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Abstract 
   

In this treatment a control algorithm is developed to zero the states of a class of nominally 
linear systems while considering accumulation of a state dependent cost. Due to physical 
limits on actuators and the presence of unknown disturbances that cannot be accounted for 
explicitly in the system mathematical model, the control problem addressed is actually 
nonlinear. Lyapunov optimizing control (LOC) techniques are used to specify a control law; 
LOC combines Lyapunov stability theory with function minimization to provide controls that 
consider stability of the origin and minimization of cost. LOC techniques, combined with 
trajectory following optimization (TFO) methods, provide a means to eliminate the chatter 
phenomenon which is notorious for the considered problem class. A control law that produces 
discontinuous chatter is undesirable; instantaneous switching of mechanical actuators can 
excite resonant modes, induce vibration, and produce a number of other detrimental effects. It 
has been shown that to provide a satisfactory system response using these methods a large 
gain must be introduced in an appropriately defined augmented system of governing 
differential equations. This creates a “stiff” set of differential equations which are difficult to 
treat analytically and numerically. To deal with this issue, an alternate TFO control 
implementation is proposed which greatly reduces the effect of the stiff differential equations. 
Ultimately, a control law that stabilizes the target, considers cost, and eliminates chatter in the 
presence of unknown disturbance is realized. In addition, the theory of LOC is extended by 
proving the stability results for instances when traditional LOC algorithms cannot. 
 
Introduction 
 
Control algorithms based upon Lyapunov’s second method have proven quite effective for 
controlling linear and nonlinear systems subject to disturbances; excellent examples being [1] 
and [2]. Lyapunov optimizing control, which originated in [3], produces feedback controls by 
selecting a candidate Lyapunov function and choosing the control to minimize this function as 
much as possible along system trajectories [4], [5]. The advantage of LOC algorithms comes 
from a built in proof of their effectiveness. Assuming the target is the origin, if the candidate 
Lyapunov function is decreased everywhere outside the target, a sufficient condition for 
asymptotic stability is satisfied [6]. Furthermore, the LOC approach provides the analyst a 
means to design feedback controls where cost accumulation is explicitly considered and has 
been applied to many interesting problems [7, 8]. The difficulty in utilizing LOC methods 
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arises during proof of asymptotic stability of the origin. For a dynamical system subject to a 
disturbance, without assumptions on the stability of the state equations, it may be quite 
difficult to guarantee that the candidate Lyapunov function decreases everywhere outside the 
origin. If the function doesn’t decrease everywhere apart from the origin, stability cannot be 
proven.  
 
Sliding mode control has proven to be an effective approach for the control of uncertain 
dynamical systems. The ability of these algorithms to reject disturbances and stabilize the 
origin has made SMC a subject of great interest in terms of both theoretical and practical 
research [9, 10]. The main idea of SMC is to select a switching surface in state space that is 
attractive, robust to disturbance, and consists of stable dynamics. Once trajectories reach this 
surface, they “slide” along it until the origin is reached. A primary drawback of SMC 
algorithms is their tendency to induce chatter; typified by high frequency (discontinuous) 
commutation of the control signal across this surface [11, 12]. This commutation may produce 
a variety of detrimental effects on a mechanical system such as excitement of resonant modes 
and extreme wear on actuators.  
 
We propose a continuous control law based upon the techniques of trajectory following 
optimization. Rather than specify the control directly, a differential equation is defined for the 
time derivative of the control. This differential equation is integrated numerically, yielding a 
continuous control. The form of this differential equation is derived from an optimization 
perspective, synthesizing our desires of stability, cost considerations, and chatter elimination 
into a single, robust control law. The originality of this control is that this differential equation 
is derived from the optimal control necessary conditions applied to the candidate Lyapunov 
function, not by explicitly requiring the state to lie on the switching surface. Typically, such 
sliding mode controls are found by repeated time differentiation of the switching surface. In 
[13] a continuous control law was proposed to eliminate chatter; while successful, this 
required the introduction of a gain which created a stiff system of differential equations. We 
extend upon these results in two areas: 1) We prove finite time convergence to a properly 
defined switching surface and demonstrate stability through numerical simulation, and 2) We 
show that this modified TFO implementation greatly reduces the stiffness of the system of 
differential equations.  

 
Problem Formulation 
 
The cost functional is dependent upon the state x, and is given by  

                                                        ∫=
ft

0

Ψ(x)dtJ                                                   (1) 
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The matrix T2 xΨ/∂∂ is constant, symmetric, and positive definite. We consider systems 
described by state equations  

                                                      v)(u ++= bAxx&                                                   (2) 
where the control variable u is an element of the constraint set  
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                                                          maxmin uuu ≤≤                                                       (3) 
where min maxu u= −  and the unknown disturbance v satisfies maxuv < . We assume that the 
system (2) is in companion form; therefore 
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For convenience, define the ( ) 11 ×−n vectors xp and xr such that  
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With a = [an1,…, ann]  and  
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we may express (2) as  
prr xAx =&  

                                                        vun ++= axx&                                                     (7) 
 

Our objective is to specify a control law u(x) that drives the state to the origin and considers 
minimization of accumulated cost (1).  
 
Quickest Descent Control and Trajectory Following Optimization 
 
Quickest descent control [3, 4] is utilized to develop a new control law that considers cost 
while stabilizing the origin. In addition, combination of quickest descent control with 
trajectory following optimization (TFO) produces an algorithm that relieves the chatter 
phenomenon. Trajectory following methods solve optimization problems numerically by 
defining special sets of differential equations whose equilibrium solutions satisfy first-order 
necessary conditions. Using TFO to minimize cost will produce a control effort that avoids 
chatter while robust to disturbance.  
 
Controls found by the application of QDC are derived by first selecting a descent function 
( )xΨ  that exhibits the following properties: 1) ( ) 0Ψ =0 , 2) ( ) 0xx ≠∀> 0Ψ , and 3) 

0x0x ≠∀≠∂Ψ∂ / . The control u  for the problem (1)-(3) is chosen to decrease ( )xΨ  as 
quickly as possible along trajectories x(t). For that reason, u  is chosen by        
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dt

d
u

Ψmin                                                              (8) 

where we choose the cost accumulation rate ( )xΨ  as the descent function; that is we let 
( ) ( )xx Ψ=Ψ . Therefore, the control is chosen  

                                                           Ψ&
u

min                                                                (9) 

where /dtdΨ Ψ=& . If 00Ψ ≠∀< x&  and properties (1) - (3) are satisfied, then we are assured 
that the origin is asymptotically stable. 
Trajectory following methods solve optimization problems by defining special sets of 
differential equations whose equilibrium solutions satisfy first order necessary conditions. For 
this analysis, the minimization (9) is handled by TFO by using the gradient of the cost 
function, i.e. the time rate of change of u will be a function of u./Ψ ∂∂ &  For an excellent 
reference on control system design using TFO, see [6]. 
 
Necessary Conditions 
 
In [13] necessary conditions are formulated on ( )xΨ  for stability of the target (origin). 
Necessary conditions are presented that guarantee trajectories will not converge to nonzero 
equilibrium points; conditions are given that also provide finite time convergence to the 
switching surface. In this treatment, it is assumed that these necessary conditions are satisfied; 
proof of stability for the new algorithm (reaching of the switching surface and demonstrated 
stability of the origin) despite the disturbance is the primary goal.  
 
Properties of the Controller 
 
The control is found through the minimization (9) where  
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Application of (9) to (10) yields a preliminary control law (PCL) 
 

                                                          
umax if σ(x) < 0 
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The control us is known as singular control [4]. In optimal control theory, additional necessary 
conditions are used for its derivation; the final singular control dictates that trajectories travel 
along the “switching surface” ( ){ }0xσ:x =≡S . Trajectories generated by control laws of the 
form PCL are well known to chatter about a switching surface, due to the bang-bang (max-
min) control effort. 
 
Chattering Elimination Control with Reduced Stiffness 
 
In this section a control law is proposed, denoted by CECRS, that stabilizes the origin and 
considers cost accumulation despite the presence of the unknown disturbance. The primary 
contribution of this treatment is to prove that CECRS accomplishes these objectives while 
eliminating chatter, and in a manner that is less “stiff” than those previously reported in the 
literature.  
 
CECRS Formulation 
 
Given the state equations (2) and the cost functional (1) we propose CECRS 

                                                        ( )σ
ε

signu 1
−=&                                                   (14)    

where 
-1 if σ(x) < 0 
0 if σ(x) = 0 sign(σ) = 
1 if σ(x) > 0 

 
and ε is a small (singular perturbation) parameter. Note, that (14) is derived by defining a 
differential equation whose equilibrium solution satisfies first order necessary conditions for 
the optimization (9). Therefore, 1/ε is a system gain that results in an augmented set of state 
equations  
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that exist on disparate time scales. We propose CECRS (14) rather than  

                                                           )(1 σ
ε

−=u& .                                                     (16) 

It is believed that CECRS will achieve the control objectives in a much less stiff manner. 
Specification of the time rate of change of the control law u, as in (14), eliminates 
discontinuous chatter (this will be shown through numerical simulation). The control CECRS 
has been specified as a function of the gradient of the cost function ( ) σ=∂Ψ∂ u/&  as is typical 
with trajectory following methods. 
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Stability Results 
 
First it will be shown that CECSR (14) produces trajectories that reach the switching surface 
S in finite time. Then we will demonstrate asymptotic stability through numerical simulation. 
In [9] it was shown for the system (2) with cost functional (1), initial trajectories satisfying  
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To prove finite time convergence to S, we need to show that CECRS (14) is able to produce 
the proper control u that saturates at its appropriate upper or lower bound, satisfying (17).  
 
Theorem 1: Consider a trajectory that has overshot S by some small amount into the region σ 
< 0 with u = umin at time t = t*. The time interval (t – t*) in which (14) produces the correct 
control saturation u = umax is a function of the parameter ε and the control bounds. 
 
Proof: With 
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( ) ( ) ∫+=
t

t

dtutu
*

1* τ
ε

 

which implies that  
                                              ( ) ( )minmax uuε −=− *tt                                                  (18)  

 
and completes the proof. 
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The implication of Theorem 1 is that we may select the parameter ε such that the time interval 
in (18) provides an “initial” time t = ti that satisfies the inequality (17); trajectories generated 
by (14) reach S in finite time. Asymptotic stability of the origin, and the desired “less-stiff” 
behavior is shown through numerical simulation. 
 
Numerical Simulation 
 
The usefulness of the proposed control scheme CECRS is demonstrated by considering the 
problem of an inverted pendulum with a bounded disturbance. CECRS is compared to PCL 
and (16). 
 
Example One 
 
Consider the linearized inverted pendulum with disturbance input 
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with the accumulated cost (1) given by ( ) 2
221

2
1 xxx2.5xxΨ ++= ; yielding 21 2xx +=σ . In 

Fig. 1 and Fig. 2, the control law PCL was implemented and applied to the problem (19). In 
both the wide and close-up views, discontinuous chatter presents.  
 

 
 

Figure 1: Typical trajectories under PCL. 
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Figure 2: A chattering trajectory under PCL. 
 
In Fig. 3, control laws (16) and CECRS were implemented and applied to the problem (19). 
Each eliminated chatter, but the time-scale characteristics differed greatly. Trajectories were 
generated using a 4-th order, fixed step-size, Runge-Kutta integration scheme with ∆t = 25, 
15,001 time steps, umax = 1 and v = .5sin(t). For the control law (16), a parameter value ε1 = 
0.00005 was used. For CECRS, a parameter value ε2 = 0.01 was used. The results are shown 
in Fig. 3 and Fig. 4. Trajectories generated by each algorithm look identical in the wide view 
of Fig. 3. However, in Fig. 4 the differences are illuminated. Much less oscillation about S is 
observed and the system of augmented differential equations is much less stiff as evidenced 
by (ε2/ ε1) = 200. 
 

 
 

Figure 3: Typical trajectories for control laws (16) and CECRS. 
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Figure 4: Typical trajectories for control laws (16) CECRS. 
 

Conclusion 
 
In this treatment, a control law was proposed that extends the applicability of Lyapunov 
optimizing control methods to systems subject to disturbances. Derivation of the control law 
using LOC methodology allowed explicit consideration of cost and stability of the origin, 
despite the presence of a bounded, but otherwise unknown disturbance. To counter the 
chattering phenomenon, TFO methods were applied to specify the final form CECRS. This 
new TFO formulation accomplished the desired results in a much less stiff manner than those 
previously reported in the literature. 
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