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Abstract

In this treatment a control algorithm is developed to zero the states of a class of nominally
linear systems while considering accumulation of a state dependent cost. Due to physical
limits on actuators and the presence of unknown disturbances that cannot be accounted for
explicitly in the system mathematical model, the control problem addressed is actually
nonlinear. Lyapunov optimizing control (LOC) techniques are used to specify a control law;
LOC combines Lyapunov stability theory with function minimization to provide controls that
consider stability of the origin and minimization of cost. LOC techniques, combined with
trajectory following optimization (TFO) methods, provide a means to eliminate the chatter
phenomenon which is notorious for the considered problem class. A control law that produces
discontinuous chatter is undesirable; instantaneous switching of mechanical actuators can
excite resonant modes, induce vibration, and produce a number of other detrimental effects. It
has been shown that to provide a satisfactory system response using these methods a large
gain must be introduced in an appropriately defined augmented system of governing
differential equations. This creates a “stiff” set of differential equations which are difficult to
treat analytically and numerically. To deal with this issue, an alternate TFO control
implementation is proposed which greatly reduces the effect of the stiff differential equations.
Ultimately, a control law that stabilizes the target, considers cost, and eliminates chatter in the
presence of unknown disturbance is realized. In addition, the theory of LOC is extended by
proving the stability results for instances when traditional LOC algorithms cannot.

Introduction

Control algorithms based upon Lyapunov’s second method have proven quite effective for
controlling linear and nonlinear systems subject to disturbances; excellent examples being [1]
and [2]. Lyapunov optimizing control, which originated in [3], produces feedback controls by
selecting a candidate Lyapunov function and choosing the control to minimize this function as
much as possible along system trajectories [4], [5]. The advantage of LOC algorithms comes
from a built in proof of their effectiveness. Assuming the target is the origin, if the candidate
Lyapunov function is decreased everywhere outside the target, a sufficient condition for
asymptotic stability is satisfied [6]. Furthermore, the LOC approach provides the analyst a
means to design feedback controls where cost accumulation is explicitly considered and has
been applied to many interesting problems [7, 8]. The difficulty in utilizing LOC methods

Proceedings of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9



arises during proof of asymptotic stability of the origin. For a dynamical system subject to a
disturbance, without assumptions on the stability of the state equations, it may be quite
difficult to guarantee that the candidate Lyapunov function decreases everywhere outside the
origin. If the function doesn’t decrease everywhere apart from the origin, stability cannot be
proven.

Sliding mode control has proven to be an effective approach for the control of uncertain
dynamical systems. The ability of these algorithms to reject disturbances and stabilize the
origin has made SMC a subject of great interest in terms of both theoretical and practical
research [9, 10]. The main idea of SMC is to select a switching surface in state space that is
attractive, robust to disturbance, and consists of stable dynamics. Once trajectories reach this
surface, they “slide” along it until the origin is reached. A primary drawback of SMC
algorithms is their tendency to induce chatter; typified by high frequency (discontinuous)
commutation of the control signal across this surface [11, 12]. This commutation may produce
a variety of detrimental effects on a mechanical system such as excitement of resonant modes
and extreme wear on actuators.

We propose a continuous control law based upon the techniques of trajectory following
optimization. Rather than specify the control directly, a differential equation is defined for the
time derivative of the control. This differential equation is integrated numerically, yielding a
continuous control. The form of this differential equation is derived from an optimization
perspective, synthesizing our desires of stability, cost considerations, and chatter elimination
into a single, robust control law. The originality of this control is that this differential equation
is derived from the optimal control necessary conditions applied to the candidate Lyapunov
function, not by explicitly requiring the state to lie on the switching surface. Typically, such
sliding mode controls are found by repeated time differentiation of the switching surface. In
[13] a continuous control law was proposed to eliminate chatter; while successful, this
required the introduction of a gain which created a stiff system of differential equations. We
extend upon these results in two areas: 1) We prove finite time convergence to a properly
defined switching surface and demonstrate stability through numerical simulation, and 2) We
show that this modified TFO implementation greatly reduces the stiffness of the system of
differential equations.

Problem Formulation
The cost functional is dependent upon the state x, and is given by

J= T‘P(x)dt (1)
where 0
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The matrix 0°¥/0x" is constant, symmetric, and positive definite. We consider systems
described by state equations

X =Ax+b(u+v) 2)
where the control variable u is an element of the constraint set
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whereu_, =-u_, and the unknown disturbance v satisfies |v| <u,, . We assume that the
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system (2) is in companion form; therefore
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we may express (2) as
X =AX
r r—p
X, =ax+u+v (7)

Our objective is to specify a control law u(x) that drives the state to the origin and considers
minimization of accumulated cost (1).

Quickest Descent Control and Trajectory Following Optimization

Quickest descent control [3, 4] is utilized to develop a new control law that considers cost
while stabilizing the origin. In addition, combination of quickest descent control with
trajectory following optimization (TFO) produces an algorithm that relieves the chatter
phenomenon. Trajectory following methods solve optimization problems numerically by
defining special sets of differential equations whose equilibrium solutions satisfy first-order
necessary conditions. Using TFO to minimize cost will produce a control effort that avoids
chatter while robust to disturbance.

Controls found by the application of QDC are derived by first selecting a descent function
¥(x) that exhibits the following properties: 1)@(0) =0,2) @(x) >0V x=0,and3)
OW/ox 0V x # 0. The control u for the problem (1)-(3) is chosen to decrease @(x) as
quickly as possible along trajectories x(t). For that reason, u is chosen by
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where we choose the cost accumulation rate P(x) as the descent function; that is we let
¥(x)= @(x) Therefore, the control is chosen

min ¥ 9)
where ¥ = dW/dt . If ¥ < 0Vx # 0 and properties (1) - (3) are satisfied, then we are assured
that the origin is asymptotically stable.
Trajectory following methods solve optimization problems by defining special sets of
differential equations whose equilibrium solutions satisfy first order necessary conditions. For
this analysis, the minimization (9) is handled by TFO by using the gradient of the cost
function, i.e. the time rate of change of u will be a function of 6¥/du. For an excellent
reference on control system design using TFO, see [6].

Necessary Conditions

In [13] necessary conditions are formulated on ‘I’(x) for stability of the target (origin).
Necessary conditions are presented that guarantee trajectories will not converge to nonzero
equilibrium points; conditions are given that also provide finite time convergence to the
switching surface. In this treatment, it is assumed that these necessary conditions are satisfied;
proof of stability for the new algorithm (reaching of the switching surface and demonstrated
stability of the origin) despite the disturbance is the primary goal.

Properties of the Controller

The control is found through the minimization (9) where

2 2
godyr afA+ATa‘I; x+(+v)x (10)
2 19).¢ 19). 19).

Application of (9) to (10) yields a preliminary control law (PCL)

Umax if o(x) <0
u(x) = Us if o(x)=0
Umin if o(x)>0
with
ok SRR 4
=~ =b 11
G(X) ou ox’ X (n
oo ;0¥
ZZ —p 12
ox x> (12)
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5=b"2 T[Ax+b(u+v)] (13)
15)'¢

The control u, is known as singular control [4]. In optimal control theory, additional necessary
conditions are used for its derivation; the final singular control dictates that trajectories travel
along the “switching surface” § = {X : G(X) = 0}. Trajectories generated by control laws of the
form PCL are well known to chatter about a switching surface, due to the bang-bang (max-
min) control effort.

Chattering Elimination Control with Reduced Stiffness

In this section a control law is proposed, denoted by CECRS, that stabilizes the origin and
considers cost accumulation despite the presence of the unknown disturbance. The primary
contribution of this treatment is to prove that CECRS accomplishes these objectives while
eliminating chatter, and in a manner that is less “stiff” than those previously reported in the
literature.

CECRS Formulation

Given the state equations (2) and the cost functional (1) we propose CECRS

u= —lsign(c) (14)
g
where
-1 if o(x) <0
sign(o) = 0 if o(x)=0
1 if o(x)>0

and ¢ is a small (singular perturbation) parameter. Note, that (14) is derived by defining a
differential equation whose equilibrium solution satisfies first order necessary conditions for
the optimization (9). Therefore, 1/¢ is a system gain that results in an augmented set of state
equations

X=Ax+b(u+v)

(15)
u= —lsign(O')
£
that exist on disparate time scales. We propose CECRS (14) rather than
u= —l(a) . (16)
£

It is believed that CECRS will achieve the control objectives in a much less stiff manner.
Specification of the time rate of change of the control law u, as in (14), eliminates
discontinuous chatter (this will be shown through numerical simulation). The control CECRS

has been specified as a function of the gradient of the cost function (6\1’/ 8u>= o as is typical
with trajectory following methods.
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Stability Results

First it will be shown that CECSR (14) produces trajectories that reach the switching surface
S in finite time. Then we will demonstrate asymptotic stability through numerical simulation.
In [9] it was shown for the system (2) with cost functional (1), initial trajectories satisfying

@umax > a_(SAH|:C‘1||X(1:1 1|+ C2 G[X(ti)] :|+ 6_0 vmax (17)
ox ox 0o /ox, ox
where
C =1+|a,
C, =1+C, [[e"bldz
and |
0 1 0 0 |
0 0 ' 0
0 0 1 0
I'= 0 0 0 1
_(Golox,)  (oolox,) (6o/0x, )
(6o/ox,)  (Bolox,) (00/0x,) |

To prove finite time convergence to S, we need to show that CECRS (14) is able to produce
the proper control u that saturates at its appropriate upper or lower bound, satisfying (17).

Theorem 1: Consider a trajectory that has overshot S by some small amount into the region ¢
<0 with u = u,,;, at time ¢ = ¢ . The time interval (t — t*) in which (14) produces the correct

control saturation u = u,, 1s a function of the parameter € and the control bounds.

Proof: With

we have

which implies that
(1=1")= 2t — ) (18)

and completes the proof.
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The implication of Theorem 1 is that we may select the parameter € such that the time interval
in (18) provides an “initial” time ¢ = ¢, that satisfies the inequality (17); trajectories generated
by (14) reach S in finite time. Asymptotic stability of the origin, and the desired “less-stift”
behavior is shown through numerical simulation.

Numerical Simulation
The usefulness of the proposed control scheme CECRS is demonstrated by considering the
problem of an inverted pendulum with a bounded disturbance. CECRS is compared to PCL
and (16).
Example One
Consider the linearized inverted pendulum with disturbance input
' 0 1 0
)_Cl = 8 + (u+v) (19)
X, 1 0fx, 1
with the accumulated cost (1) given by ‘P(x) = 2~5X12 +X,X, + x22 ; yielding o =x, +2x,. In

Fig. 1 and Fig. 2, the control law PCL was implemented and applied to the problem (19). In
both the wide and close-up views, discontinuous chatter presents.

%y

Figure 1: Typical trajectories under PCL.
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Figure 2: A chattering trajectory under PCL.

In Fig. 3, control laws (16) and CECRS were implemented and applied to the problem (19).
Each eliminated chatter, but the time-scale characteristics differed greatly. Trajectories were
generated using a 4-th order, fixed step-size, Runge-Kutta integration scheme with At =25,
15,001 time steps, umq = 1 and v = .5sin(t). For the control law (16), a parameter value €; =
0.00005 was used. For CECRS, a parameter value €, = 0.01 was used. The results are shown
in Fig. 3 and Fig. 4. Trajectories generated by each algorithm look identical in the wide view
of Fig. 3. However, in Fig. 4 the differences are illuminated. Much less oscillation about S is
observed and the system of augmented differential equations is much less stiff as evidenced
by (82/ 81) =200.

Figure 3: Typical trajectories for control laws (16) and CECRS.
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Figure 4: Typical trajectories for control laws (16) CECRS.
Conclusion

In this treatment, a control law was proposed that extends the applicability of Lyapunov
optimizing control methods to systems subject to disturbances. Derivation of the control law
using LOC methodology allowed explicit consideration of cost and stability of the origin,
despite the presence of a bounded, but otherwise unknown disturbance. To counter the
chattering phenomenon, TFO methods were applied to specify the final form CECRS. This
new TFO formulation accomplished the desired results in a much less stiff manner than those
previously reported in the literature.
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