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Abstract 

As Flexible Manufacturing Systems (FMS) become more flexible and complex the 
subject of deadlock avoidance becomes essential. This paper presents a simple yet 
effective algorithm that can be implemented at two levels of complexity to avoid 
deadlock in a FMS.  This paper discusses the differences between primary deadlock and 
impending deadlock; it models a FMS using digraphs to calculate slack, knot, order and 
space to avoid deadlock.  Several examples are provided demonstrating the method. 

Introduction 

Allowing a manufacturing system to enter only live states (deadlock-free states) and 
avoid any dead states (deadlocked states) can save both loss of production and labor costs 
as well as provide better resource utilization.  Moving the wrong part in a live FMS can 
cause deadlock that can both cripple the entire manufacturing system and stall 
production.  The only recourse is to manually resolve the deadlock and reset the FMS to a 
known state that is live.  To prevent manual deadlock resolution in a FMS, a deadlock 
avoidance algorithm that can determine which parts to move must be incorporated into 
the controller of the FMS. 
 
There are two types of deadlock that can occur in a manufacturing system.  The most 
basic type is primary deadlock; this situation occurs when each part on a circuit requests 
the next resource in its process plan.  This situation is illustrated in Figure 1. 
 

Resource 1 Resource 3

Resource 2

Part c
Circuit 1

Part b

Part a

 

Figure 1:  Example of primary deadlock 
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Assume that part a in resource 1 has to go to resource 2, part b in resource 2 has to go to 
resource 3, and part c in resource 3 has to go to resource 1 before each part is completed.  
If resource 1, resource 2 and resource 3 can only hold one part at a time, no parts can 
move without intervention.  Circuit 1 in Figure 1 is said to be in primary deadlock.  
A more complex and difficult-to-detect type of deadlock is called impending deadlock; 
this occurs when parts can move through the system but will terminate in primary 
deadlock after a finite number of moves.  Consider the system shown in Figure 2 and 
assume that each resource can only hold one part.  Assume that part a is occupying 
resource 1 and that part a first requires resource 2, then resource 3.  Likewise, assume 
part b is occupying resource 3 and the next resource required by part b is resource 2 
followed by resource 3.  Although part a can move to resource 2, the system will 
terminate in primary deadlock on circuit 2.  Part b can also move to resource 2, but 
primary deadlock will result on circuit 1. 

Resource 1 Resource 3Resource 2

Circuit 1 Part bPart a Circuit 2

 

Figure 2:  Example of impending deadlock 

The two main approaches to solving the deadlock situation in manufacturing systems 
include: detection and resolution and avoidance.  Deadlock detection and resolution 
methods [3, 4, 10, 13, and 14] allow deadlocks to occur.  The deadlock is resolved by 
implementing a deadlock recovery procedure which moves parts to buffers and reset the 
system to a live state.  Deadlock avoidance methods [1, 2, 5-9, 11, 12, 15, 16-18] avoid 
deadlock by controlling the mix of parts in the system at any given time.  A part can be 
moved or introduced into the system only if the move does not cause deadlock.  If a move 
is found to cause deadlock, then the move is not allowed to occur thus avoiding the 
deadlock state. 
 
This paper presents the results of [16] and demonstrates a simple algorithm which can be 
implemented at two levels of complexity to avoid both primary and impending deadlock.  
This paper is organized as follows: the first section discusses previous research on 
deadlock in a FMS; the next section defines a mathematical model of a manufacturing 
systems; circuit parameters slack, knot, order and space is then defined; the next section 
proves sufficient conditions for a deadlock-free system; several examples demonstrating 
the method is then provided; next the deadlock avoidance algorithm is presented; and 
finally concluding remarks about the method and future research. 



 

Proceeding of The 2008 IAJC-IJME International Conference 
ISBN 978-1-60643-379-9 

Previous Research 

Many researchers use Petri Nets [1, 2, 5, 10-12, 14] as a formalism to describe deadlock 
in a manufacturing system.  Banaszak and Krogh [1] proposed a deadlock avoidance 
algorithm (DAA) that developed a restriction policy based upon production route 
information to guarantee that no circular wait situations will occur.  Their DAA is 
sufficient for avoiding deadlocks but is not an optimal solution.  Viswanadham, Narahari 
and Johnson [10] developed a deadlock avoidance algorithm which employed a look-
ahead policy. This algorithm did not detect all deadlocked states and suggested using a 
recovery mechanism in case of system deadlock.  Zhou and DiCesare [11] and Zhou [12] 
generalized the sequential mutual exclusions (SME) and parallel mutual exclusions 
(PME) concepts and derived the sufficient conditions for a Petri net (PN) containing such 
structures to be bounded, live and reversible.  In general, PN solutions are suitable for 
manufacturing systems which contain few resources but become very complicated for 
larger systems. 
 
Another formalism to describe the manufacturing system is to use Graphs [3, 4, 6-9, 13-
19].  In this approach, the vertices represent resources and the edges represent part flows 
between resources.  Wysk, Joshi, and Yang [13] were the first to develop a specialized 
directed graphical structure called a Wait Relation Graph (WRG) to model a 
manufacturing system.  In [13] they developed a string manipulation procedure which 
yields a set of control actions to detect and recover from primary deadlock.  Cho, 
Kumaran and Wysk [3] used system status graphs to develop the concept of simple and 
non-simple bounded circuits with empty and non-empty shared resources to detect part 
flow deadlock and impending part flow deadlock.  This method introduced the concept of 
a bounded circuit to detect deadlock.  The method detected deadlock based on 
characteristics of this bounded circuit.  The methods in [13] and [3] could only handle 
single capacity resources.  Fanti, Maione and Turchiano [4] used a graph called Working 
Procedure Digraph and developed a simple graph-theoretic method for deadlock 
detection and recovery in systems with multiple capacity resources.  This algorithm did 
not prevent deadlock from occurring either and suggested a suitable recovery strategy.   
 
Judd and Faiz [6] expanded upon the original formulation proposed by [13] and the first 
to define slack, order and space to avoid deadlock.  This method provided sufficient 
conditions for deadlock by satisfying a set of linear inequalities.  Lipset, Deering and 
Judd [8] extended [6] to precisely quantify both necessary and sufficient conditions for 
deadlock to exist.  In this research, they redefined the order of a knot, defined a special 
state called an evaluation state and the concept of order reduction.  The approach was to 
put the system into an evaluation state and then compute the order.  Deering [16] 
improved [8] by further refining the order of a knot, evaluation state and eliminated the 
need for order reduction.  Zhang, Judd and Deering [15] developed a Deadlock 
Avoidance Algorithm (Daa) based on [8] and [16] that avoided deadlock and executed in 
polynomial time.  Zhang, Judd and Deering [18] expanded upon [15] and [16] to quantify 
the sufficient conditions for a system state to be live and derived the liveness necessary 
and sufficient conditions for an evaluation state.  Zhang and Judd [19] extended [18] to 
allow choice in process flow or flexible part routing. 
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Modeling a Manufacturing System 

A Flexible Manufacturing System consists of a set R of finite resources, e.g. robots, 
buffers, and machines, which produce a finite set P of products.  Each resource Rr ∈  has 
a capacity of cap(r) units that can perform the required operations. The capacity function 
can be extended to a set of resources, that is 
 

.anyfor),cap()cap( 11
1

RRrR
Rr

⊆= ∑
∈∀

 

For each product Pp∈ , the process plan  rrrp mK21)plan( =  defines the sequence of 
resources that are required to produce p.  Resource mr  is the terminal resource for product 
p.  It is assumed that all process plans are fixed, finite and sequential.  A part is an 
instance of a product that flows through the system.  At any given time, a manufacturing 
system is working on a set Q  of parts.  The function )( class q  returns the product p to 
which part q belongs. 
 
A manufacturing system can be represented by a Wait Relation Graph (WRG) 

),( AVG = .  Each vertex represents a resource; that is, V=R.  A directed arc is drawn 
from vertex 1r  to vertex 2r , if 2r  immediately follows 1r  in at least one process plan.  
Each arc will be labeled with the part(s) that will flow through it.  A subgraph 

GARG ⊂= ),( 111  of a WRG consists of a subset of the resources and arcs of G so that all 
the arcs in 1A  connect resources in 1R .  The union (intersection), denoted 
by )( 2121 GGGG ∩∪ , of two subgraphs is the union (intersection) of the component 
resource and arc sets.  A path ),( pp ARP =  is a subgraph whose resources and arcs can 
be ordered in the list nn raarar 12211 −K  where each arc in the list connects the resources 
on either side.  When specifying a path, writing the arcs is redundant.  Therefore, only the 
resources will be enumerated when a path is defined.  A simple path is a path with no 
repeated elements in the ordered list.  A closed path is a path with the same first and last 
element.  A simple circuit is a closed path with no repeated elements in the ordered list 
except the first and last element. 
 
The function )(n q  returns a positive integer that represents the position in ))(class(plan q  
of the operation that is currently processing q.  When a new part q  is added to the 
system, then 1)(n =q .  As the part is moved from resource to resource according to its 
plan, )(n q  is incremented until it reaches the end of its plan and exits the system.  The 
state n of a manufacturing system is a vector containing the current n(q) for all Qq∈ .  A 
state n of a manufacturing system is live if a sequence of part movements exist that will 
empty the system.  A state n of a manufacturing system is dead, or deadlocked, if it is not 
live. 
 

(1) 
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Given a manufacturing system ),( ARG = , let  Aa ∈  and Rr∈ .  Then the function 
)(tail a  returns the resource at the tail of the given arc; the function )head(a  returns the 

resource at the head of the arc.  A unit of the resource )(tail ar =  is said to be committed 
to arc a if it is processing a part q whose next resource in its process plan is )(head a .  It 
is important to note that the number of resource units committed to the outgoing arcs of r 
can be less than the number of busy units.  This happens when some of the busy units are 
being used for terminal operations. A resource unit is free if it is not committed to an arc; 
by this definition a busy unit which is not committed is still termed free.  A resource is 
free if any of its units are free.  A resource is empty if it contains no parts.  The 
commitment function ),com( na  returns the number of resource units that are committed 
to arc a when the system is in state n.  The commitment function is extended to a set of 
arcs as follows: 

AAnanA
Aa

⊆= ∑
∈∀

11 anyfor),,(com),com(
1

. 

A part is enabled if either the next resource in its process plan contains at least one 
resource unit that is not busy or the part is in the last step of its process plan.  Suppose 
that the system is in state 0n ; there exists an arc a such that resource )head(2 ar =  is free 
and the part in the resource )tail(1 ar =  is committed to a.  Then, when 1r  finishes its 
operation, this part can be moved to resource 2r .  This process is called propagation.  The 
symbol kn  is used to denote the state of the system after the thk  propagation.  A part q in 
WRG G  can be shifted to resource r if it can be propagated to r without propagating any 
other part in G.  A part q in WRG G is said to have a free exit if it can be shifted its 
terminal resource mr  in G. 

Slack, Knot, Order and Space 

This section will summarize the major concepts and results from [6, 8, 13, 16].  This 
section defines the concept of slack, knot, order and space. 
 
The slack is the number of free resources units available for parts to flow on a subgraph. 
  
Definition 1:  The slack of any subgraph GARG ⊆= ),( 111   is given by 
 

),com()cap(),slack( 111 nARnG −= . 
 

A closed path c in a WRG G is in primary deadlock in state n if 0),slack( =nc .         
 
An interesting phenomenon happens when two simple circuits are joined by a single 
capacity resource as opposed to a multiple capacity resource.  Consider the two 
manufacturing system depicted in Figure 3 and Figure 4.  Here, two simple circuits are 
joined by resource 0r , and all parts are committed to their outgoing arcs.  In Figure 3 and 

(2) 

(3) 
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Figure 4, the labels indicating which parts flows through each arc have been left off for 
simplicity. 

r0

c2c1

r2 r3

r1 r4

a2 a1

q2

q3

q1

q4

 

Figure 3:  Two simple circuits intersecting at a single capacity resource 

Assume that all resources in both systems are of a capacity of one except where 
2)(cap 0 =r  and part 5q  is committed to arc 1a  (see Figure 4).  Further assume in both 

systems that if 1q  is moved to resource 0r , it will be committed to arc 1a  and if part 2q  is 
moved to resource 0r , it will be committed to arc a2.  

r0

c2c1

r2 r3

r1 r4

a2 a1

q2

q3

q1

q4

q5

 

Figure 4:  Two simple circuits intersecting at a multiple capacity resource 

Even though resource 0r  is free in both manufacturing systems, Figure 3 shows a dead 
system and Figure 4 a live one.  In Figure 3, if either part q1 or q2 is moved into 0r , then 
primary deadlock will result on circuit 2c  or 1c , respectively.  In Figure 4, if part 1q  were 
moved into 0r , then primary deadlock will result on circuit 2c .  However, moving part 

2q  will not cause deadlock since this move will allow the parts to propagate along circuit 

2c .  This observation motivates the following definitions. 
 
Definition 2:  Let 1c  and 2c  be any two closed paths in a WRG of a manufacturing 
system.  If 21 cc ∩  consists of exactly one resource with a capacity of one, then this 
resource is called a knot with respect to 21 cc ∪ .             
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Clearly, 0r  in Figure 3 is a knot with respect to 21 cc ∪  since cap( 0r ) = 1 and 021 rcc =∩ .  
Resource   0r  in Figure 4 is not a knot with since cap( 0r ) = 2.  The next two definitions 
are needed to define the order of a knot. 
 
Definition 3:  Let 1c  and 2c  be two closed paths in a WRG G.  Path 1c  is connected to 2c  
if 021 ≠∩ cc  and a part currently exists in the system that must propagate from 1c  to 2c  
without leaving 21 cc ∪ .                 
 
Definition 4:  Given two closed paths 1c  and 2c , then 1c  and 2c  are cross connected if 1c  
is connected to 2c  and 2c  is connected to 1c .              
 
Definition 5:  Let the closed path c in state n consist of two closed paths, 1c  and 2c , such 
that 21 ccc ∪=  and kcc =∩ 21  where k is a knot.  The order of knot k with respect to the 
closed path c  in state n is defined as 
 

 
⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise. ,0

 connected. cross are   and  if ,1
),,(order 21 cc

nck  

The order of any simple circuit is zero.               
 
The order of 0r  in Figure 3 is one since 1c  and 2c  are cross connected 
since 1),,(order 210 =∪ nccr . 
 
Definition 6:  Let c be a closed path in a WRG G in state n that contains m knots.  Then, 
the order of c is given by  

∑
=

=
m

i
i ncknc

1
),,order(),order( . 

Definition 7:  Let c be a closed path in a WRG G of a manufacturing system in state n.  
The free space on a closed path c is the difference between the slack and the order 
 
 G  ),(order),(slack),(space Ccncncnc ∈∀−=   

where GC  is the set of all closed paths in G.     

The following theorem proves that if all closed paths of a WRG G have space greater 
than zero, G is live.  
 
 
 

(4) 

(5) 

(6) 
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Theorem 1:  Let GC  be the set of all closed paths in a non-empty WRG G in state n.  If 
 
 GCcnc ∈∀> 0),space( , 

then G is live. 

Proof.  See [16].                  
 
 
Examples     
 
This section consists of three examples demonstrating the method.  The third example 
will show a condition where a live system is evaluated to be dead. 
 
Example 1:  Let the WRG G in Figure 5 be in state n.  The manufacturing system is 
composed of six resources, 1r , 2r , 3r , 4r , 5r  and 6r , all with unit capacity.  The system 
contains seven closed paths.  Let GC  represent the set of closed paths in G, i.e. 
  
 },,,,,,{ 321323121321 ccccccccccccCG ∪∪∪∪∪= . 

Suppose that the system manufactures three products, 1p , 2p  and 3p , specified by the 
following process plans: 32611)(plan rrrrp = , 56432 )(plan rrrrp = , and 1653)(plan rrrp = .  
Assume that parts a, b, and c belong to product classes 1p , 2p  and 3p  respectively.  
Suppose that the system is in state ]1,1,2,1[)]n(),(n),(n),(n[ 21 == cbban .  
  

c1

c2

r1

r2

r5

c3a c

r6

r4

r3

b1

b2

a

a b

b

cc

a

bc

 

  Figure 5:  Manufacturing system for example 1 

 
Table 1 on the next page shows the capacity, commitment, slack, order and space 
computations in state n . 
 
 

(7) 
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Table 1:  Circuit parameters for example 1 
 

Subgraph Capacity Commitment Slack Order Space 

1c  2 1 1 0 1 

2c  4 2 2 0 2 

3c  2 1 1 0 1 

21 cc ∪  5 3 2 0 2 

31 cc ∪  3 2 1 0 1 

32 cc ∪  5 3 2 0 2 

321 ccc ∪∪  6 4 2 1 1 
 
Clearly, the space of all closed paths is greater than zero.  The manufacturing system is 
live according to Theorem 1.  Table 2 shows one possible sequence of moves to empty 
the system. 

 Table 2:  Part movements to empty system in example 1 

Part Movement Resulting State after move

a  to 6r  2 2 1 1 

a  to 2r  3 2 1 1 

c  free exit 3 2 1 - 

1b  free exit 3 - 1 - 

2b  free exit 3 - - - 

a  free exit - - - - 

 
Example 2:  Let the WRG G in Figure 6 be in state 0n .  The process plans for parts a, b 
and c are as presented in Table 3. Let 12411 rrrrc = , 24322 rrrrc = , and 46543 rrrrc = .  Assume 
that the state of the system is 1] 2, 1, 2,[)](),(),(),([ 210 == cnbnanann . 
   

 

Table 3:  Process plans for example 2 

Part Process Plan 
a 2412 rrrr  
b 65432 rrrrr  
c 246 rrr  
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Figure 6:  Manufacturing system for example 2 
 

Table 4:  Circuit parameters for example 2 
 

Subgraph Capacity Commitment Slack Order Space 

1c  3 2 1 0 1 

2c  3 1 2 0 2 

3c  3 1 2 0 2 

21 cc ∪  4 3 1 0 1 

31 cc ∪  5 3 2 0 2 

32 cc ∪  5 2 3 1 2 

321 ccc ∪∪  6 4 2 1 1 
 
Clearly, the space of all closed paths is greater than zero.  The manufacturing system is 
live according to Theorem 1.  Table 5 shows one possible sequence to empty the system. 
 

Table 5:  Part movements to empty system in example 2 
 

Part Movement Resulting State after move

1a  to 4r  3 1 2 1 

2a  to 1r  3 2 2 1 

1a  free exit - 2 2 1 

2a  free exit - - 2 1 

b  to 4r  - - 3 1 

b  to 5r  - - 4 1 

c  free exit - - 4 - 

b  free exit - - - - 

 



 

Proceeding of The 2008 IAJC-IJME International Conference 
ISBN 978-1-60643-379-9 

Example 3:  Theorem 1 can conclude that a system is live if the space of all closed paths 
is greater than zero.  If the space is zero the system may be live or dead.  Consider the 
following two cases. 
 
Case 1: Suppose that the system in Figure 7 has the process plans depicted in Table 6. 
 

Table 6:  Process plans for example 3 

Part Process Plan 
a 64321 rrrrr  
b 12435 rrrrr  
c 53246 rrrrr  

 
Assume that the system is in state ]1,1,1[],,[ == cban . 
 

r1 r2

r3

a

c

r4

r5

r6

b

b

a

c

a a,c

c b

a,b

ac

c,b
b

c1
c4

c2

c3

 
 

Figure 7:  Manufacturing system for example 3, Case 1 

The space of all closed paths in Figure 7 is greater than zero except for the closed path 
which contains the entire system, 0),space( 04321 =∪∪∪ ncccc .  Even though the space 
is zero the system is live.  Now consider a WRG with the same structure except for a 
different system state and part routings. 
 
Case 2: Suppose the system in Figure 8 has the process plans as depicted in Table 7. 
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Table 7:  Process plans for example 3 
 

Part Process Plan 
a 5321 rrrr  
b 6435 rrrr  
c 1246 rrrr  

 

Assume that the system is in state ]1,1,1[)](),(),([ == cnbnann . 
 

r1 r2

r3

a

c

r4

r5

r6

b

c

b

a

a a

a b

b

bc

c
c

c1
c4

c2

c3

 

Figure 8:  Manufacturing system for example 3, Case 2 

As in case 1, the space of all closed paths in Figure 8 is greater than zero, except for the 
closed path that contains the entire system, 0),space( 04321 =∪∪∪ ncccc .  In this case, 
the system is dead.  The space condition cannot distinguish between the two cases. 

The Deadlock Avoidance Algorithm 

An algorithm that implements the methods presented herein can be applied to any process 
control systems to avoid deadlock.  The algorithm insures propagating an enabled part 
would not transition a live system to a dead state.   The algorithm can be implemented in 
two different levels.  A first level implementation, which is less restrictive, would be to 
define the order of all knots to as one.  A second level of implementation would compute 
the order of each knot per Definition 5.  Implementing the algorithm at this second level 
would allow more live states but would add more complexity.  A flowchart of these two 
implementations is depicted in Figure 9. 
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Space of c > 0

1. Create the System WRG
2. Let CG be the set of all closed paths
3. Identify all Knot Resources

yes

Undetermined State
(Conclude System is Dead)

System is live

For each c in CG

Let CG = CG – {c}
Let c be an element of CG

 |CG |= 0

no

yes

no

Level of
Implementation

Second LevelFirst Level

Order of Knots State DependentAll Knots are Order One

 

Figure 9:  First and second level implementation flowchart 

Conclusion 

A deadlock avoidance algorithm was developed that avoids both primary and impending 
deadlock in a Flexible Manufacturing Systems.  The concepts of slack, knot, order and 
space was derived from circuit observations and interactions using Wait Relation Graphs.  
The algorithm insures deadlock is avoided by not allowing a live system to enter dead 
states by satisfying a set of linear inequalities, space > 0 for all closed paths. 
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The algorithm does detect all dead states.  The algorithm does not detect all live states as 
shown in Example 3.  A special state called the evaluation state presented in [16] and 
[18] is necessary to determine the liveness of these indistinguishable states.  This will be 
addressed in future publications. 
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