a 

family with an already known mutation, 2) an individual 

meeting clinical diagnostic criteria, 3) an individual with 

personal history and other NCCN criteria, and 4) an individ-

ual with a close blood relative meeting NCCN criteria.  

 

1) First, the flowchart will check if the individual has a 

known mutation of the PTEN gene. 

 

2) An individual with a personal history of any of the fol-

lowing diseases: 

(a) Bannayan-Riley-Ruvalcaba syndrome 

(b) Adult Lhermitte-Duclos diseases 

(c) Autism spectrum disorder and macrocephaly 

(d) Two or more biopsy-proven trichilemmomas 

(e) Two or more major criteria  

(f) Three major criteria, without macrocephaly 

(g) One major and more than three minor criteria  

(h) More than four minor criteria 

 

3) The program checks the family history of close blood 

relatives with any one or more major criteria or two or 

more minor criteria. The program stores the test results 

before starting the next section. Figure 8 is an image of 

the PTEN analysis program. 

Figure 8. PTEN Analysis 

 

 Forecasting Cancer in Future Offspring 
 

Children inherit two copies from their parents, one from 

their mother and one from the father. BRCA1/BRCA2, 

TP53, and PTEN genes are not associated with x-linked 

inheritance. Therefore, children can inherit the mutations. 

Offspring of the individual with any of these gene mutations 

can inherit the mutation. As BRCA1, BRCA2, TP53, and 

PTEN genes exhibit autosomal dominant inheritance pat-

tern, there are four possible combinations for the children‘s 

gene copy. As shown in Figure 9, two of the four, or 50%, 

can inherit the mutated genes (aA, aA). The other 50% do 

not inherit the mutated genes (AA, AA). These four combi-

nations are possible every time a pregnancy occurs. The 

gender of the children does not matter. Consider a mother 

who carries the BRCA1 mutated gene, and her partner car-

ries normal genes. In each pregnancy, the chances of a hav-

ing normal child is 50% and the chances of a child with the 

abnormal gene is also 50%. Using this information, one can 

predict the probability of hereditary breast cancer in the 

offspring to be born, if this tool determines the individual  

to be at risk. 

 

Output  
 

In the final session, the output from different sections is 

combined and displayed along with the next generation‘s 

risk, with different outputs based on the different sections. 

The result contains mutated gene risk and breast cancer risk. 

The result also displays the risk of passing mutated genes on 

to the next generation. However, the result is not a substitu-

tion for a professional genetic test. If the individual is at 

risk, the tool recommends a discussion with an oncologist 
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Figure 7. Flowchart—PTEN Analysis 



——————————————————————————————————————————————–———— 

 

for better treatment. This program will have four different 

outputs based on different gene mutation analyses: BRCA1/

BRCA2, TP53, PTEN, and not-at-risk situations. The user 

can print the result and consult an oncologist for further 

assessments and treatments. Figure 10 depicts an output 

scenario of a person, who meets the family history criterion 

of the HBOC syndrome analysis. 

Figure 9. Autosomal Dominant Inheritance Pattern 

Figure 10. Output—BRCA1/BRCA2 Mutation 

 

Figure 11 shows the analysis result from a Cowden syn-

drome or PTEN gene mutation. Figure 12 is a screen image 

of the output of the program for a user who met the TP53 

mutation criteria. Figure 13 represents the output for a user 

who does not meet any criteria. 

 

Features of the Program 
 

The program 

 includes PTEN and TP53 genes: This tool includes 

high-risk TP53 and PTEN genes; none of the existing 

breast cancer tools available considers these high-risk 

genes. 

 takes into account ovarian, prostate, and pancreatic 

cancer history. 

 includes Ashkenazi Jewish history. 

 is available to the public: many of the existing tools 

are proprietary and are not available to the public but 

this tool is open source. 

 is user-friendly: this is a very easy-to-use software 

tool and any person with basic knowledge in comput-

er operation can easily use it. 

 is easy to understand: It is easily understood by peo-

ple who have little breast cancer awareness. 

 has universal acceptance: This tool was designed 

based on NCCN guidelines and is not restricted to a 

set of people based on their demography or ethnic 

group. The guidelines were developed in coordina-

tion with 25 global leading cancer centers. Most of 

the existing tools were developed based on the data 

collected from a particular demography. 

 includes third-degree relatives: Considers family his-

tory that includes first-, second-, and third-degree 

relatives. Many tools available do not consider third-

degree relatives and family history. 

Figure 11. Output—PTEN Mutation 

Figure 12. Output—TP53 Mutation 
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Figure 13. Output—“not-at-risk” Case 

 

Early detection and screening would help to prevent can-

cer or to find the disease at an early age. Taking drugs 

would prevent or delay cancer onset if the individual is at 

risk of hereditary breast cancer syndrome. For example, 

medicines such as Tamoxifen and Raloxifene lower breast 

cancer risk in the general population [30]. Individuals at risk 

may choose to have surgery to reduce their risk. The indi-

vidual at risk is strongly recommended to have breast or 

ovarian cancer screening, including mammograms, MRI 

exams, ultrasound, and breast exams, performed by a physi-

cian. 

 

Conclusions and Future Work 
 

Predicting disease with computer modeling and mathe-

matical analysis is becoming more popular. Combining all 

known diseases and diagnoses would help medical practi-

tioners to determine and predict diseases in current or next 

generations. As the years go by, family health history stored 

in computers provides better assessments, accuracy, and 

standardization in forecasting diseases. Integrating this tool 

with other common inherited diseases such as cystic fibro-

sis, Down syndrome, type-2 diabetes, inherited heart diseas-

es, or other hereditary cancers, will help both common peo-

ple and medical professionals. The future version will be a 

comprehensive computer software application to predict 

most of the common inheritable and predictable diseases. 

This tool may also include more hereditary and non-

hereditary cancers and be improved to include other moder-

ate-risk genes such as PALB1, BRIP, and LKB1. Other non

-hereditary risk factors such as lifestyle and diet can also 

improve prediction accuracy. A smartphone version of this 

tool can provide anytime access to users. 
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Abstract 
 

In this study, the authors conducted comparative valida-

tion testing and analysis of standard and new air-operated 

diaphragm pump controllers. The experiments compared 

energy consumption of four air-operated double-diaphragm 

(AODD) pumps using conventional air controls with con-

sumption using a new smart supply valve. In all trials and at 

all set points, the new controller reduced diaphragm pump 

air consumption. The air consumption reductions varied by 

pump, but the new controller reduced the AODD mean air 

consumption by 19.9% to 47.8%. The supply air pressure 

and pump fluid flow rates varied but did not significantly 

impact pump performance. The equations developed in this 

study can predict the percentage of air consumption savings 

for new pumps or existing pumps when the fluid flow rate is 

known. 

  

Introduction 
 

The international market size for fluid transfer pumps was 

recently estimated to have exceeded $27.1 billion in 2010 

[1]. This market is dominated by four technologies; centrif-

ugal (62.0%), reciprocating (12.1%), rotary (11.8%), and 

diaphragm (9.4%) pumps [1]. In addition to being the 

―second-most widely used machine in the world,‖ U.S. De-

partment of Energy records show that pumping systems 

account for 27% to 33% of electricity used in the industrial 

sector [2]. Centrifugal and rotary pump designs are com-

monly used to transfer water below 10.34 bar (150spsig), 

while reciprocating pumps are designed to withstand water 

pressures as high as 482.63 bar (7000 psig). Diaphragm 

pumps also transfer water but the technology is geared to-

ward thicker, high-viscosity fluids such as paste, paint, syr-

up, oil sludge, or even pulp and paper slurries. These appli-

cations are generally too severe for the other pump technol-

ogies and left to diaphragm pumps in these manufacturing 

processes and their industrial plants [3]. 

 

AODD Pump: Air-operated double-diaphragm (AODD) 

pumps are especially well-suited for manufacturing process-

es and their ingredient transfer systems. These diaphragm 

pumps feature nominal displacement capacity from 189 to 

757 lpm (50-200 gpm) at nearly 97% volumetric efficiency. 

While the other pump technologies are driven by electric 

motors, AODD pumps use compressed air to power the re-

ciprocating chambers of the pump [4]. Their consumption of 

compressed air is why AODD pumps have traditionally 

been identified as a non-efficient pumping method. 

 

Compressed Air: Nearly all industrial facilities generate and 

consume compressed air. The U.S. Department of Energy 

estimates that 10% of the electricity consumed in an indus-

trial facility is used to generate compressed air, which is not 

very efficient. The overall efficiency of a compressed-air 

system is 10%-15%, so it takes seven or eight electrical 

horsepower to operate a one-horsepower air motor [5]. Nor-

mally considered the most expensive utility in the factory, 

1000 standard cubic feet of air is produced at a cost of $0.15

-0.30. Consumption of compressed air is measured in nor-

mal cubic meters per hour (Nm3/h) [standard cubic feet per 

minute (scfm)]. Data from AODD pump operation indicates 

consumption between 96.45 and 241.12 scNm3/h (60-150 

scfm), averaging $0.0236 per minute. 

  

Compressed Air and AODD Pump Delivery: Operation of 

the AODD has two compressed air requirements; pressure 

to generate diaphragm force and sufficient quantity to fully 

extend the diaphragm within the pump chamber [6]. The 

force generated from air pressure is necessary to overcome 

the discharge pressure and complete diaphragm extension is 

necessary to force all of the fluid volume to be expelled 

from the chamber. Conventional control systems direct 

compressed air into the diaphragm chamber and continue to 

supply air until the diaphragm is completely extended [7].  

 

This control method finishes the diaphram extension 

under full air pressure. Finishing at full air pressure creates 

a significant problem for the diaphram‘s retraction during 

the reciprocating cycle. The reciprocating diaphram must 

overcome full system pressure trapped behind the extended 

diaphram to discharge its air and collapse the diaphram. 

Some of the force generated by the reciprocating diaphram 

is lost while forcing the exhaust of the trapped air; this 

causes a reduction in overall efficiency of the AODD pump 

design. 

ENERGY EFFICIENCY PERFORMANCE OF 

CONTROLLERS ON AIR-OPERATED 

DOUBLE-DIAPHRAGM PUMPS 
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Higher Efficiency AODD Concept: If the trapped air were 

less than system pressure, overall pump efficiency would 

improve, due to less force lost to exhaust the air. A control 

system to reduce trapped air pressure was designed to block 

the supply of compressed air to the extending diaphram 

such that the compressed air already in the chamber expands 

to completely extend the diaphram. The expanding air 

finishes the stroke at less than system pressure. An 

electronically controlled air supply valve could do exactly 

this. Initially, the valve rapidly opens and closes to deliver a 

series of compressed air pulses to the AODD at the begin-

ning of each diaphragm stroke [8]. The valve closes before 

the diaphragm finishes its extension [9]. Compressed air 

that has already entered the diaphragm chamber expands to 

finish the stroke at a progressively lower pressure according 

to Boyle‘s Law (P1V1 = P2V2).  

 

Methodology 
 

The purpose of this study was to conduct comparative 

validation testing on an air-operated diaphragm pump with 

standard and electronic controls. The experiments compared 

energy consumption of four air-operated double-diaphragm 

(AODD) pumps using conventional air controls with con-

sumption using supply air valve electronic controls. Testing 

proceeded at ambient operating conditions while pumping 

water. The objectives of this study included 

 Document pump performance parameters. 

 Evaluate pump performance variables at various op-

erating conditions, including flow rates and operating 

pressures. 

 Analyze test data and conclude changes related to 

energy efficiency.  

 

Testing Protocol  
 

A diaphragm pump test rig was designed and constructed 

and validated according to ANSI/HI 10.6-2010 (see Figures 

1 and 2) and used to conduct trials on four randomly select-

ed two- and three-inch nominal pump sizes from different 

manufacturers (identified as silver, blue, orange, and white) 

[10]. Specifically, Figure 1 is a graphical representation of 

the text requirements in ANSI/HI 10.6. AODD pump per-

formance was controlled by conventional air controls and an 

electronic supply valve controller called MizAir provided 

by Proportion-Air LLC. Data were collected using an Onset 

automatic data acquisition and recording system. This 

equipment was used to measure and collect data on the fol-

lowing variables: testroom ambient air temperature, test-

room ambient relative humidity, test-room barometric pres-

sure, test-rig inlet fluid temperature, test-rig inlet fluid pres-

sure, test-rig outlet fluid pressure, test-rig fluid flow rate, 

compressed-air pressure, compressed-air flow rate, com-

pressed-air temperature, compressor energy usage, and test-

rig pump speed. The pulse adaptor for pump speed failed 

and was replaced with an oscilloscope. 
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Figure 1. ANSI/HI 10.6-2010 Test Rig Block Diagram 
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Figure 2. ANSI/HI 10.6-2010 Test Rig Assembly 

 

Method: A two-dimensional matrix of operating conditions 

was established to collect data at two air supply pressures 

(5.52 and 6.90 bar, or 80 psig and 100 psig) and three stand-

ard pump flow rates (nominal minimum, nominal maxi-

mum, and unrestricted maximum flow rate) for each of the 

four pumps.  

  

Pump Specifications: The four pumps (see Table 1) were 

randomly selected from stock and all had been successfully 

used on other research projects.  

 
Table 1. Description of the Tested Pumps 

* The model number has not been assigned. 

 

Test Procedure: Testing Sequence  
 

The initial trial was conducted with pump #1 in the stand-

ard control mode (without electronic control). Operating 

pressure was set to 6.90 bar (100 psig) and water flow rate 

to 568 lpm (150 gpm). Data were collected for 10 minutes 

at a sampling interval of 10 seconds (exceeding ANSI/HI 

10.6-2010 data requirements) and 30 contiguous measure-

ment points were extracted for graphical analysis. Once the 

standard control mode trial was completed, the electronic 

controller was attached and tested using the same operating 

conditions and sampling time. The procedure was repeated 

for the other three pumps, resulting in 48 trials, which pro-

duced 1450 valid data files that were saved for analysis.  

 

Results and Analysis 
 

Operating air pressure was analyzed using standard and 

electronic controls to determine what AODD pump perfor-

mance factors might be affected by the different air supply 

control methods. Four performance factor observations were 

made. Data showed that AODD pumps using standard con-

trols consumed more compressed air than pumps using the 

electronic control. These data also revealed that pump deliv-

ery performance was negatively affected by air pressure 

variation; and, as air pressure was increased, pump delivery 

was further reduced by its variation.  

 

Pump #2 (see Figures 3 and 4) suffered the greatest re-

duction in output flow, due to electronically controlled air 

pressure fluctuation and so is featured in this discussion. 

Performance testing was conducted on pump #2 at nominal 

air pressures of 5.52 bar and 6.90 bar (80 psig and 100 psig) 

and for nominal water flows of 568, 663, and 757 lpm (150, 

175, and 200 gpm). As water flow increased from 568 lpm 

to 757 lpm (150 gpm to 200 gpm), air pressure variation 

from 5.52 bar (80 psig) remained at 0.069 bar (1 psig) using 

standard control, but rose from 0.207 to 0.345 bar (3 to 5 

psig) with electronic control. Comparison of data from Fig-

ures 3 and 4 revealed that, as flow increased, flow fluctua-

tion grew in variation with either control but was of higher 

magnitude with electronic control. Similar increases with air 

pressure and water flow variations occurred when the sup-

ply pressure was raised to 6.90 bar (100 psig).  

 

Variances in water flow rates were similarly observed 

with standard and electronic controls. Figures 3 and 4 show 

that the water flow rate for pump #2 was generally lower 

with electronic control but was often equal to or higher than 

under standard control. Additionally, the magnitude of vari-

ation in water flow rate for standard and electronic controls 

was not significantly different. An analysis of 1450 data 

files was conducted on the four pumps to determine the net 

effect of higher air pressure variation of the electronic con-

trol on pump delivery. A paired two-sample means hypothe-

sis test determined that there was a difference in pump de-

livery using standard and electronic controls (see Table 2). 

The null hypothesis, H0, states that there is no difference 

between the pump deliveries, and the alternative hypothesis, 

Ha, states that the electronic control pump delivery is less 

than delivery using standard controls.  

Test No. 
Pump size and 

Manufacturer 
Model No. 

# 1 Pump (Silver) 3" Yamada DP-80BAN-HD 

# 2 Pump (Blue) 3" Sandpiper S30B1ABBANS000 

# 3 Pump (White) 2" Yamada DP-50BPS-HD 

# 4 Pump Orange) 3" Wilden NA- Experimental* 
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Figure 3. 5.52 bar (80 psig) Air Pressure and Flow with and 

without Electronic Control 

 

Using 5.52 bar (80 psig) nominal air pressure, the result-

ant t-stat of 3.318 and a one-tail p-value of 0.00048 con-

cluded that electronic control pump delivery is less than 

delivery using standard controls. A 95% confidence interval 

calculates that the electronic control results in 6.541 to 

25.510 lpm (1.728 to 6.739 gpm) lower mean pump deliv-

ery than standard controls. Applying the same test at 6.90 

bar (100 psig) nominal air pressure, the resultant t-stat of 

8.0548 and a one-tail p-value of 1.611x10-15 concludes that 

electronic control pump delivery is less than delivery using 

standard controls. A 95% confidence interval calculates that 

the electronic control results in 23.651 to 38.891 lpm (6.248 

to 10.274 gpm) lower mean pump delivery than standard 

controls.  

Figure 4. 6.90 bar (100 psig) Air Pressure and Flow with and 

without Electronic Control 
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Another paired two-sample means hypothesis test was 

employed to determine the differences in AODD pump 

compressed air consumption using standard and electronic 

controls. Air consumption for each pump was plotted (see 

Figures 5 and 6). 

 

The null hypothesis, H0, states that there is no difference 

between the air consumption, and the alternative hypothesis, 

Ha, states that the electronic control air consumption is less 

than standard controls. Using nominal 5.52 bar (80 psig), 

the resultant t-stat of 71.85 and a one-tail p-value of zero 

concluded that electronic control air consumption is less 

than standard controls. A 95% confidence interval calcu-

lates that the electronic control results in 49.48 to 52.40 

Nm3/h (30.862 to 32.597 scfm) lower mean air consump-

tion than standard controls. With respect to Figure 6, apply-

ing the same test at nominal 6.90 bar (100 psig), the result-

ant t-stat of 72.30 and a one-tail p-value of zero concluded 

that electronic control air consumption is less than standard 

controls. A 95% confidence interval calculates that the elec-

tronic control results in 67.02 to 70.76 Nm3/h (41.694 to 

44.0212 scfm) lower mean air consumption than standard 

controls.  

 

The energy reduction offered by electronic controls can 

be converted to kilowatts by applying the energy required to 

compress 1.00 Nm3/h (0.62 scfm) of air (single-stage com-

pression) at 5.52 bar (80 psig) = 0.0844 kW or 6.90 bar 

(100psig) = 0.0961 kW [11]. Equation (1) calculates the 

energy savings for the average mean air consumption sav-

ings attributed to the electronic controller. Table 3 shows 

that the air saving percentage using the electronic controller 

goes up as the fluid flow rate through the pump increases. 

Although supply air pressure and current fluid flow rate can 

be used to predict air saving percentage for the test pumps, 

other comparisons were also studied to generalize for all 

pumps. Comparisons and regression analysis included fluid 

flow rate by individual pump, fluid flow rate by all pumps, 

fluid flow by pressure, and fluid flow by pressure and ca-

pacity. These results revealed that the slopes of air con-

sumption savings, with respect to fluid flow rates, decline as 

capacity increases, and that an air savings chart is not possi-

ble, due to non-linearity between pumps. 

 

(1) 

 

 

 

 

 

 

 

 

Conclusions 
 

In all trials and at all set points, the electronic controller 

reduced diaphragm pump air consumption. The air con-

sumption reductions varied by pump, but the electronic con-

troller reduced the AODD mean air consumption by 19.9% 

to 47.8%. The air supply pressure was varied to 5.52 bar (80 

psig) and 6.90 bar (100 psig), while adjusting pump fluid 

flow rates to three nominal rates, including max flow rate. 

Figure 7 depicts a linear relationship between air consump-

tion and water flow when the air pressure is 5.52 bar (80 

psig) and 6.90 bar (100 psig) for capacities above and below 

568 lpm (150 gpm), respectively. Therefore, the graphed 

data can predict the percentage of air consumption savings 

for new pumps or existing pumps when the fluid flow rate is 

known. 

 

Table 2. Pump #2 Fluctuation of Air Pressure with and without Electronic Control 

 Saving = kW

3Saving  kW required to compress 1.00 Nm /h 

                             at 6.90 bar



3

3
=68.89 Nm /h  0.0961 6.62 kW

kW

Nm
h

 

  

5.52 bar_757 lpm 

(80 psig – 200 gpm) 

5.52 bar_663 lpm 

(80 psig – 175 gpm) 

5.52 bar_568 lpm 

(80 psig – 150 gpm) 

w/o Electronic With Electronic w/o Electronic With Electronic w/o Electronic With Electronic 

Max. 1.21% 5.05% 0.87% 5.35% 1.13% 6.04% 

Min. -0.52% -6.41% -0.50% -4.14% -1.30% -3.68% 

  

6.90 bar_757 lpm 

(100 psig – 200 gpm) 

6.90 bar_663 lpm 

(100 psig – 175 gpm) 

6.90 bar_568 lpm 

(100 psig – 150 gpm) 

w/o Electronic With Electronic w/o Electronic With Electronic w/o Electronic With Electronic 

Max. 1.25% 5.93% 0.88% 6.31% 1.15% 5.04% 

Min. -1.02% -7.79% -0.58% -7.99% -0.77% -6.19% 
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Figure 5. 5.52 bar (80 psig) Air Consumption with and without 

Electronic Control 

Figure 6. 6.90 bar (100 psig) Air Consumption with and 

without Electronic Control 

Figure 7. Fluid Flow Rate versus Air Consumption Savings above and below 568 lpm 
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A STUDY OF FLASH ATOMIZATION IN A 

PRESSURE SWIRL NOZZLE 

Abstract 
 

Due to the emphasis on energy conservation in residential 

buildings, there is a need for the development of low firing-

rate, load-modulating residential oil burners. The excessive 

on/off cycling of current fixed firing-rate residential oil 

burners leads to an overall reduction in the energy efficien-

cy of the heating system and an increase in environmental 

pollution. It also results in frequent plugging of the spray 

nozzles. In this study, the authors investigated the use of 

flash atomization to achieve the objective of developing 

such a low firing rate fuel nozzle that can maintain its atom-

ization quality, while the fuel firing rate is changed by alter-

ing one or more control parameters. In this article, the au-

thors report on the first experimental atomization perfor-

mance results obtained from a pressure swirl nozzle, as a 

function of fuel temperature (up to the flashing conditions), 

using water as a fuel simulant. 

 

Introduction 
 

Due to the emphasis on energy conservation in residential 

buildings, there is a need for the development of low firing-

rate, load-modulating residential oil burners. There are two 

reasons for this. First, because of new energy-efficient de-

sign requirements, heating requirements for new construc-

tion are significantly lower than for old residential build-

ings. Thus, a lower firing rate-boiler is sufficient for ful-

filling peak demand. This is especially true for smaller 

homes. Secondly, because the heating requirements during a 

given day continuously change with time due to changing 

weather conditions and demand from occupants, a conven-

tional residential boiler must cycle (on/off) many times dur-

ing a day. During the starting phase, the combustion effi-

ciency of oil burners is much lower than during steady-state 

operation; consequently, the level of pollutants emitted is 

higher. Therefore, excessive on/off cycling leads to an over-

all reduction in energy efficiency of the heating system and 

an increase in the environmental pollution contribution. 

Furthermore, it also results in larger temperature swings 

within the house. A low firing-rate, load-modulating oil 

burner not only provides more thermal comfort for the occu-

pants, it also results in lower fuel costs and a reduction in 

pollutants emitted. Excessive on/off burner cycling also 

leads to frequent plugging of the swirl nozzles. 

Standard pressure swirl nozzles are designed for a con-

stant oil firing rate. If one attempts to lower the oil firing 

rate by reducing the pump supply pressure, the resulting 

atomization is poor (larger fuel droplets), leading to poor 

combustion. Bypass pressure swirl nozzles, such as those 

from Delevan, do allow operation at lower firing rates, but 

the minimum oil firing rate for which the fuel atomization 

quality is still acceptable is still not small enough (smaller 

than 0.25 gallons per hour). In order to circumvent this 

problem, the authors of this current study investigated using 

flash atomization to achieve the objective of developing a 

low firing-rate fuel nozzle that will maintain its atomization 

quality, while the fuel firing rate is changed by altering one 

or more of the control parameters. Flash atomization or, 

more descriptively flash-boiling atomization, occurs when a 

heated liquid at high pressure (but still locally subcooled) is 

injected into a lower pressure combustion chamber in which 

the pressure is lower than the saturation pressure of the liq-

uid. Thus, when the liquid jet enters the combustion cham-

ber, it is locally in a superheated state; this results in the 

boiling of a small fraction of the liquid. The bursting vapor 

bubbles lead to very fine atomization of the liquid. In prac-

tice, to improve the quality of atomization, the flash atomiz-

ers are designed to undergo flashing (boiling) before dis-

charge into the combustion chamber. Under these condi-

tions, the nozzle exit discharges a two-phase bubbly mix-

ture.  

 

Extensive publications on the subject of flash atomization 

are available in the literature [1, 2]. Sher et al. [3] gave a 

review of the technical basis for flash atomization. Kamoun 

et al. [4] gave additional design guidelines for flash atomi-

zation nozzles, who also provide dimensionless correlations 

(in terms of the Weber and Jacob numbers) for the onset of 

bubble nucleation and a fully developed atomization re-

gime. The Brown and York study [5] concluded that high 

pressures and velocities are not required for the flash atomi-

zation process. However, superheating was necessary. 

Brown and York found that mean drop sizes nominally de-

crease with an increase in jet Weber number at a given tem-

perature at the same bubble growth rate. Work by Oza and 

Sinnamon [6] revealed that external flashing occurs at a 

lower degree of superheat, where the jet is intact when leav-

ing the nozzle and rapidly breaks, due to rapid bubble 

growth. Oza [7] explored the mechanisms responsible for 

flash boiling and showed spray images of propane, metha-
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nol, and indolene fuel injection through an electromagnetic 

injector. He recognized two regimes of flash-boiling injec-

tion: 1) flashing with an essentially constant spray-cone 

angle and 2) flashing with an external expansion. Park and 

Lee [8] investigated the flash atomization mechanism and 

provided an excellent description of it [8]. Here, the authors 

report on the first experimental atomization performance 

results obtained from a pressure swirl nozzle as a function 

of fuel temperature (up to the flashing conditions), using 

water as a fuel simulant. Spray nozzle manufacturers rou-

tinely use water to characterize the droplet size distribution 

from their nozzles [9, 10]. 

 

Experimental Setup 
 

Figure 1 shows a schematic layout of the spray nozzle 

setup. The nitrogen gas pressure in the liquid tank was set at 

100 psig during the experiments. A variac was used to con-

trol the heater power. The temperature of the water entering 

the spray nozzle was regulated by a temperature controller. 

The spray nozzle used in this experiment was a Delavan 0.4 

GPH 60° DOF swirl nozzle (see Figure 2). The liquid tank 

sat on a digital balance. The actual fuel firing rate during the 

experiment was measured by monitoring the indicated 

weight on the scale as a function of time. 

Figure 1. Schematic Layout of the Spray System 

 

A Malvern Spraytec System from Malvern Instruments 

Ltd. was used to measure the droplet size distribution within 

the liquid spray at various liquid temperatures. This system 

has a particle detection range of 0.1 µm to 900 µm. This 

instrument used the laser diffraction pattern from the droplet 

spray and Mie theory [11] to compute the particle size dis-

tribution in the measurement zone. It consisted of two main 

modules (transmitter and receiver), PC, and the associated 

software. The spray to be measured was located in-between 

the transmitter and receiver modules. The transmitter out-

putted a 10-mm diameter, 5 mW helium-neon collimated 

laser beam. The receiver module consisted of the collecting 

optics, an array of detectors at the focal plane of the collect-

ing lens, and associated control and analysis electronics. 

Figure 3 shows a schematic of the optical setup of the in-

strument. For clarity, only two scattered light rays are 

shown and the detector array is at the focal plane of the lens. 

Figure 2. A Close-up of the Water Spray in the Malvern Laser 

Beam during the Experiments 

Figure 3. Schematic of the Optical Setup of the Malvern 

Spraytec System [not to scale]  

 

Results and Discussion 
 

 A Delevan 0.4 GPH 60° DOF swirl nozzle performed 

droplet size distribution measurements, with distilled water 

was used as the fuel simulant. The water was supplied to the 

heated and insulated nozzle holder at 100 psig. Its tempera-

ture was varied from room temperature to 151°C. The meas-

ured Sauter mean diameter D[3,2] and the volume moment 

mean diameter, D[4,3] are shown in Figure 4 as a function 

of the nozzle temperature. While both mean diameters de-

creased with increasing temperature, there was a sharp re-
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duction in the Sauter mean diameter at 143°C. This indicat-

ed a significant droplet size reduction due to flash atomiza-

tion. Also, there was a significant reduction in the water 

flow rate as the temperature increased. This was due to the 

reduction in the dynamic viscosity of the water with increas-

ing temperature.  

Figure 4. Droplet Mean Diameters and Nozzle Flow Rate as a 

Function of Nozzle Temperature 

 

Figures 5-7 are photographs of the spray pattern during 

the experiment. Figure 5 shows the spray picture at room 

temperature. The spray behavior shows a gradual change 

with increasing temperature up to roughly the boiling point 

of water (see Figure 6). When the temperature was in-

creased above the boiling point (see Figure 7), the spray 

pattern showed a sharp change.  

Figure 5. Spray Picture at a Temperature of 19.3oC 

 

Figure 6. Spray Picture at a Temperature of 92.2oC 

Figure 7. Spray Picture at a Temperature of 136.1oC 

 

While mean diameters are important, they do not show a 

complete picture of the particle size distribution within the 

spray. Figure 8 shows an evolution of the droplet size distri-

bution histogram as a function of nozzle temperature. Shift-

ing of the peak towards smaller size and a narrowing of the 

distribution was clearly observed. Also observed was a sec-

ondary peak at 2 µm at 151°C. It is not clear if this peak 

was due to smaller droplets being generated as result of 

flash atomization or to the condensation of flashed steam. 

 

Conclusions and Future Work 
 

These preliminary results clearly demonstrate significant 

improvement in atomization at elevated fuel temperatures. 

However, one of the key findings of this study was that 

flash atomization by itself cannot reduce the fuel firing rate 

(see Figure 4) to a level needed for a practical load modulat-

ing oil burner (say, a turn-down ratio of 3:1 or 4:1). Bypass 

nozzles allow significant reduction in fuel firing rate; how-
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ever, at low flow rates, there is a large increase in droplet 

size distribution. Therefore, the use of a variable flow by-

pass nozzle in combination with flash atomization should 

prove to be an effective solution for developing a load-

modulating, low firing-rate oil burner. Future work by the 

authors will explore this option. 

Figure 8. Evolution of Droplet Size Distribution Histogram as 

a Function of Nozzle Temperature 
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Abstract 

 

The modulus of elasticity is one of the most important 

material properties in mechanical design and analysis. Ma-

terial properties change at elevated temperatures. The mod-

ulus-temperature relationship is traditionally determined 

experimentally, and the procedure is time-consuming, ex-

pensive, and often impossible. The main goal of this study 

was to develop a theoretical relationship between the modu-

lus of elasticity and temperature, based on the kinetic nature 

of the strength of solids and a nonlinear equation of state for 

materials. Such a modulus-temperature relationship was 

then compared with existing experimental data. The valida-

tion results showed good correlations between theory and 

experiment and demonstrated the potential to theoretically 

predict the modulus of elasticity of different engineering 

materials as a function of temperature. 

 

Introduction 

 

Engineering materials deform under various loads in a 

structure. Engineers need to perform detailed engineering 

analyses when designing the structure in order to meet prod-

uct specifications. Material response is a function of applied 

load, temperature, time, and other conditions. Material sci-

entists investigate these mechanical properties by testing 

materials using standard procedures such as those published 

by the American Society for Testing and Materials (ASTM). 

 

Temperature-dependent material properties are very im-

portant for applications in an environment with changing 

temperatures. In metal forming and machining processes, 

for instance, the workpiece temperature changes significant-

ly, due to tool-workpiece interfacial friction and defor-

mation. Such a process is typically transient; that is,  the 

temperature distribution inside the material is a function of 

time and location. In a finite element analysis (FEA), this 

would require an analyst to input material properties in the 

form of tabulated data for different temperatures. These 

material data are often experimental, difficult to obtain, 

prone to error, and tedious to input. Because the experi-

mental data are scattered, some approximations are neces-

sary to smooth the data.  

This introduces errors and often causes difficulties in 

achieving a converged solution in a numerical analysis. One 

of the most important mechanical properties, the modulus of 

elasticity or Young‘s modulus, is sensitive to both tempera-

ture and rate of loading; i.e., the stress or strain rate. The 

modulus-temperature relationships E(T) of different engi-

neering materials are always determined experimentally. 

Engineers and scientists need to perform time-consuming 

and costly experiments to determine the modulus of elastici-

ty of the materials for specific temperature ranges based 

upon their own project needs. A well-validated theoretical 

model for predicting the modulus of elasticity of engineer-

ing materials within certain temperature ranges would be a 

valuable alternative to the traditional time-consuming, ex-

pensive, and very often impossible empirical methods. The 

establishment of such a relationship between the modulus of 

elasticity and temperature for engineering materials would 

help engineers and designers in their product design and 

development. 

 

The objective of this study was to establish a comprehen-

sive theoretical model for predicting the relationship be-

tween modulus of elasticity and temperature for a wide 

spectrum of engineering materials, and validate the theory 

with experimental data in published studies.  

 

Theoretical Model 
 

The theoretical modulus of elasticity–temperature rela-

tionship is based on the nonlinear stress-strain relationship 

for industrial materials and the kinetic nature of the strength 

of solids [1,2]. As Equation (1) shows, this relationship fol-

lows from the diatomic model of a solid body [3,4], which 

shows the nonlinear approximation of the potential energy 

of two atoms as a function of the distance between them: 

 

 

(1) 

 

where,  is the coefficient of linear elasticity; g is the anhar-

monic coefficient; ro is the distance between atoms at the 

equilibrium position; and, r is the instantaneous distance 

between two atoms. 
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If the potential energy of two atoms is a parabola, then the 

interaction force between the atoms, F, is proportional to the 

displacement from equilibrium, r–ro:  

 

F= dU/dr = r–ro), or F/ro
2 = Eo(r–ro)/ro  

 

where, Eo = (ro) is the modulus of elasticity.  

 

It is important to point out that in this case the atoms os-

cillate harmonically, the values of energy at negative and 

positive displacement are equal, and the distance between 

atoms does not change with temperature. 

 

The cubic term in Equation (1) leads to asymmetry of the 

potential energy. In comparison with parabolic potential, the 

curve of potential energy is flatter at positive displacements 

and steeper at negative displacements. The resulting de-

crease in potential energy for positive displacement leads to 

expansion of the material, a shift of the center of anharmon-

ic thermal oscillations, and softening of the mechanical 

properties of the solid. In particular, the modulus of elastici-

ty decreases linearly with linear thermal expansion [3, 4], as 

shown in Equation (2): 

 

 

(2) 

 

 

where, E(T) is the modulus of elasticity at temperature T; Eo 

is the modulus of elasticity at the reference temperature To; 

g is the anharmonic coefficient; and,  is the coefficient of 

linear thermal expansion.  

 

Equation (2) indicates the general trend: the modulus of 

elasticity decreases as the temperature increases. For com-

mon structural materials, the anharmonic coefficient g is 

often of the same order of magnitude as Eo [3]. If g = 0, the 

effect of temperature vanishes. Equation (2) defines the val-

ue of the modulus of elasticity at different temperatures in 

the diatomic model of a solid body and depends only on the 

asymmetry of the interatomic forces represented by g. How-

ever, the diatomic model does not take into account the in-

fluence of impurities and defects and the time (or rate) of 

loading. 

 

Numerous experimental results currently available indi-

cate that the modulus of elasticity and nonlinear defor-

mation of materials are affected much more by micro- and 

macrostructure features (dislocations, micro-pores, and mi-

cro-crevices), the stress/strength ratio, and stress (or strain) 

rate of loading than by asymmetry of interatomic forces. 

The data provided by Bell [1] show that the change of the 

modulus of elasticity cannot be caused only by the change 

of density of a material due to thermal expansion. Accord-

ing to the kinetic theory of the strength of solids, fracture is 

a change in the thermal movement of atoms, and a strain 

(stress) rate dependent phenomenon [2]. At the atomic-

molecular level, the breaking of interatomic bonds due to 

thermal fluctuations control the fracture process. At the 

macroscopic level, the fracture of solid develops by a pro-

cess that begins to develop in the body from the moment a 

load is applied and the fracture itself is the final act in this 

process. The material is a dynamic system of atoms interact-

ing with external forces, rather than a static system. The 

thermal pressure caused by interatomic vibrations can be 

estimated [3] using Equation (3): 

 

(3) 

 

 

where, k = 1.38·10–23 J/oK is Boltzmann‘s constant and Wa 

≈10–29 m3 is the volume of an atom. 

 

This thermal pressure leads to an equivalent stress of elas-

tic forces and increases the local stress between atoms. A 

rough estimate illustrates that vibration of atoms with aver-

age kinetic energy causes load ‗jerks‘ on the atomic bonds 

with stresses of the same magnitude as the strength of engi-

neering materials [2]. For example: if g/Eo ≈ 1 and T = 298 

K, then kT = 411·10–23J (≈ 2.5 kJ/mol) and the thermal pres-

sure is P ≈ 206 MPa. Thermal fluctuations of energy have an 

essential influence on the structure of real materials and 

predetermine their behavior under loading. In accordance 

with the kinetic nature of strength [2, 5], the fracture is the 

result of a process of nucleation, accumulation, and devel-

opment of damage elements; i.e., a time-dependent phenom-

enon. It was shown [5] that the strength of different solid 

materials, r , depends on the temperature and rate of load-

ing given in Equation (4): 

 

(4) 

 

where, Uo is the initial dissociation energy of the interatom-

ic bonds; γ is structurally sensitive coefficient; o ~ 10-13 

seconds is the period of interatomic vibration; and, is the 

stress rate of loading.  

 

Also, according to the kinetic theory of solid strength, the 

linear extrapolation of the dependence to r = 0   

leads to a certain value of ln , which can be estimated 

[2, 5] using Equation (5): 

 
 

(5) 
 
 
 
Then Equation (4) becomes Equation (6): 
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Then from Equations (11) and (12), b can be determined 

by Equation (13): 

 

(13) 

 

It can be seen from Equations (8) and (13) that the ade-

quate equation of state can be expressed as Equation (14): 

 

 

(14) 

 

 

Equation (15) shows the relationship between modulus of 

elasticity, E, and temperature, T: 

 

 

(15) 

 

 

Equations (14) and (15) are generally applicable for all 

solids that obey the kinetic theory of strength and that can 

be described with a parabolic stress-strain relationship. 

From a practical point of view, the right-hand side of Equa-

tions (14) and (15) depends on the known standards for sol-

ids [7-9]; that is, mechanical properties of specimens at a 

given reference temperature (typically 25°C): elastic modu-

lus, Eo; strength, r, (tensile or compressive); corresponding 

strain, ; and, stress rate of loading and.  

 

Case Studies 
 

Equation (15) indicates the relationship between modulus 

of elasticity and temperature, as well as stress (strain) rate of 

loading. The temperature dependence is linear, while the 

stress (strain) rate dependence is logarithmic. Since the line-

ar temperature dependence is stronger, the validity of the 

temperature dependence predicted by Equation (15) will be 

investigated first. Before making a rigorous comparison 

between Equation (15) and the published data, it should be 

noted that a number of studies [10-14] show that the rela-

tionship between Young‘s modulus and temperature is es-

sentially linear for different engineering materials, con-

sistent with Equation (15). 

 

The following sections present a detailed theoretical 

scheme to estimate the relationship between modulus of 

elasticity and temperature. Then two very different engi-

neering materials—ductile materials (solders and plastics) 

and brittle materials (concrete) will be used to illustrate the 

possible breadth of the theory. A benefit of disseminating 

this theory to the research community, along the sample 

cases presented here, is to allow experimental investigators 

S o

 

(6) 

 

Typical values of  are 0.84~4.01 kJ·mol–1·MPa–1 for 

metals and 0.06~0.39 kJ·mol–1·MPa–1 for polymers [2]. 

From Equation (5), it follows that the dependencies on  

and  are logarithmic (small in comparison with linear de-

pendency on Uo). Thus, is determined essentially by 

the activation energy, Uo, of the solid. Therefore, knowing 

the values of kT, , and the level of activation energy     

Uo, can be estimated using Equation (7): 

 

(7) 

 

 

Dynamic and quasi-static experiments show a nonlinear 

dependence between stress and strain, even at infinitesimal 

values of deformation (10–6 ~ 10–4) for a wide range of ma-

terials (metal, stone, concrete, wood, glass, polymers, etc.). 

Engineering materials deviate from Hook‘s law, and the 

stress-strain relationship may be approximated by a second-

order Taylor series polynomial, as shown in Equation (8): 

 

(8) 

 

where,  is stress,  is strain; Eo is the elastic modulus; and, 

b is the nonlinear parameter [1].  

 

Equation (8) clearly illustrates that the modulus of elastic-

ity is linearly proportional to the strain given by Equation 

(9): 

                  (9) 

 

Corresponding values of the nonlinear parameter b can be 

determined by Equation (10): 

 

(10) 

 

By assuming equal distribution of an external load, all 

interatomic connections are strained equally, and the aver-

age stress, σ, acting on the body is equal to the stress σa act-

ing on the atom. Under the action of stress σa, which is less 

than the ultimate value, the potential energy, U(σa), is pro-

portional to the volume of the atom, Wa, then Equation (8) 

becomes  Equation (11) [3, 6]: 

 

(11) 

 

On the other hand, Equation (12) shows that the potential 

energy decreases linearly with applied stress [2]: 
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to compare their data with theory and encourage them to 

publish relevant test conditions along with their data. 

 

Metals 
 

Existing published data [10-14] are used first to validate 

the hypothesis that Equation (15) describes in general the 

relationship between modulus of elasticity and temperature 

for metallic materials (steels, copper and copper alloys, 

nickel and nickel alloys, titanium, and aluminum and alumi-

num alloys). Figure 1 depicts the experimental data of mod-

ulus of elasticity versus temperature for ten different metals 

[10]. 

Figure 1. Modulus of Elasticity versus Temperature for Metals 

 

On the other hand, the slope of the E-T curves can be ex-

pressed by Equation (16) from Equation (15): 

 

 

(16) 

 

 

The slopes (dE/dT) and correlation coefficients for metals 

are calculated using Equation (16) and tabulated in Table 1. 

The correlation coefficients range from -0.945 to -0.998, 

indicating a very good linear relationship between modulus 

of elasticity and temperature for these materials. The modu-

lus of elasticity decreases progressively with increasing 

temperature. The slope dE/dT is negative, and the relation-

ship is essentially linear for all metals. The parameter values 

needed for the theoretical expression are available in the 

standards and literature [7, 8]. Therefore, published data 

were used also to check if Equation (15) predicts the abso-

lute values of modulus of elasticity for different tempera-

tures. For instance, the modulus of elasticity of lead-free 

solders is a key material property that needs to be measured 

accurately in order to facilitate design, ensure reliability, 

and promote compliance with legislative restrictions on 

hazardous substances [11]. 

 
Table 1. Existing Experimental Data for Metals 

Data for the lead-free solder 96.Sn-3.5Ag [12-14] in-

cludes the following: 

 Young‘s modulus of elasticity, Eo = 49 GPa at 25oC 

and strain ε≈ allows us to assume elastic behav-

ior [9]. 

 Ultimate tensile strength, r = 26.3 MPa, at a strain 

rate of 2.0x10–4 s–1. 

 The average of mean elastic modulus at 25oC (as-cast 

#1) = 5357.75 MPa, and mean elastic modulus at 

25oC (aged) = 4312.55 MPa, and a strain rate of  

2.0x10–4s–1 for calculating stress rate at static loading

. 

 Average value of activation energy Uo≈09.85 kJ·mol
–1 [11] for Equations (15) and (16). 

 

Figure 2 shows the comparison between theory, Equation 

(15), and experimental data for three solders: as-cast #1, as-

cast #2, and aged #1 [11, 13]. Because the necessary test 

parameters were known, the differences between the theo-

retical and experimental values of the elastic modulus for 

the cases shown in Figure 2 are less than 4% at all tempera-

tures, which is within the range of experimental error. The 

theory matches the published data reasonably well. 
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-0.078 -.0.990 -200 and +649 
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400 
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Aluminum and  

Al-alloys 
-0.040 -0.994 -198 and +204 
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Plastics 
 

The values of the correlation coefficients were examined 

for different plastics at different ranges of temperature. 

Comparisons [9] also showed agreement between the theo-

retical modulus-temperature relationship and existing exper-

imental data for plastics such as Elastollan Polyester C85A 

(Figure 3), Celcons M90 and GC25 (Figure 4), Polyethylene

-HDPE (Figure 5), Chlorinated Polyvinyl Chloride-CPVC, 

and Polyvinylidene Fluoride-PVDF (Figure 6 and Table 2). 

Figure 2. Comparison of Theory, Equation (15), and  

Experimental Data for Three SnAgCu Solders 

Figure 3. Modulus of Elasticity versus Temperature for  

Elastollan Polyester  

 

Table 3 shows the values of slope (dE/dT) for these plas-

tics. It can be seen that the values of the slope (dE/dT) are 

different for different materials and, consequently, depend 

on corresponding mechanical properties (e.g., modulus of 

elasticity at room temperature, strength, and activation ener-

gy) and on the test conditions (e.g., stress or strain rate of 

loading), which is in agreement with Equation (15). The 

correlation coefficients ranged from –0.950 to –1.000, indi-

cating a good linear relationship between modulus of elas-

ticity and temperature for these plastics. Therefore, it is pos-

sible to predict the modulus of elasticity at different temper-

atures using the mechanical properties of plastics at stand-

ard test conditions. 

Figure 4. Modulus of Elasticity versus Temperature for  

Celcons 

Figure 5. Modulus of Elasticity versus Temperature for HDPE 

Pipe 

Figure 6. Modulus of Elasticity versus Temperature for  

Plastics 
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Table 2. Existing Experimental Data for CPVC and PVDF 

 
Table 3. Existing Experimental Data for Plastics 

Concrete 
 

Figure 7 shows the experimental data for modulus of elas-

ticity at different temperatures for four concrete mixtures 

[15]. It can be seen that the modulus of elasticity decreases 

approximately linearly with the temperature increment. Ac-

cording to thermal properties, Equation (2), and the kinetic 

nature of strength of solid materials, the modulus of elastici-

ty–temperature relationship, Equation (15), can be ex-

pressed [16] as Equation (17): 
 
 

(17) 

 

where, E is the modulus of elasticity at the in situ tempera-

ture (T), Eo is the modulus of elasticity, and is the 

strength of concrete specimens; both Eo and are at the 

reference temperature To (typically room temperature). 

of 

of 

Figure 7. Modulus of Elasticity versus Temperature for  

Concrete 

 

To determine the relative value of the static modulus of 

elasticity at elevated temperatures, Equation (17) requires 

the stress/strength ratio and the stress rate of loading. Ac-

cording to ASTM C469 [17],=  0.4 and=  0.24 

MPa/s. Using these values for the test parameters, the ratio 

of modulus of elasticity can be calculated using Equation 

(18a) or Equation (18b): 

 

 

when 100°C ≤ T ≤ 600°C  (18a) 

 

 

 

when 100°C ≤ T ≤ 450°C  (18b) 

 

 

The different slopes for the temperature range 100°C ≤ T 

≤ 600°C and 100–450°C are due to the different values of

at Uo ≈ 430 kJ·mol–1 [16], Equation (15), in the 

test procedures. 

 

Tables 4 and 5 show experimental results for stressed 

tests with silica fume (mixture I: water-cement ratio w/c = 

0.22,=  98 MPa; mixture II: w/c = 0.33,=  88 MPa) 

[15]. Tables 6 and 7 give experimental results of unstressed 

tests for concrete without silica fume (mixture III: w/c = 

0.33,=  75 MPa), and with silica fume (mixture II) [15]. 

The average slope of the elastic modulus in the temperature 

range 100–450 °C was –0.079. In all cases, as shown in the 

tables, the relative static elastic modulus–temperature de-
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pendencies are similar; they are all approximately linear 

(correlation coefficients close to –1.000), which shows good 

correspondence to the general analytical model presented 

here. 

 
Table 4. Relative Static Modulus of Elasticity Mixture I, 

Stressed Tests, Eo = 45 MPa 

Table 5. Relative Static Modulus of Elasticity Mixture II, 

Stressed Tests, Eo = 42 MPa 

Table 6. Relative Static Modulus of Elasticity Mixture III,  

Unstressed Tests, Eo = 43 MPa 

The tests for residual dynamic modulus of elasticity were 

performed by NIST at room temperature (before and after 

heating) in accordance with ASTM C215 [18]. Figures 8-10 

show that the relative residual dynamic modulus of elastici-

ty decreases approximately linearly with temperature. The 

error between the predicted, Equation (10b), and experi-

mental values does not exceed 15% in the temperature range 

100–450°C (except Mixture IV at 450 °C). 

Table 7. Relative Static Modulus of Elasticity Mixture II,  

Unstressed Tests, Eo = 42 MPa 

Figure 8. Relative Residual Dynamic Modulus of Elasticity 

versus Temperature (Mixture II) 

 

Figure 9. Relative Residual Dynamic Modulus of Elasticity 

versus Temperature (Mixture III) 

 

T, oC E/Eo, [15] Eq. (18a) 

25 1.00 1.00 

100 0.79 0.88 

200 0.69 0.73 

300 0.53 0.58 

450 0.24 0.35 

600 0.13 0.12 

Correl -0.989 -1.000 

T, oC E/Eo, [15] Eq. (18b) 

25 1.00 1.00 

100 0.89 0.87 

200 0.78 0.70 

300 0.59 0.53 

450 0.34 0.27 

Correl -0.997 -1.000 

T, oC E/Eo, [15] Eq. (18b) 

25 1.00 1.00 

100 0.87 0.87 

200 0.70 0.70 

300 0.48 0.53 

450 0.29 0.27 

Correl -0.996 -1.000 

T, oC E/Eo, [15] Eq. (10b) 

25 1.00 1.00 

100 0.93 0.87 

200 0.72 0.70 

300 0.47 0.53 

450 0.27 0.27 

Correl -0.993 -1.000 
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Figure 10. Relative Residual Dynamic Modulus of Elasticity 

versus Temperature (Mixture IV) 

 

Strength, modulus of elasticity, and ultrasonic pulse ve-

locity of concrete all decrease with increasing porosity [15]. 

Elevated temperature causes damage and increases porosity. 

This effect of temperature provides the physical background 

for estimating the mechanical properties of concrete at ele-

vated temperature. 

 

Conclusion 
 

The modulus-temperature relationships of industrial mate-

rials are always determined experimentally. As an alterna-

tive, a new analytical relationship between elastic modulus 

and temperature is presented. The resulting expression, 

Equation (15), is based on parabolic stress-strain depend-

ence and the kinetic nature of strength of solids. Preliminary 

comparisons with existing experimental data provide prom-

ising results. These results indicate that the modulus of elas-

ticity at different temperatures can be predicted by Equation 

(15) using well-known physical constants and the mechani-

cal properties of each material only at room temperature (in 

accordance with existing test standards). 

 

The theoretical E(T) model developed in this study can 

change the traditional experimental approach for obtaining 

one of the most important material properties, modulus of 

elasticity, at different temperatures. The presented model 

has the potential to eliminate a lot of time-consuming and 

costly material testing and to benefit material engineers and 

scientists greatly in analytical and design work. This E(T) 

model may significantly enhance and facilitate analysts in 

material engineering and manufacturing process simulations 

because the validity of the simulation results depends 

strongly on the inputs of the material properties. From the 

simulation, the temperature distribution is predicted, and 

this E(T) model will allow the theoretical prediction of E. It 

will allow designers to improve the performance and relia-

bility of parts by knowing how their properties will vary 

over different operating temperatures. For materials and 

locations where it is difficult to experimentally measure the 

modulus of elasticity, the E(T) model may provide a reliable 

and convenient way to predict modulus at different loca-

tions such as on the surface and inside the part. 
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Nomenclature 

E modulus of elasticity at instantaneous temperature, T 

Eo modulus of elasticity at reference temperature, To 

F force 

fo
‘ strength of concrete specimens at the reference 

temperature 

g anharmonic coefficient 

k Boltzmann‘s constant 

P thermal pressure 

r distance between atoms 

ro the distance between atoms at equilibrium position 

T temperature 

To reference temperature 

Uo activation energy 

U potential energy 

Wa volume of an atom 

 coefficient of linear thermal expansion 

β coefficient of linear elasticity 

 strain 

  structural sensitivity coefficient 

 stress 

 r strength 

 
s stress rate 

 
o the approximation of stress rate as a result of  

Extrapolating the value of strength to zero 

 the period of interatomic vibration 
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PARAMETER ESTIMATION IN RATIO-DEPENDENT 

PREDATOR-PREY ECOLOGICAL SYSTEMS 

WITH BIAS DISTURBANCE 
——————————————————————————————————————————————–———— 

Dale B. McDonald, Midwestern State University 

Abstract 
 

Determination of accurate parameter estimates in predator

-prey dynamic systems was the primary focus of this treat-

ment. It was assumed that a bias disturbance existed in the 

predator biomass time rate of change equation. This equa-

tion was sampled using the methods of response surface 

modeling, which serves as the mechanism in which 

―scattered data‖ of a type that would present from field 

measurements was collected. Once this was accomplished, 

ecological parameters were estimated that could describe 

ratio-dependent systems. Fundamental system behavior was 

exposed; parameter estimation was achieved despite an in-

creasing bias disturbance that could be seen as the limiting 

case of uncertainty approaching some reasonable upper 

bound. The significance of this treatment is revealed when 

broad implications are considered. Field data that are rele-

vant to predator-prey dynamic systems is almost certainly to 

appear in discrete form. That is, the analyst will receive 

scattered data from which conclusions must be made. It is 

imperative that parameter estimation techniques, given an 

underlying control (harvesting) algorithm, readily accept 

such data. Furthermore, a robust parameter estimation meth-

odology must be pursued, which provides the analyst with 

the confidence that important information (parameters) may 

be discerned despite the reality that uncertainty (at levels 

increasing) exists within the predator-prey dynamic system. 

This treatment provides 1) a robust means to estimate pa-

rameters that is specifically made to assume that the input 

(data) is in scattered form and 2) illuminates the utility of 

this methodology by comparing estimated parameter values 

against true parameter values via an error analysis. 

 

Introduction 
 

Predator-prey interactions are often described by ordinary 

differential equations (ODEs). Such dynamic systems pro-

vide for understanding, analysis, and prediction of important 

ecological phenomena. It is significant to note that while 

dynamic ODE models are used to understand such systems, 

field observations are most likely to present in scattered 

form. Data collected is the output of some ecological system 

at distinct moments in time.  

Due to the discrete nature of expected observations, pa-

rameter estimation must be able to efficiently synthesize 

such data structures. Therefore, response surface models 

(RSMs) provide a pragmatic avenue for parameter estima-

tion; RSMs accept scattered data and output continuous and 

differentiable models. These models will be used to deter-

mine accurate parameter estimates despite a bias disturb-

ance in the fundamental predator-prey dynamics. As will be 

illustrated in what follows, of primary concern are estimates 

and estimation error for parameters that appear in the preda-

tor biomass ODE in ratio-dependent systems. It must be 

noted that the methodology/analyses presented are based on 

data sampled from the biomass time rate of change equation 

rather than data sampled from the field. This was intention-

al, due to the desire to develop analytical and numerical 

(modeling) techniques that will be receptive to data received 

from the field.  

 

Several published studies are relevant to this current 

study. In a study by McDonald [1], the cubic radial basis 

function (RBF) was used to reconstruct predator dynamics 

from scattered data in the absence of a disturbance. It was 

shown that the combination of this RBF and an interpolation 

parameter c allowed for accurate estimation of parameters 

within the relevant ratio-dependent predator-prey system. In 

another study by McDonald [2], that notion was extended to 

specify a constructive means by which the analyst may be 

confident that the estimates are accurate. This was shown by 

demonstrating that sensitivity or, perhaps more accurately, 

insensitivity of developed models with respect to the inter-

polation parameter c is a useful benchmark for selecting 

appropriate estimates.  

 

As a point of reference, McDonald et al. [3] provided 

information on the nature of the RBFs, and their construc-

tion, considered in the present treatment. Given the        

predator-prey dynamic system, including the bias disturb-

ance, it will demonstrated that RSM models, including func-

tion and gradient information, will be leveraged to provide 

accurate parameter estimates, given the uncertainty. This is 

significant in that the methodology specified in the literature 

may now be extended to account for this significant class of 

disturbances. 
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Foundational Information 
 

The present study considered a model that is a member of 

a ratio-dependent predator-prey dynamic system. More in-

formation regarding ratio-dependency and what is known as 

prey-dependent mathematical models may be found in other 

studies [4, 5]. 

 

Predator-Prey Dynamic System Model 
 

The ratio-dependent predator-prey system under consider-

ation [6] is a Holling-Tanner model variant [7, 8] and may 

be described by the ODEs in Equation (1): 

 

 

 

and                                                                                      (1) 

 

 

 

 

In Equation (1), the prey biomass is x1 and predator bio-

mass is x2. Note that the parameter v expresses a relation-

ship between predator and prey biomass at equilibrium. 

Intrinsic growth rate for the predator is s; q is the catchabil-

ity coefficient; the constant α is the half-saturation level; 

and,  is the maximum harvesting rate. For the prey, r is the 

intrinsic growth rate and K is the carrying capacity [6]. Dur-

ing the parameter estimation process, a harvesting (control) 

algorithm [1] will be invoked. The algorithm developed in 

that treatment was termed instantaneous maximization of 

net economic revenue (IMNER). It was derived for predator

-prey systems such as Equation (1) in an effort to specify 

harvesting effort (control u) such that net economic revenue, 

as given in the study by Kar et al. [6], was instantaneously 

maximized. It was shown [1] that the IMNER algorithm 

produced sustainable, equilibrium (parameter) values of 

predator and prey. This is noteworthy, as IMNER accounted 

for accumulation of revenue, significant to both economic 

ventures in terms of net economic revenue and regulatory 

(often governmental) agencies in terms of total discounted 

net economic revenue [6]. The study by McDonald [1] gives 

the details of the IMNER algorithm (including the details 

regarding appropriate necessary conditions given by the 

Lagrangian). The algorithm is shown in Equation (2): 

 

 

 

(2) 

 

 

  

where,  is defined in Equation (3): 

(3) 

 

and the net economic revenue is given by Equation (4): 

 

Net Economic Revenue =                                                   (4) 

 

where, p is the price per unit biomass of the prey,  is the 

rate of taxation and C is the cost of fishing per unit effort.  

 

In effect, the IMNER algorithm selects a control law to 

instantaneously maximize net economic revenue at each 

instant in time. The reason to summarize the IMNER algo-

rithm is as follows: parameter estimates from this study 

were developed for use in any dynamic system model so 

that the control law Equation (2) may be implemented. 

Therefore, RSM models built from the second equation of 

Equation (1) aid in the control (harvesting effort) of the ra-

tio-dependent system. Once parameter estimates have been 

obtained (the subject of this current treatment), then harvest-

ing algorithms such as IMNER may be appropriately imple-

mented.  

 

Bias Dynamic System Formulation  
  

As McDonald‘s study [2] indicated, the predator biomass 

time rate of change (PBTRC) is the right-hand side of the 

second equation of Equation (1) and restated as Equation 

(5). To demonstrate the utility of the proposed methodolo-

gy, the PBTRC was sampled across a grid of points; howev-

er, suppose that the actual system is in the form of Equation 

(1), yet due to measurement or other error, the scattered data 

were taken from Equation (5): 

 

 

(5) 

 

where,  is a bias (constant) disturbance, whose magnitude 

is varied in the forthcoming analysis.  

 

It is important to explicitly state the reasons for adding 

the bias disturbance, . First, even without perfect 

knowledge of the PBTRC, the proposed methodology pro-

duces accurate parameter estimates. Secondly, assuming a 

normal distribution, many species reproduce, thrive, and 

decline at an established rate, but outliers (say, at two stand-

ard deviations) do exist. The methodology here, with an 

increased or decreased predator biomass time rate of change 

(positive or negative η), could represent the behavior of 

such outliers. Now, easily calculated is the gradient of 

Equation (5), where Equations (5) and (6) are equivalent to 

that found in McDonald‘s study [2] but contain the bias 

disturbance, .  
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1.513 and x2 = 5.513 and utilize the cubic radial basis func-

tion with the interpolation parameter c = 1.25. From Equa-

tion (8), the gradient yields 

 

(8) 

 

Now let  = 0.5 in appropriate units, as given in Equation 

(9): 

 

(9) 

 

Next let  = 5.0 in appropriate units, as given in Equation 

(10): 

 

(10) 

 

Finally, let   = 50.0 in appropriate, as given in Equation 

(11): 

 

                     (11) 

 

Equations (9)-(11) contain the gradient evaluated at three 

different levels of bias. With   = 0.5 considering Equations 

(6) and (11), see Equation (12): 

 

 

(12) 

 

Then solving for s and v with the biomass levels speci-

fied, and based upon the gradient of the RSM, only yields 

the values shown in Equation (13): 

 

 

(13) 

 

with  = 5.0 and Equation (14), 

 

 

       (14) 

 

Then solving for s and v with the biomass levels speci-

fied, and based upon the gradient of the RSM, only yields 

the values shown in Equation (15): 

 

 

                               (15) 

 

with  = 50.0 and Equation (16), 

 

 

         (16) 

 

 

                    (6) 

 
 

Response Surface Models 

 

This treatment, both due to precedent and consistency, 

utilizes the so-called cubic radial basis function. For de-

tailed information on this and other radial basis functions, 

refer to the study by McDonald et al. [3]. Paying particular 

attention to the bias disturbance, , the intent was to con-

struct RSMs by sampling F(x). Within many RSMs, the 

specification of parameter c is somewhat of an open ques-

tion and free to be specified, in some manner, by the ana-

lyst. The results of studies by McDonald [1, 2] guide the 

choice of both the particular radial basis function and the 

value of the interpolation parameter c.  

 

Biomass Equilibrium State Allowed  
 

The (bias) altered system given by Equation (5) was con-

sidered over biomass (state) levels of F(x) sampled over x1 

= 1,1.1,…,3, and x2 = 5,5.1,…,7. Note that over this sam-

pled parameter space, x2 = vx1 was allowed with v = 5. Also, 

let q = 0.01, s = 1.2,  = 10, K = 200,  = 0.1, and r = 1.5. 

Considering Equations (5) and (6), RSMs were constructed 

to determine the effect of the bias disturbance, , upon ac-

curacy of parameter estimates. There may be situations 

where physical implications or other insights provide rea-

sonable bounds on a bias disturbance. This work is especial-

ly valuable in that case. The focus was upon the cubic radial 

basis function [2, 3] shown in Equation (7): 

 

(7) 

 

From the RSM created via this RBF, Equation (7), evalu-

ated function and gradient values were used to estimate and 

quantify error for parameter estimates of s and ν. To begin, 

let the true parameter values be given as in the discussion 

that began this section. Given the methodology outlined in 

the study by McDonald et al. [3] and the grid of points over 

which F(x) is sampled as previously mentioned, a response 

surface model f(x) via numerical simulation was created. 

Then the gradient vector of the model f(x) evaluated at prey 

biomass levels x1 = 1.513 and predator biomass levels x2 = 

5.513 was used to calculate estimates. Parameter estimation 

in the absence of the bias disturbance was reported in the 

study by McDonald [2]. A fundamental point addressed 

presently is to discern if biomass equilibrium is required to 

generate useful estimates. 

 

Assume  = 0. In this case, the RSM reproduces the re-

sults from McDonald [2] for the gradient vector. Let x1 = 
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Equation (17) gives s and v with the biomass levels speci-

fied and, based upon the gradient of the RSM, yields the 

values shown: 

 

(17) 

 

 

Based upon the gradient, Equations (18) and (19) give the 

error in s and v with  = 0.5: 

 

 

(18) 

 

 

(19)  

 

Based upon the gradient, Equations (20) and (21) give the 

error in s and v with  = 5.0: 

 

 

(20) 

 

 

(21) 

 

Based upon the gradient, Equations (22) and (23) give the 

greatest error in s and v with  = 50.0: 

 

 

(22) 

 

 

(23) 

 

Equations (12-17) contain the parameter estimates at var-

ying levels of bias, while Equations (18-23) display the er-

ror estimates.  

 

Biomass Equilibrium State Not Allowed 
 

It is necessary to consider how the methodology performs 

if the RSM does not sample over the biomass equilibrium 

state x1 = vx2 with v = 5. The previously mentioned results 

would still be valid, despite the outcome, but this restriction 

speaks to the robustness of using RSMs to estimate ecologi-

cal parameters. Now F(x) was sampled over x1 = 1,1.05,1.1,

…,3 and x2 = 1,1.1,…,3. For comparison purposes given 

these restrictions, the gradient vector of the model f(x) eval-

uated at prey biomass levels x1 = 1.513 and predator bio-

mass levels x2 = 2.513 is reported. With  = 0.5 and Equa-

tions (24) and (25): 

 

 

 

(24) 

 

 

(25) 

 

 

Then solving for s and v with the biomass levels speci-

fied, and based upon the gradient of the RSM, yields the 

values shown in Equation (26): 

 

(26) 

 

with  = 5.0 and considering Equation (6), 

 

(27) 

 

 

(28) 

 

 

Then solving for s and v with the biomass levels speci-

fied, and based upon the gradient of the RSM, yields the 

values in (29): 

 

(29) 

 

with   = 50 and Equations (30) and (31), 

 

 

(30) 

 

 

(31) 

 

 

Then solving for s and v with the biomass levels speci-

fied, and based upon the gradient of the RSM, yields the 

values shown in Equation (32): 

 

(32) 

 

Equations (24-32) provide parameter estimates for vary-

ing levels of disturbance from which percent error calcula-

tions may be generated. Based upon the gradient, Equations 

(33) and (34) give the error in s and v with  = 0.5: 
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Based upon the gradient, Equations (35) and (36) give the 

error in s and v with  = 5.0: 

 

 

(35) 

 

 

(36) 

 

 

Based upon the gradient, Equations (37) and (38) give 

the greatest error in s and v is found with  = 50.0: 

 

(37) 

 

 

(38) 

 

 

Equations (33-38) show that the RSM methodology is 

quite robust to bias disturbance in the PBTRC. 

 

Discussion 
 

It is necessary at this point to further discuss why a 

(constant) bias disturbance was applied to Equation (5). 

First, it is common in situations where physical measure-

ments are taken that an instrument or methodology used to 

gather data inherently contain uncertainty. Secondly, RSM 

methods discerned parameter estimates across several dif-

ferent magnitudes of uncertainty. Consider a time-varying 

disturbance that would, say, evolve subject to some physi-

cally reasonable upper and lower limits. In this case, the 

methodology would have generated data points where some 

could have higher levels of uncertainty (near the bound) and 

some nearer in magnitude to zero, for example.  

 

The purpose was, in effect, to assume a worst-case level 

of disturbance in terms of magnitude (at an upper limit) and 

then compare parameter estimates at this level of uncertain-

ty (or bound on uncertainty) increased. Had a time-varying 

disturbance been present, it would have had a greater effect 

(again depending on the bound) as to if equilibrium popula-

tions of predator and prey would be possible or if the preda-

tor and prey biomass levels would oscillate about such equi-

librium points but vary with time, as driven by the time-

varying disturbance. 

 

Figure 1 illustrates system behavior, Equation (1), without 

bias and without harvesting pressure. This creates a baseline 

to observe how the manner by which not only the bias but 

also harvest affects the time evolution of predator and prey.  

Figure 1. System Behavior: No Harvesting Effort (no bias) 

 

In Figure 2, a constant, nonzero harvesting effort, u = 50 

is applied to the system. This was intended, in a small way, 

to demonstrate how interconnected a control law once im-

plemented may affect a particular system. In Figure 3, the 

behavior of the system, Equation (1), without bias disturb-

ance and subject to the IMNER algorithm is displayed. The 

behavior of the system without bias disturbance compared 

to that where the disturbance  = 0.5 was nearly identical 

and does not supply a useful visual representation.  

Figure 2. System Behavior: Constant Harvesting Effort (no 

bias) 

 

In Figure 4, the behavior of the system with bias disturb-

ance  = 5.0 is presented. In Figure 5, the behavior of the 

system with bias disturbance  = 50.0 is presented. The 

biomass and harvesting efforts denoted by the solid line 

represent the system without bias, where the dashed line 
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considers the effect of the bias upon the evolution of the 

system over time. These figures in combination with the 

percent error estimates reveal that the fundamental goal of 

parameter estimation was achieved. Of course, as η increas-

es, the estimation is less accurate. The biomass equilibrium 

clearly changes, however, for a relatively large change in 

magnitude disturbance  = 0.5, 5.0, and 50.0 in the predator 

biomass time rate of change, the percentage error is quite 

small and the parameter estimates given by Equations (13, 

15, 17, 26, 29, and 32) are reasonable.  

 

This is especially poignant in that it is incredibly difficult 

to estimate levels exactly. The key is that parameters that 

affect estimates globally by the mathematical model are 

quite accurate. Despite small to large disturbances in the 

predator biomass time rate of change, critical relationships 

such as the predator intrinsic growth rate and the relation-

ship between predator and prey biomass at equilibrium may 

be illuminated. 

Figure 3. System Behavior with the IMNER Harvesting 

(control) Effort (no bias) 

 

A comparison of the parameter estimates when the equi-

librium condition is allowed and not allowed is presented. 

Considering Equations (13, 15, and 17) to Equations (26, 

29, and 32) for the predator intrinsic growth rate, differ-

ences are shown in Equation (39):  

 

 

 

 

(39) 

 

 

 

and for the steady-state equilibrium parameter, v, see Equa-

tion (40): 

 

 

 

(40) 

 

 

 

 

Equations (39) and (40) further support this methodology 

as a robust means to estimate parameters.  

Figure 4. System Behavior with IMNER Harvesting Effort 

(bias = 5.0) 

Figure 5. System Behavior with IMNER Harvesting Effort 

(bias = 50.0) 

13 26 1.1962 1.1939 0.0023s s   

15 29 1.1921 1.1880 0.0041s s   

17 29 1.1511 1.1293 0.0218s s   

13 25 4.9852 4.9942 0.0090    

15 27 4.9722 4.9897 0.0175    

17 29 4.8413 4.9422 0.1009    
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Conclusions 
 

Parameter estimation aided by the construction of RSMs 

yields accurate parameter estimates for ecological systems. 

Note that the sampled parameter space of F(x) allowed for 

biomass states where x2 = vx1; this condition spawned the 

idea that while such a disturbance may certainly affect bio-

mass levels, some fundamental information must remain the 

same. It was felt that the results demonstrate the utility of 

the developed process. These estimates presented along 

with (at times) percentage error or error values justify the 

estimation properties of the methodology. Figures 1-5 were 

meant to illustrate the manner in which such a predator-prey 

system (biomass levels and temporal behavior) will vary 

given the imperfect knowledge that is ubiquitous in such 

complex systems. It is reasonable that fundamental charac-

teristics of populations have been well estimated (such as s 

and v). What is unique and new is that uncertainty as to ex-

act biomass levels is not a limiting factor. 
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Abstract 

  

Magnetorheological fluids (MR) are employed in automo-

tive, aerospace, medical, defense, and seismic damping ap-

plications. In this paper, the authors present a heuristic 

method for the control of vibration using MR fluid in bar 

feeder/turning center operations. Two types of feedback-

based, closed-loop control algorithms were evaluated: tradi-

tional proportional-integral-derivative (PID) control and a 

heuristic control algorithm employing experimentally deter-

mined optimal magnetic field settings. A series of tests were 

conducted and data sets were collected at frequencies cen-

tered about each predicted natural frequency up to 5000 

rpm. The average vibrational amplitude was computed by 

finding the local maxima and minima for each data set and 

establishing the optimal amperage level for the electromag-

nets. The data indicate that the heuristic algorithm exhibits 

superior performance in terms of reduced vibrational ampli-

tudes when compared with a traditional PID control algo-

rithm.   

  

Introduction   

  

Magnetorheological (MR) fluid typically consists of a 

base fluid, micro-sized iron or steel particles, and a surfac-

tant that facilitates the retention of these particles in suspen-

sion [1]. MR fluids are employed in automotive, aerospace, 

medical, optical, military/defense, and seismic damping 

applications. For example, MR fluid-based vibration damp-

ers are incorporated in the General Motors Corvette active 

suspension, Boeing F-18 stability augmentation system con-

trol actuators, and Maytag washing machine vibration 

dampers [2]. Bar feeders are employed in industrial turning 

operations to increase the level of efficiency of the manu-

facturing process [3]. Bar feeders may be loaded with one or 

more pieces of bar stock to facilitate turning operations. The 

use of a bar feeder eliminates the need for an operator to 

load individual pieces of bar stock or unload the remnants 

from the turning centers. Using a bar feeder, continuous 

machining may be achieved. Bar feeders typically handle 

round, square, or hexagonal bar stock as long as 12 feet, 

which is the standard length for U.S. manufacturing or the 

standard three meters in metric nations. 

 

In industrial turning operations that employ bar feeders, 

vibration may occur in the bar stock being fed to the opera-

tion. This vibration may occur as a result of one or more of 

three causative factors: bar stock runout, off-axis center of 

mass due to variations in density along the axis of the bar 

stock, forced vibration induced by the turning center spin-

dle, or deteriorating process conditions [4]. Traditional 

damping methods for vibration control include the use of 

feed tubes that enclose the bar stock (filled with pressurized 

oil) or guide channels that clamp and support the bar stock 

at discrete points along the length of the bar. Both of these 

traditional vibration damping methods are passive rather 

than active. If a large variety of bar stock sizes is to be em-

ployed in the turning operations supported by the bar feeder, 

a large capital investment must be made in order to possess 

the correct guide channels. 

 

Detrimental consequences arising from vibrational effects 

developed in the bar stock include 

 Degradation of workpart tolerances and process capa-

bility 

 Development of chatter 

 Degradation of workpart surface roughness and sur-

face integrity 

 Reduced cutting tool life 

 Reduced productivity 

 Reduced machine tool life 

 Increased cost of production 

 

The use of MR fluid in bar feeder applications for vibra-

tion damping has two advantages. Surrounding the bar stock 

with MR fluid allows the user to run smaller bar stock in 

larger guide channels, thereby reducing changeover time 

and dramatically decreasing the capital investment associat-

ed with the purchase of multiple guide channel sets. In this 

paper, the authors present a heuristic method for the control 

of vibration using MR fluid in bar feeder/turning center 

operations. This method is efficient and performs as well as, 

or is superior to, traditional control methods. 
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 Magnetorheological Fluid     
 

MR fluids may be employed in either valve mode or di-

rect shear mode. In valve mode, the fluid flows through an 

orifice. Figure 1 depicts valve mode schematically. 

Figure 1. Valve Mode  

 

In direct shear mode, the fluid is placed in dynamic shear 

between two surfaces. Figure 2 depicts direct shear mode 

schematically. 

Figure 2. Direct Shear Mode 
 

For the case of the MR fluid not being exposed to a mag-

netic field, Figure 3 shows that its characteristics are essen-

tially those of the base fluid. When the fluid is exposed to a 

magnetic field, the micro-sized magnetic particles align 

with the lines of magnetic flux. Increasing magnetic field 

strength results in an increasing level of particle alignment 

[5]. As alignment becomes more pronounced, Figure 4 de-

picts the interaction between the induced dipoles causing 

the particles to form columnar structures, which are parallel 

to the applied magnetic field.   

 

The viscous characteristics of an MR fluid are dependent 

upon the columnar structures that restrict motion of the fluid 

[6]. MR fluids exhibit Newtonian-like behavior in the ab-

sence of a magnetic field. Typically, an MR fluid under the 

influence of a magnetic field may be represented as a Bing-

ham plastic having variable yield strength. Equation (1) 

shows how the flow of an MR fluid exposed to a magnetic 

field may be characterized using Bingham's equations [7]: 

 

(1) 

where, 

τ = Shear stress 

τy = Field dependent yield stress 

H =  Magnetic field intensity 

η = Plastic viscosity of the fluid 

=  Fluid shear strain rate 

Figure 3. MR Fluid with No Magnetic Field Applied 

Figure 4. MR Fluid with Magnetic Field Applied 
 

If the stress experienced by the fluid is below yield stress, 

at strains on the order of 10-3 inch/inch, the fluid behaves 

viscoelastically [8], as in Equation (2):  

 

(2) 

where, 

G = Complex material modulus 

γ = Fluid shear strain 

 

The complex modulus is also field dependent [9]. As par-

ticle alignment increases, the fluid's field dependent yield 

strength and dynamic viscosity increase. In effect, as mag-

netic field strength increases, the fluid becomes more stiff 

[8]. In direct shear mode, the fluid resides between two 

plates or curvilinear surfaces that are in relative motion with 

respect to one another. As this relative motion occurs, the 
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Control Algorithm Development and  

Evaluation   
 

In this study, the authors evaluated two types of feedback-

based, closed-loop control algorithms: traditional propor-

tional-integral-derivative (PID) control and a heuristic con-

trol algorithm employing experimentally determined opti-

mal magnetic field settings as the initial value for a Newton-

Raphson style search for the optimum setting under any 

given set of machining conditions. An FMB Turbo 10-65 

hydrostatic style bar feeder was used as the test bed for this 

research (see Figure 5). 

Figure 5. FMB Turbo 10-65 Hydrostatic Bar Feeder 
 

The guide channel of the bar feeder was modified to re-

ceive five pairs of electromagnets, placed 18 inches apart on 

center (see Figure 6). Figure 7 depicts a schematic of the 

guide channel and electromagnet pairs. A resistor array al-

lowed the current supplied to the electromagnets to vary in 

37 discrete increments, resulting in magnetic flux densities 

ranging from zero to full scale, as shown in the Appendix. A 

piezoelectric accelerometer sensed the frequency and ampli-

tude of the vibration developed in the bar stock. For control 

algorithm development, a 12-foot-long, 0.500-inch-diameter 

6061-T6 aluminum bar was employed. This alloy possesses 

a Young‘s modulus of 68.9 GPa and a density of 2700 kg/

m3, which results in a mass per unit length of 0.342 kg/m. 

 

Figure 8 depicts the block diagram of the physical system 

in Figure 6. Here, S(s) denotes the system set point, GC(s) 

denotes the controller transfer function, G(s) denotes the 

physical system transfer function, and R(s) denotes system 

response. 

MR fluid experiences shear. By varying the magnetic field 

strength, the field dependent yield strength and dynamic 

viscosity of the fluid can be varied. As a result, the non-

conservative forces present in the system can be varied as 

well. The response time of an effective MR fluid is typically 

less than 10-3 seconds. For a shear rate of 26 s-1, typical fluid 

shear stresses range from 110 Pa at a flux density of 0.011 T 

to 18 kPa at a flux density of approximately 10 T [8].  The 

constant of proportionality, m, is approximately 1.75 Pas-

cals/Tesla for a given shear rate [8]. 

 

Vibration in Industrial Turning  

Applications     
 

In an industrial turning operation where a bar feeder is 

employed, vibration may occur as a result of bar stock 

runout, off-axis center of mass due to variations of density 

along the axis of the bar stock, forced vibration induced by 

the spindle speed, or deteriorating process conditions [4].  

Vibration is severe when the bar is subjected to a forcing 

function at or near one of its natural frequencies. Equation 

(3) predicts the natural frequencies of a rotating bar with a 

clamped support at the turning center chuck and a simple 

support at the bar feeder pusher (subject to a forced vibra-

tion) [10]: 

 
 

(3) 

 

 

where, 

E =  Young's modulus of the bar material 

I =  Second moment of area of the bar's cross section 

m  =  Mass per unit length of the bar material 

L  =  Length of the bar 

r  =  Mode number (1, 2, 3 . . .) 

ωr = Natural frequency (rad/s) for mode number r 

 

If E, I, and m (the material and diameter of the bar) are 

held constant and L varies with time, then the natural fre-

quencies of the bar also vary with time. This is the case in a 

production situation since, as workparts are parted from the 

bar stock, the bar advances such that its unsupported length 

(i.e., the length projecting from the turning center chuck 

into the bar feeder) changes with time. Since the natural 

frequencies of the bar stock vary with time, frequent adjust-

ment of the magnetic field applied to the MR fluid-based 

vibration damping system is necessary, either manually or 

by an automated control algorithm. It is worthy of note that 

in this type of vibration damping application, a magnetic 

field that is too strong may produce results inferior to those 

arising from the application of a magnetic field that is too 

weak. 
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Figure 6. Modified Guide Channel and Electromagnets 

Figure 7.  Guide Channel/Electromagnet Schematic 

Figure 8.  System Block Diagram 

 

Equation (3) was used to predict the natural frequencies 

of the 6061-T6 aluminum bar stock. Table 1 details calcula-

tion results. 

 
Table 1. Predicted Natural Frequencies for Aluminum  

6061-T6, 0.5 Inch Diameter Round Bar 

A series of tests were conducted and data sets collected at 

frequencies centered about each predicted natural frequency 

up to 5000 rpm. Spindle speed range for each natural fre-

quency was set at 25% above and below the predicted natu-

ral frequencies. The frequency step size of each test was set 

at five percent of the difference of the upper/lower bounda-

ries, but not to exceed 50 rpm. For example, for the natural 

frequency predicted at 177 rpm, data were collected at spin-

dle speeds of 140, 150, 160, 170, 180, 190, 200, 210, 220, 

and 230 rpm to ensure a sufficient number of data sets to 

establish the actual natural frequencies of the test specimen. 

Including replications, 147 data sets were collected.  Figure 

9 illustrates a typical data set. 

Figure 9. Typical Data Set 
 

Figure 10 depicts a fast fourier transform (FFT) of data 

collected at a spindle speed of 1260 rpm. The results depict-

ed in this figure approximately match the results delineated 

in Table 1. The average amplitude was computed by finding 

the local maxima and minima for each data set. Inflection 

points were disregarded and only local maxima and minima 

were evaluated. Figure 11 depicts the local maxima and 

minima in a representative sub-set of raw data, twelve data 

points numbered i = 1, i = 2, ... i = 12, and seven local maxi-

ma/minima numbered j = 1, j = 2, ... j = 7. Note that in Fig-

ure 11 the values are non-integer, due to a noise filtering 

algorithm to remove ambient electromagnetic noise from 

the signal. For the data depicted in Figure 11, Cj=1 occurs at 

i=2, Cj=2 occurs at i=4, Cj=3 occurs at i=6, etc. Equation (4) 

was employed to calculate the amplitude between the local 

maxima and minima: 

 

(4) 

 

where, 

Ci = The value, in counts (bit resolution), of data point 

 number i, collected at time ti 

Cj = The value, in counts (bit resolution), of local  

  maximum or minimum number j 

Aj = "Amplitude", in counts (bit resolution), between 

 Cj and Cj+1 

 

Mode #(r) 1 2 3 4 5 6 

ωr(rad/s) 18.5 59.9 125 214 326 462 

ωr(rev/min) 177 572 1190 2040 3110 4410 

1j j jA C C 
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Equation (5) yields the average amplitude, A: 

 

 

(5) 

 

 

where, n is the number of local maxima/minima found. 

Figure 10. FFT of Data at 1260 rpm Spindle Speed 

Figure 11. Data Set Representative Local Maxima-Minima 
 

The modified root mean square (RMS) amplitude, R, was 

employed in all analyses, since it "amplifies" differences in 

vibrational amplitude between tests conducted under vary-

ing conditions, making these differences more easily dis-

cernable. In Equation (6), R is expressed in counts: 

 

 

 

(6) 

 

 

A series of tests were performed, three times each, to es-

tablish an optimal amperage level or magnet setting for the 

electromagnets at spindle speeds ranging from 100 rpm to 

5000 rpm at 100 rpm intervals. A look-up table was con-

structed, consisting of paired spindle speed/magnet setting 

data. Control software was also developed that used data 

from this look-up table as the initial value for a Newton-

Raphson style search for the optimal setting under any given 

set of operating conditions. Magnetic flux density was held 

constant in each test. Magnetic flux density was varied from 

test to test. The test order (magnetic flux density) was ran-

domized using a random number generator for each test. 

Figure 12 depicts modified RMS amplitudes versus spindle 

speeds for three instances of a test run at 24% of full-scale 

magnetic flux density. 

Figure 12. Modified RMS Amplitude versus Spindle Speed, 

24% Full-Scale Magnetic Flux Density 
 

A two-sample t-test was performed to compare each of 

the three test results at each magnetic flux density setting to 

the others (i.e., test 1 versus test 2, test 2 versus test 3, and 

test 1 versus test 3). Table 2 shows the results from three 

tests performed at 3%, 24%, and 95% of full-scale flux den-

sity. 

 
Table 2. Two-Sample T-Test Results for Tests 1, 2, and 3 
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Magnetic Flux 

Density (percent 

of full scale) 

p value 

(Test 1 vs. 

 Test 2) 

p value 

(Test 2 vs. 

 Test 3) 

p value 

(Test 1 vs. 

 Test 3) 

3 0.815 0.151 0.137 

24 0.645 0.001 0.020 

95 0.202 0.002 0.037 
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In most cases, results from the third test differed signifi-

cantly from those of the first two test instances, as evi-

denced by p values less than 0.05, perhaps attributable to 

the in-use temperature change of the MR fluid. The rise in 

temperature has an effect on the viscosity of the base fluid, 

ultimately affecting the performance of the MR fluid. In 

subsequent versions of the MR fluid-based vibration damp-

ing system, the fluid will continuously recirculate, thereby, 

maintaining a constant fluid temperature. Averaging the 

results of each set of three tests established a single value to 

quantify each set. Figure 13 shows the magnetic flux densi-

ty setting resulting in the minimum modified average RMS 

amplitude that was determined for each spindle speed. 

Figure 13. Spindle Speeds and Corresponding Optimum 

Magnetic Flux Density 
 

Control software was developed that employed a Newton-

Raphson style search algorithm starting at the value con-

tained in the look-up table. Since the look-up table is em-

ployed as an initial magnetic flux density value, the Newton

-Raphson technique is nearly assured to converge on the 

optimal magnet setting [11]. Beginning with the initial value 

of magnetic flux density from the look-up table, the soft-

ware varies the magnet setting by a step size defined by the 

user. Smaller step sizes result in longer times to conver-

gence and more accurate final values, while larger step sizes 

result in shorter convergence times but less accurate final 

values. With each new magnet setting, vibration amplitude 

data are collected and the modified RMS amplitude is calcu-

lated in near real time.  

 

If the new modified RMS amplitude is less than the previ-

ous modified RMS amplitude by an amount greater than or 

equal to the user-defined threshold, then the new magnet 

setting is more effective than the previous magnet setting. 

This magnet setting variation is bi-directional. In other 

words, if the look-up table specifies a magnet setting of 

73% of full scale for some spindle speed, and the user de-

fines a step size of 8% of full scale, then new magnet set-

tings of 65% and 81% of full scale are evaluated. A series of 

user-defined iterations evaluate optimal magnet setting. The 

software allows the user flexibility in choosing the tradeoff 

between speed of convergence and accuracy of the final 

magnetic flux density setting. If the difference in modified 

RMS amplitude values from iteration to iteration is less than 

the threshold value, then the new current magnet setting is 

optimal. 

 

A traditional proportional-integral (PI) control algorithm 

was also implemented and tuned using direct synthesis [12]. 

Since different working conditions, which arise normally in 

situations with bar feeders, result in different optimal values 

of the control algorithm constants [13], the control software 

included a self-tuning routine that embodied the traditional 

PI control algorithm. Testing indicated that the integral term 

of the control algorithm was, at best, superfluous. As a re-

sult, a proportional control algorithm (P-only) was imple-

mented, while the self-tuning routine was retained in the 

control software. A series of tests were conducted at the 

frequencies surrounding those delineated in Table 1 to de-

termine which control approach (heuristic control algorithm 

versus P-only control algorithm) proved to be most effective 
in each case. The control algorithm that proved to be most 

effective in terms of smaller modified RMS amplitude val-

ues was the heuristic control algorithm. Figures 14 and 15 

depict representative results arising from the use of each 

control algorithm. Note that 402 counts (see Figure 14) cor-

responds to an acceleration of 1.201 m/s2, while 422 counts 

(see Figure 15) corresponds to an acceleration of 1.262 m/

s2. 

Figure 14. Heuristic Control Algorithm Results, 1260 RPM 
 

The P-only control algorithm responded much more 

quickly than the heuristic algorithm. The heuristic control 

algorithm responded as much as three times more slowly, 

based on results collected from three iterations per test at 

each of the previously delineated spindle speeds. There is a 
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trade-off in the selection of control algorithm: smaller modi-

fied RMS amplitude or a faster response time. Typically, in 

a constant spindle speed industrial turning situation, ex-

tremely small response times are not required. When this is 

the case, the use of the heuristic control algorithm is indicat-

ed. 

Figure 15. P-Only Control Algorithm Results, 1260 RPM 
 

Conclusion 
 

In this paper, the authors present the development of a 

heuristic control algorithm employing experimentally deter-

mined magnetic flux density settings as the initial values for 

a Newton-Raphson style search method. This heuristic algo-

rithm exhibits superior performance in terms of reduced 

vibrational amplitudes when compared with a traditional 

proportional-only (P-only) control algorithm. This was ex-

hibited by nearly a five percent reduction of the modified 

RMS amplitude when the heuristic algorithm was applied 

compared to the P-only algorithm. The traditional P-only 

control algorithm exhibited a more rapid response (by up to 

three times) than the heuristic method. As a result, the P-

only algorithm proved to be more efficient than the heuristic 

algorithm. However, in typical turning applications at con-

stant spindle speeds, this fast response is typically not re-

quired. In cases where extremely fast responses are not nec-

essary, the use of the heuristic method is indicated. 

 

Further research is warranted with respect to the effects of 

bar stock diameter, bar stock length, and bar stock material: 

testing the various length/diameter/material combinations  

and testing the effects of each algorithm on the vibrational 

performance of the system should be investigated. It is pos-

sible that, under some combinations, the heuristic algorithm 

would have a much higher reduction of RMS amplitude 

than the traditional P-only algorithm. In addition, the effects 

of in-use MR fluid heating should be evaluated or, alterna-

tively, the fluid should be maintained at a near-constant 

temperature. To this end, the study of the effect of lowering 

the fluid‘s working temperature might yield more superior 

performance of the heuristic algorithm compared to that of 

the P-only algorithm. 
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Appendix 
 

Future researchers may want to duplicate the tests de-

scribed within this article. To facilitate this, Table 3 lists the 

magnetic flux densities employed. 

Table 3. Magnetic Flux Densities 

Amps BM(T) Increment 

0.075 0.041400 3.75% 

0.137 0.075624 6.85% 

0.191 0.105432 9.55% 

0.244 0.134688 12.20% 

0.333 0.183816 16.65% 

0.371 0.204792 18.55% 

0.402 0.221904 20.10% 

0.469 0.258388 23.45% 

0.527 0.290904 26.35% 

0.578 0.319056 28.90% 

0.619 0.341688 30.95% 

0.659 0.363768 32.95% 

0.712 0.393024 35.60% 

0.755 0.416760 37.75% 

0.794 0.438288 39.70% 

0.840 0.463680 42.00% 

0.883 0.487416 44.15% 

0.922 0.508944 46.10% 

0.962 0.531024 48.10% 

1.000 0.552000 50.00% 

1.035 0.571320 51.75% 

1.071 0.591192 53.55% 

1.105 0.609960 55.25% 

1.140 0.628000 57.00% 

1.174 0.648048 58.70% 

1.203 0.664056 60.15% 

1.237 0.682824 61.85% 
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ing the editorial review of your manuscript. If your manu-

script is accepted for publication, you will receive instruc-

tions regarding all required revisions and the submission of 
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