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Abstract 
 
In this treatment, the control of a class of nonlinear mechanical systems is considered. The 
objective is to zero the states of the system with a bounded control, while considering some state 
dependent cost. Specification of controls for this system class is extremely difficult due to the 
nonlinearities and bounds on the control. Furthermore, such controls often produce chatter; 
undesirable behavior that can damage physical components through vibration and excitement of 
resonant modes. A control law is proposed that minimizes cost in a quickest descent fashion; that is, 
at each instant a control is chosen that minimizes the time rate of change of the cost function. The 
control law includes a singular control regime that alleviates the chattering issue and provides 
asymptotic stability of the origin. This singular regime produces a switching surface, whose 
existence and placement is driven by function minimization in addition to stability of reduced order 
dynamics. It is shown that the control law provides the stability result when traditional Lyapunov 
optimizing controls cannot; therefore the applicability of such schemes is extended for this problem 
class. 
 
Introduction 
 
Lyapunov’s second method has been used extensively to develop control laws for linear and 
nonlinear systems, for example as in [1,3,4,5]. One such method, Lyapunov optimizing control 
(LOC), produces feedback controls by selecting a candidate Lyapunov function and choosing the 
control to minimize this function as much as possible along system trajectories [2, 8, 10]. The 
primary advantage that is realized during the use of LOC algorithms comes from a built in proof of 
their effectiveness. Assuming the target is the origin, if the candidate Lyapunov function is 
decreased everywhere outside the origin, a sufficient condition for asymptotic stability is satisfied 
[9]. Therefore, the LOC approach provides a means to design feedback controls where cost 
accumulation, stability of the origin, and control bounds are explicitly considered. The difficulty in 
utilizing LOC methods arises during proof of asymptotic stability of the origin. For a dynamical 
system it may be quite difficult to guarantee that the candidate Lyapunov function decreases 
everywhere outside the origin. If the function doesn’t decrease everywhere apart from the origin, 
asymptotic stability using traditional means cannot be proven. A second difficulty arises that is 
notorious for the problem class considered here; the so-called chatter phenomenon. Chatter is 
typified by high frequency (discontinuous) commutation of the control signal across a switching 
surface [7, 11]. This commutation may produce a variety of detrimental effects on a mechanical 
system such as excitement of resonant modes and extreme wear on actuators. In this treatment, we 
use a variant of LOC known as quickest descent control (QDC) to derive a control algorithm that 
provides desired asymptotic stability of the origin, considers cost and control bounds explicitly, and 
uses singular control to eliminate the discontinuous chatter. These objectives are achieved without 
requiring the time rate of change of the candidate Lyapunov function to be strictly negative outside 
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the origin.  
 
Problem Formulation 

 
This research considers the optimal control problem  
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 which is associated with transporting the state x from some initial point to the origin. The matrix 
Tx∂Ψ∂ /2 is constant, symmetric, and positive definite. We consider nonlinear second-order systems  
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where the control variable u  is an element of the constraint set  

                                                         maxmin uuu ≤≤                                                                         (4) 

where umin = -umax. Furthermore, we assume to know a function f  that satisfies 
 
                                                         ( )xfxxf <),( 21      
 

                                                    ( ) 00 →→ xx asf                                                                   (5)    

Quickest Descent Control 
 
Quickest descent control [6, 8] provides the structure for algorithms developed in this treatment that 
consider cost accumulation, control bounds, and progress to the target. Controls found by the 
application of QDC are derived by first selecting a descent function ( )xΨ  that exhibits the following 
properties: 1) ( ) 0Ψ =0 , 2) ( ) 0xx ≠∀> 0Ψ , and 3) 0x0x ≠∀≠∂Ψ∂ / . The control u  for the 
problem (1)-(4) is chosen to decrease ( )xΨ  as quickly as possible along trajectories x(t). For that 
reason, u  is chosen by  

                                                          
dt

d
u

Ψmin                                                                               (6) 

where we choose the cost accumulation rate ( )xΨ  as the descent function; that is we let 
( ) ( )xx Ψ=Ψ . Therefore, the control is chosen  

                                                           Ψ&
u

min                                                                                (7) 

where /dtdΨ Ψ=& . If 00Ψ ≠∀< x&  and properties (1) - (3) are satisfied, then we are assured that the 
origin is asymptotically stable. In [5] necessary conditions are formulated on ( )xΨ  that allow for 
stability of the target. Here we assume these conditions are satisfied so that we may prove the 
desired stability results of the chattering-free controller.  
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Properties of the Controller 
 
Given a satisfactory ( )xΨ  we have 

( ) ( ) ( ) ( )[ ]uxxfxxxu +∂Ψ∂+∂Ψ∂=Ψ 21221 ,//,x&
                   

Application of (7) results in the following Quickest Descent Control Law (QDCL) 
 

umax if   σ( x ) < 0 
us if   σ( x ) = 0 u(x) = 

umin if   σ( x ) > 0 
 
where singular control [8] is denoted by su . Furthermore,  

                                                 ( ) 2/ x∂Ψ∂=xσ                                                                      (9) 
with switching surface ( ){ }0xσ:xS =≡ . Additional entities related to the switching surface are       
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Singular control us requires 0==σσ & , which from (9)-(11), is  
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Stability Results 
 
The proposed control law QDCL is useful only if it can be shown that for the nonlinear system (3) 
subject to control bounds (4), there exists a region in state space from which trajectories reach S  
and then asymptotically approach the origin.  

1. Reaching Phase 

To prove asymptotic stability of the origin, we first prove that there exist initial states whose 
trajectories, under QDCL, reach S  in finite time.  
 
Theorem 1. Assume the necessary conditions of [5] are satisfied by  

                                               ( ) 2
221

2
1 2

1
2
1 mxxbxkx ++=Ψ x                                                  (13) 

note that this implies that the constants k, b and m are strictly positive. With these necessary 
conditions satisfied, the function (13) can be seen as penalizing states that are not at the origin (a 
positive cost is imposed, which we desire to minimize). Over any finite time interval beginning at t 
= t0, the state may be upper bounded by a function of ( )0tx and by the maximum absolute value of 
σ attained in that time interval.  
 
Proof. Consider the first component of the state equations (3) 
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note that the integrals may be evaluated since (16) is a stable system with b and m positive. Now, 
( )tx1  satisfies 
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and therefore (noting that ( ) ( )txtx 21 +≤x  and using (17)) 
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which completes the proof.      
Leveraging the bound (19) on the state, we can prove finite time convergence to S.  
 
Theorem 2. Consider the region σ( x ) < 0; all x (t0) that satisfy 
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reach the surface S  in finite time.  
 
Proof. First, we are assured such a region exists; for arbitrarily small x (t0)  and σ(t0)   since  

.0max
2

>
∂
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x
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Note that (20) implies that 0>σ& . To prove finite time convergence we must show that )(tσ&  is 
strictly positive for all x (t0) that satisfy (20). The proof follows by supposing for some x(t0) there is 
a time when 0)( =tσ& . The first instant at which this is true requires, recalling (11) 
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where u = umax since σ<0. This implies that  

(15) 
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which is a contradiction. Therefore, trajectories satisfying (20) reach S in finite time. Analogous 
results hold for σ > 0.    

2. Asymptotic Stability 

Theorem 3. With constants m and b greater than zero, trajectories that reach S  with us satisfying 
(4) asymptotically approach the origin.  
 
Proof. The proof follows by substitution of (12) into (3) yielding 
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Clearly 02 →x . With us enforcing the constraint ( 021 =+= mxbxσ ) and 02 →x , 01 →x  and the 
proof is complete. Note that in the proofs of the reaching and stability phases of the control law we 
did not require 0<Ψ&  for 0x ≠ . This is the advantage of the proposed control law QDCL over 
traditional Lyapunov optimizing control schemes. 
 
Numerical Simulation 
 
To demonstrate the usefulness of the proposed control scheme, we present analysis and simulation 
results for a representative nonlinear system. In the present case, problem is the stabilization of a 
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nonlinear inverted pendulum about an unstable (vertical) equilibrium position. The control 
objective was to stabilize the origin, while minimizing total energy with dissipation (13) with m = 
4, b = 2, and k = 3. The state equations took the form of (3), with ( ) 2121 )sin(, xxxxf −=  and we 
assumed that umax = 10. This choice of umax = 10 is dependent upon the hardware capabilities of the 
control system. For example, an inverted pendulum is typically controlled by an electric motor; the 
maximum torque delivered by this motor is reflected in the maximum control effort (umax = 10).  
 
First, the control law QDCL was implemented, but singular control was not used; Across the 
switching surface, the control varied discontinuously between its minimum and maximum values.  
 

 
 

Figure 1: Typical chattering trajectories without singular control. 
 

In Fig. 1, a wide view is shown; the trajectories asymptotically approach the origin. However, in 
Fig. 2, which is a close-up of a portion of Fig. 1, we observe the chatter that presents due to the 
discontinuous control law. This chatter can cause wearing of mechanical components and may 
induce resonant modes; it should be avoided whenever possible. 

 
 

Figure 2: A Typical chattering trajectory without singular control. 
 

In Fig. 3, typical trajectories are shown as a result of implementing the control law QDCL 
(including singular control). Use of the singular control regime eliminates the discontinuous chatter. 
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Figure 3: Typical trajectories with singular control (CLO) 
 

In Fig. 4, a close-up view is shown of one portion of Fig. 3. Clearly, the chatter has been 
eliminated. 
 

 
 

Figure 4: A trajectory under singular control. 
 

Physical bounds on the control variable (bounded torque) influence the size of the controllable set. 
With a greater control bound, we may generally expect to be able to dictate that states far from the 
origin are ultimately driven asymptotically to the origin. With a smaller control bound (less torque) 
we generally observe that a smaller set of states surrounding the origin will ultimately be driven 
asymptotically to the origin. To illustrate this let umax = 1 within the prior example, and note Fig. 5. 
The reduction in control bounds reduces the number of states that may be forced to the origin by the 
control algorithm. In fact, many states which approached the origin under umax = 10 now approach 
one of two nonzero equilibrium points at approximately (-1.5,0) and (1.5,0) 
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Figure 5: A trajectory under singular control (umax = 1). 
 

In addition, the placement of the switching surface, dictated by the values of k, b and m also impact 
algorithm performance. First, from (13) note that varying one of these parameters is equivalent to 
altering the cost function for the problem. A controller based upon the new parameters would then 
minimize the new cost in a quickest descent fashion. However, as long as the necessary conditions 
of [5] are met, the algorithm, based on the new parameters will still achieve the desired stability 
results. For example, consider letting umax = 10 with b = 1 and m = 5. Figure 6 displays the new 
switching surface and the trajectories that asymptotically approach the origin.  

 

 
 

Figure 6: A trajectory under singular control (umax = 10, b =1, m = 5). 
 

Now let umax = 10 with b = 3 and m = 1. Figure 7 displays the new switching surface and the 
trajectories that asymptotically approach the origin. For the choices of m and b considered thus far, 
the necessary conditions of [5] were satisfied and asymptotic convergence to the origin is achieved 
as trajectories reach the switching surface and ultimately slide along it until the origin. 
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Figure 7: A trajectory under singular control (umax = 10, b = 3, m = 1). 
 

Suppose the necessary conditions were not satisfied (for example letting either b or m be less than 
zero). The dynamics of the switching surface would not be stable. This may be seen by setting b or 
m less than zero in (22). Referring to Theorem 2, if both m and b are less than zero the existence 
condition for reaching of the switching surface is not satisfied. That is, 

.0maxmax
2

<=
∂
∂ muu
x
σ  

Therefore, if either or both m and b are less than zero, asymptotic stability cannot be achieved. 

Conclusion 

In this treatment, we have extended the applicability of Lyapunov optimizing control in terms of 
both stability and elimination of chatter. Using the QDC formulation, a control law was specified 
that explicitly considered cost and control bounds. Furthermore, a switching surface was specified 
and a singular control scheme was implemented. It is this singular control scheme that allows the 
analyst to exploit the stability properties of the singular surface but avoid the chattering 
phenomenon. Chatter has been shown in the literature to cause numerous undesired effects and 
should be avoided if possible. For the considered problem class, the derived methodology is an 
attractive scheme to resolve these concerns. The simulation results of the presented example 
illustrate the usefulness of the control law QDCL.  
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