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Abstract 
 
The aero-mechanical phenomenon known as prop-whirl flutter has been blamed for a number of 
aircraft disasters, dating back to the total loss of two Lockheed Electra passenger airliners in 
1959-60.  Although relatively rare, the phenomenon has been a suspect in smaller plane crashes 
as recently as 1991 and 2005.  In each case, the planes experienced loss of one wing due to 
fatigue failure of the wing-fuselage interface.  Prop-whirl flutter can cause just such a failure due 
to an undamped coupling of an engine/nacelle/propeller whirl mode with the wing’s airfoil 
flutter mode.  Prop-whirl flutter has always been a difficult phenomenon to analyze.  It has also 
been hard for both engineers and engineering students to visualize.  Large finite element models 
have been utilized to represent aircraft wing and nacelle structures, and to analyze for the 
occurrence of prop-whirl flutter.  The introduction of readily available, easy to use, yet highly 
powerful mathematical analysis tools (such as MATLAB) has changed the analysis process.  
Relative to the subject at hand, they have made it possible to construct simple matrix equation 
models representing a wing-nacelle system and to analyze them for potential excitation of the 
phenomenon.   
 
History of the Prop-Whirl-Flutter Phenomenon 
 
The Lockheed L188 Electra was designed as a commercial transport aircraft with space for up to 
100 passengers.  As shown in Figure 1, it utilized four wing mounted Allison 501 turbo-prop 
engines.  The first flight for the Electra was in December of 1957.    The potential for the aircraft 
looked good and orders for 144 aircraft had been received by 1959.  However, On September 29, 
1959 a Braniff Airways Electra disintegrated in-flight near Buffalo, Texas, losing the entire left 
wing.   A nearly identical incident occurred only a few months later, on March 17, 1960.  The 
second crash involved a Northwest Orient Airlines Electra that lost its entire right wing, crashing 
near Tell City, Indiana.   All crew and passengers were lost in both incidents, and the Electra 
fleet was grounded pending investigations.[1]   
       
The FAA, Lockheed, and Allison Gas Turbine Division of General Motors all participated in the 
investigation.   The official FAA reports now describe the cause of the first accident like this:  
“Structural failure of the left wing resulting from forces generated by undampened propeller 
whirl mode.”[2]     The second crash cause is given as “In-flight separation of the right wing 
because of flutter induced oscillation of the outboard nacelle.”[2]     Accident investigators in 
Texas found evidence that the outboard nacelle on the failed wing had swung as much as 35 
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degrees out of alignment.   Lockheed had designed the nacelle to break away in the event of 
large unbalances such as a propeller blade loss, and this had not occurred.   Rather, the entire 
wing had separated from the fuselage while the nacelle remained attached to the wing.   
                           

               
 
                                  Figure 1:  The Lockheed L188 Electra Aircraft [1] 
 
 
Wing overload did not seem a likely cause, because such a structural weakness would have 
turned up during Lockheed’s extensive structural testing, or in the thousands of flight hours that 
Brannif, Northwest, and Eastern Airlines had seen on the Electras in their fleets.   Prior to this 
time, no one had ever considered that an engine/propeller system whirling mode could couple 
with a flutter mode of a structural airfoil such as a wing.   However, with other explanations 
seeming even less probable, the investigation turned toward this possibility.   Peter Garrison 
describes the investigation, saying “Lockheed’s flutter analysts reprogrammed their computer to 
include whirl mode, and the mechanism of the accidents began to emerge.  By an unlucky 
coincidence, the whirl mode frequency of the Electra’s big four bladed propellers happened to 
match the flapping frequency of the wing.  The propellers, like the child driving a swing ever 
higher by small movements of her body, had eventually caused the wing to flap so violently that 
in 30 seconds it broke at the root, without the propeller whirl ever overloading the nacelle 
structure.”[3]     This phenomenon became know as prop-whirl-flutter.   
 
It was deduced that damage to one of the engine’s four mounts had caused a reduction in the 
stiffness of the engine/prop system, thus lowering the whirl mode until it was coincident with the 
wing’s flutter mode, precipitating the ever increasing excitation of the wing mode, and ultimately 
causing the wing failure.   Eventually, not only did analysis prove the cause to be prop-whirl-
flutter, but full-scale testing of a Lockheed Electra with reduced stiffness engine mounts 
demonstrated the phenomenon in a wind tunnel.  Films taken in 1960 of the Electra wing 
experiencing prop whirl flutter reside in the archives of the Smithsonian National Air and Space 
Museum.  This video clip can been seen today on the internet at the www.airspacemag.com 
website. [4]   Lockheed eventually redesigned the mount system for the Electra to ensure that 
reduced stiffness could not cause the whirl mode of the engine/prop to fall into this situation 
again.  However, prop-whirl-flutter remains a concern today.  It was implicated in the 1991 crash 
of a Beechcraft 1900C twin engine turboprop regional airliner.[5]  As recently as December, 
2005 a Chalk Ocean Airways G-73 Mallard went down near Miami, Florida due to loss of a 
wing, exhibiting fatigue failure along the wing root. [6]  The 58 year old aircraft had been 
designed in the same era as the Electra.     
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The aerodynamic effect of propeller yaw angles has been examined as far back as Freeman’s 
report from Langley Field’s aeronautical laboratory in 1931.[7]    Houbolt and Reed addressed 
the subject of prop-whirl-flutter directly, in the Journal of Aerospace Sciences, following the 
Electra crashes, in 1962.[8]    Reed updated the study in 1967 [9]    while Buschow and Kane [10] 
and Mayoral [11] have addressed the issue more recently, in 1995-96.   But perhaps the most 
thorough discussion of the prop-whirl-flutter phenomenon was provided by Kunz in 2002. [12]  
The introduction of readily available, easy to use, yet highly powerful mathematical analysis 
tools (such as MATLAB) has changed the analysis process.  Relative to the subject at hand, they 
have made it possible to construct simple matrix equation models representing a wing-nacelle 
system and to analyze them for potential excitation of the phenomenon.   
 

 
A Simple Model of Prop-Whirl-Flutter 
 
Let us try to construct a simple model of an airplane wing so that we can examine the 
phenomenon known as prop-whirl-flutter.  Assuming the wing to be grounded at the fuselage, 
the wing can be modeled as three lumped masses and inertias along the wing, with each mass 
having the coordinates shown in Figure 2.  This is an extreme simplification of the system and 
modern tools like MATLAB are capable of handling much more involved models.  However, for 
purposes of this paper the three mode wing model will be adequate to demonstrate the approach 
and will lead to matrix equations fully capable of filling the page.  It must be recognized that the 
approach can easily be extended to an increased number of degrees of freedom. 
 
  

      
 

Figure 2:  A simple model representation of an airplane wing. 
 
The complete set of equations of motion for this system can be represented as the matrix 
equation 
 
[M] d2 [X]  +  [C] d [X]  +  [K] [X]  =  [F] 
       dt2         dt 
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where [X] is an eighteen element column vector containing, from top to bottom, the translational 
coordinates at element 1 (x1, y1, and z1) then the rotational coordinates of element 1 (θx1, θy1, and 
θz1) followed by the similar coordinates at element 2 and element 3.  The mass and inertia 
matrix, [M] would be an 18 by 18 diagonal vector where the first six terms, corresponding to the 
first element would be m1, m1, m1, Jx1, Jy1, and Jz1, where m1 is the mass of lumped element 
number 1, and the J terms are the rotational mass inertias about the x, y, and z axes at element 1.  
Terms for the subsequent elements would be of the same form.  The [C] and [K] matrices would 
be damping and stiffness matrices, respectively.  These would be banded diagonal matrices, 
while [F] would contain the forcing functions and moments.  This matrix could easily be 
enlarged by adding additional elements to the model of Figure 2.   However, each new element 
will drive the size of the matrix up by six terms, such that a four element system would require a 
24 by 24 matrix, etc.  This rapidly becomes unwieldy and in reality, if we want a “simple” model 
to work with, we need to reduce the degrees of freedom and the size of the matrices if possible.   
 
Thus, let us return to the system for the model shown in Figure 2, and consider the wing 
stiffness.  In the axial (z) direction, the wing will be very stiff.  Also, the stiffness in the fore-
and-aft direction (x) will be stiff relative to the stiffness in the vertical direction (y) due to the 
large area moment of inertia about the wing’s Y axis relative to the wing’s X axis.  Since prop-
whirl-flutter is a reduced stiffness phenomenon, the direction of greatest interest is the one where 
the stiffness is lowest already.  So to simplify the problem to a manageable level, let us reduce it 
to only the y direction translational degrees of freedom.  Likewise, twisting stiffness about the x 
and y axes would be high relative to the twisting stiffness about the z axis.  So by the same logic, 
let us reduce the rotational degrees of freedom to rotation about the z axis, which will correspond 
to the wing’s torsional deflection, or twisting.  Now the equations of motion reduce to the 
following: 
 

 
 
Where the m terms are the masses at the selected element locations, and the J terms are the 
rotational inertias about the z axis at each element location.  The C and K terms are the damping 

m1  0     0    0    0    0 
0     J1   0    0    0    0 
0     0    m2  0    0    0 
0     0    0    J2   0    0 
0     0    0    0    m3  0 
0     0    0    0    0    J3  
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and stiffness in the y direction at each element and the CT and KT terms are the rotational 
damping and stiffness about the z axis at each element.   
 
Now let us add a new reference frame associated with the engine mass, m4, which we will locate 
coincident with m2.  We will also add the propeller, m5, as shown in Figure 3.  We will set up 
coordinates at masses 4 and 5 which are consistent with the coordinates at masses 1, 2, and 3.  
For simplicity, let us treat the engine cg (mass m4) as being coincident with the wing mass m2.  
However, we will need to allow flexibility between the engine and the wing to allow us to 
simulate the change in flexibility due to engine mount effects. 
 

 
Figure 3:  The simplified wing model with engine/nacelle and prop added. 

 
If we let m4 move rotationally relative to m2, then it will allow us to simulate the change in 
flexibility due to engine mount stiffness.  Mounts would be stiff in rolling about the x axis, but 
would permit rotation about the y and z axes, which would represent engine nacelle whirl.  Next, 
let us recognize that the degrees of freedom at the prop (m5) are dependent variables which can 
be expressed in terms of the degrees of freedom at m4.  This means that we do not need a 
separate set of coordinates for the prop.    The terms θ4y and θ4z would represent the rotations at 
node 4 about the y and z axes, respectively. 
 
Donald Kunz of old Dominion University has performed a very thorough development of the 
whirling of an engine and propeller.[12]  Here his propeller equations are converted into our 
coordinate system. 
 
 [ Iyy + ½(3-cos2β) + 4Sb(L-d)sinβ + m5(L-d)2] θy’’ 
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where β is the blade pre-cone angle, Ω is the prop rpm, d is the rotor undersling, Sb is the blade 
inertia, and the ω terms are the natural frequencies of the nacelle.   Next, we need to couple these 
engine/prop equations of motion with the wing equations of motion already developed.   Terms 
θy and θz from the equations above would use node 4 as their origin and would relate to θ4y and 

θ4z from the model.   
  
However, these equations are rather complicated, involving blade precone angle, and rotor 
undersling, to create a truly general expression for the engine and prop description.  For our 
purposes, let us assume that the precone angle and undersling are both zero as they would have 
been for the Electra.  This simplifies these equations to the following: 
 

[ Iyy + ½(3-1) + 4Sb(L)(0) + m5L2] θy’’ 
 
  - Iyz θz’’ + 2Ωθz’ +ωy

2Iyyθy  =  Mθy 
and 

[ Izz + ½(3-1) + 4SbL(0) + m5L2] θz’’ 
 

-Iyz θy’’ - 2Ωθy’ +ωz
2Izzθz  =  Mθz 

 
Which reduces to  
 

 [ Iyy + 1 + m5L2] θy’’ - Iyz θz’’ + 2Ωθz’ +ωy
2Iyyθy  =  Mθy 

and 
 

[ Izz + 1 + m5L2] θz’’ -Iyz θy’’ - 2Ωθy’ +ωz
2Izzθz  =  Mθz 

 

Redefining terms, Icross for Iyz and Iprop for (Iyy +1 +m5L2) and recognizing that for a symmetric 
prop Iyy and Izz are the same, the equations become 
 
 IPROPθy’’ – ICROSSθz’’ +2Ωθz’  + ωy

2IPROPθy  =  Mθy 
and  

-ICROSSθy’’ + IPROPθz’’ -2Ωθy’  + ωz
2IPROPθz  =  Mθz

 

 
Now we will incorporate this simplified relationship into the previously developed equations of 
motion, and simplify the forcing functions of the system to the unbalance force in the prop, Fu.  
The moments Mθy and Mθz above can be rewritten as a combination of forces about the y and z 
axes as Fudcosθx and Fudsinθx where θx is a reference angle relative to the x axis.   We get the 
equations of motion given below.  At this point we must also add the torsional stiffness term 
representing the rotational stiffness of the engine about an x axis through the cg (located at node 
2).  If we assume symmetric stiffnesses, then the Kt at node 4 about the z axis is the same as the 
Kt at node 4 about the y axis and we can refer to both as simply Kt4.  This is then applied to the 
appropriate degrees of freedom to get the following set of equations of motion: 
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 Ky = ωy

2 IPROP + KT4  Kz = ωz
2 IPROP + KT4 

 
 
Results 
 
The equations just developed were examined using MATLAB, which is one of several new 
analysis tools capable of performing such calculations quickly and efficiently.  The vertical 
response of the engine cg can be plotted as a function of time.  Figure 4 shows a typical response 
occurring when the propeller and engine are responding to a forcing function that is not 
coincident with the nacelle whirl and wing flutter modes.  By judicious selection of the system 
parameters, it is possible to bring the wing and propeller modes and forcing function close 
enough together that the response begins to grow in an unbounded manner. An example of this is 
shown in Figure 5.  This is the sort of response that would have occurred in the Electra crashes 

m1   0   0   0   0   0      0          0 
0     J1  0   0   0   0      0          0 
0     0  m2   0  0   0      0          0 
0     0   0   J2  0   0      0          0 
0     0   0   0   m3 0      0          0 
0     0   0   0   0   J3        0          0 
0     0   0   0   0   0   IPROP –ICROSS 
0     0   0   0   0   0 -ICROSS  IPROP 

y1’’ 
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y2’’ 
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y3’’ 
θ3’’ 
θ4y’’ 
θ4z’’ 

+

C1+C2      0        -C2      0        0       0     0      0 
     0   CT1+CT2    0      -CT2     0       0     0      0 
  -C2         0     C2+C3    0      -C3      0     0      0 
     0       -CT2      0   CT2+CT3  0     -CT3   0      0     
     0          0      -C3       0       C3      0      0      0 
     0          0        0      -CT3      0     CT3    0      0   
     0          0        0        0         0       0      0    2Ω 
     0          0        0        0         0       0    −2Ω  0 
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θ4y’ 
θ4z’ 
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  -K2         0     K2+K3    0      -K3      0     0      0 
     0       -KT2      0       KT5      0     -KT3   0   -KT4            
     0          0      -K3       0       K3      0      0      0 
     0          0        0      -KT3      0     KT3    0      0   
     0          0        0        0         0       0      KY    0 
     0          0        0       -KT4     0       0      0       KZ 
 

y1 
θ1 
y2 
θ2 
y3 
θ3 
θ4y 
θ4z 

=

0 
0 
0 
0 
0 
0 
Fudcosθx 

Fudsinθx 

Where to simplify the matrix, we have assigned the following relationships 

KT5 = KT2 + KT3 + KT4  
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when the engine mount failure caused the two modes to occur in conjunction.  One can easily see 
how the responses could rapidly grow large enough to cause wing failure.    
 

 
Figure 4:  Steady state response of engine under normal conditions 

           

 
Figure 5:  Response growing unbounded as prop-whirl-flutter modes come into conjunction 

 
 
Conclusions 
 
It is possible to build a simple representation of the equations of motion for a wing/propeller 
system which can be used to demonstrate the disastrous potential effects of the prop-whirl-flutter 
phenomenon.  Today’s new analysis routines make it easy to look at the response of these model 
equations using various input parameters.  Combining these makes it easier than ever before to 
demonstrate the effects of the prop-whirl-flutter phenomenon. 
 
 
 

Normalized 
Response     0 
Amplitude 

Time (sec) 200

1 

-1 

Mn = 500, Jn = 1000, IP = 250, 
IC = 100, Cn = 20, Ctn = 20 
Kn = 400, KTn = 300,  
KT4 = 100, Ω = 100 
 

Normalized 
Response    0 
Amplitude 

Time (sec)
-1

Mn = 500, Jn = 1000, IP = 250, 
IC = 100, Cn = 20, Ctn = 20 
Kn = 400, KTn = 300,  
KT4 = 100, Ω = 100 

 

0 200 

0 

1



Proceedings of The 2006 IJME – INTERTECH Conference 

References 
 
[1]    Oldprops website, www.oldprops.co.uk. 
 
[2]    Aviation Safety Network Accident Description website, www.aviation-safety.net/database. 
 
[3]    Garrison, Peter.  “’Flutter’ – an Oddly Gentle Name for a Phenomenon That Could Mean 
Disaster for an Airplane,”  Smithsonian Air & Space Magazine,  February 2001. 
 
[4]   Smithsonian Air & Space website, www.airspacemag.com/asm/ 
Web/Site/QT/PWFlutter.html 
 
[5]   Steenblik, Jan. “The Mystery of Business Express Beechcraft 1900 N811BE,” The Airline 
Pilots Association website, www.members.al.com/proav8or/index8.html. 
 
[6]    “NTSB Advisory,” National Transportation Safety Board website, 
www.ntsb.gov/pressrel/2005/051222.a.htm. 
 
[7]    Freeman, Hugh.  “The Effect of Small Angles of Yaw and Pitch on the Characteristics of 
Airplane Propellers,”  Langley Memorial Aeronautical Laboratory Report #389, Langley Field,  
January 20, 1931. 
 
[8]    Houbolt and Reed, “Propeller-Nacelle Whirl Flutter,”  Journal of the Aerospace Science,  
March 1962. 
 
[9]    Reed, A.  “A Review of Propeller-Rotor Whirl Flutter,”  NASA TR R-264, 1967. 
 
[10]  Buschow and Kane,  “Whirl Flutter Studies,”  ASE 363Q, Spring 1995.   
 
[11]  Mayoral,et.al.  “Propeller Whirl Flutter Analysis,”  ASE 363Q, Summer 1996. 
 
[12]  Kunz, Donald. “Analysis of Prop-Rotor Whirl Flutter:  Review and Update,”  43rd 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,  April 
2002. 
 
 
 
 
Author Biography 
 
Pete Hylton is an Assistant Professor of Mechanical Engineering Technology at IUPUI, where 
he directs the Motorsports Technology Program.  He previously spent 25 years in the aerospace 
industry where he served as Manager of Dynamics for the T406 for the V-22 Osprey, Chief 
Design Engineer for the Comanche Helicopter T800, and Tech Lead for the Joint Strike Fighter. 
 
                


