
Paper 145, ENG107

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

A Simple Deadlock Avoidance Algorithm in

Flexible Manufacturing Systems

Paul E. Deering, PhD
Department of Industrial Technology

Ohio University
deering@ohio.edu

Abstract

As Flexible Manufacturing Systems (FMS) become more flexible and complex the
subject of deadlock avoidance becomes essential. This paper presents a simple yet
effective algorithm that can be implemented at two levels of complexity to avoid
deadlock in a FMS. This paper discusses the differences between primary deadlock and
impending deadlock; it models a FMS using digraphs to calculate slack, knot, order and
space to avoid deadlock. Several examples are provided demonstrating the method.

Introduction

Allowing a manufacturing system to enter only live states (deadlock-free states) and
avoid any dead states (deadlocked states) can save both loss of production and labor costs
as well as provide better resource utilization. Moving the wrong part in a live FMS can
cause deadlock that can both cripple the entire manufacturing system and stall
production. The only recourse is to manually resolve the deadlock and reset the FMS to a
known state that is live. To prevent manual deadlock resolution in a FMS, a deadlock
avoidance algorithm that can determine which parts to move must be incorporated into
the controller of the FMS.

There are two types of deadlock that can occur in a manufacturing system. The most
basic type is primary deadlock; this situation occurs when each part on a circuit requests
the next resource in its process plan. This situation is illustrated in Figure 1.

Resource 1 Resource 3

Resource 2

Part c
Circuit 1

Part b

Part a

Figure 1: Example of primary deadlock

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Assume that part a in resource 1 has to go to resource 2, part b in resource 2 has to go to
resource 3, and part c in resource 3 has to go to resource 1 before each part is completed.
If resource 1, resource 2 and resource 3 can only hold one part at a time, no parts can
move without intervention. Circuit 1 in Figure 1 is said to be in primary deadlock.
A more complex and difficult-to-detect type of deadlock is called impending deadlock;
this occurs when parts can move through the system but will terminate in primary
deadlock after a finite number of moves. Consider the system shown in Figure 2 and
assume that each resource can only hold one part. Assume that part a is occupying
resource 1 and that part a first requires resource 2, then resource 3. Likewise, assume
part b is occupying resource 3 and the next resource required by part b is resource 2
followed by resource 3. Although part a can move to resource 2, the system will
terminate in primary deadlock on circuit 2. Part b can also move to resource 2, but
primary deadlock will result on circuit 1.

Resource 1 Resource 3Resource 2

Circuit 1 Part bPart a Circuit 2

Figure 2: Example of impending deadlock

The two main approaches to solving the deadlock situation in manufacturing systems
include: detection and resolution and avoidance. Deadlock detection and resolution
methods [3, 4, 10, 13, and 14] allow deadlocks to occur. The deadlock is resolved by
implementing a deadlock recovery procedure which moves parts to buffers and reset the
system to a live state. Deadlock avoidance methods [1, 2, 5-9, 11, 12, 15, 16-18] avoid
deadlock by controlling the mix of parts in the system at any given time. A part can be
moved or introduced into the system only if the move does not cause deadlock. If a move
is found to cause deadlock, then the move is not allowed to occur thus avoiding the
deadlock state.

This paper presents the results of [16] and demonstrates a simple algorithm which can be
implemented at two levels of complexity to avoid both primary and impending deadlock.
This paper is organized as follows: the first section discusses previous research on
deadlock in a FMS; the next section defines a mathematical model of a manufacturing
systems; circuit parameters slack, knot, order and space is then defined; the next section
proves sufficient conditions for a deadlock-free system; several examples demonstrating
the method is then provided; next the deadlock avoidance algorithm is presented; and
finally concluding remarks about the method and future research.

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Previous Research

Many researchers use Petri Nets [1, 2, 5, 10-12, 14] as a formalism to describe deadlock
in a manufacturing system. Banaszak and Krogh [1] proposed a deadlock avoidance
algorithm (DAA) that developed a restriction policy based upon production route
information to guarantee that no circular wait situations will occur. Their DAA is
sufficient for avoiding deadlocks but is not an optimal solution. Viswanadham, Narahari
and Johnson [10] developed a deadlock avoidance algorithm which employed a look-
ahead policy. This algorithm did not detect all deadlocked states and suggested using a
recovery mechanism in case of system deadlock. Zhou and DiCesare [11] and Zhou [12]
generalized the sequential mutual exclusions (SME) and parallel mutual exclusions
(PME) concepts and derived the sufficient conditions for a Petri net (PN) containing such
structures to be bounded, live and reversible. In general, PN solutions are suitable for
manufacturing systems which contain few resources but become very complicated for
larger systems.

Another formalism to describe the manufacturing system is to use Graphs [3, 4, 6-9, 13-
19]. In this approach, the vertices represent resources and the edges represent part flows
between resources. Wysk, Joshi, and Yang [13] were the first to develop a specialized
directed graphical structure called a Wait Relation Graph (WRG) to model a
manufacturing system. In [13] they developed a string manipulation procedure which
yields a set of control actions to detect and recover from primary deadlock. Cho,
Kumaran and Wysk [3] used system status graphs to develop the concept of simple and
non-simple bounded circuits with empty and non-empty shared resources to detect part
flow deadlock and impending part flow deadlock. This method introduced the concept of
a bounded circuit to detect deadlock. The method detected deadlock based on
characteristics of this bounded circuit. The methods in [13] and [3] could only handle
single capacity resources. Fanti, Maione and Turchiano [4] used a graph called Working
Procedure Digraph and developed a simple graph-theoretic method for deadlock
detection and recovery in systems with multiple capacity resources. This algorithm did
not prevent deadlock from occurring either and suggested a suitable recovery strategy.

Judd and Faiz [6] expanded upon the original formulation proposed by [13] and the first
to define slack, order and space to avoid deadlock. This method provided sufficient
conditions for deadlock by satisfying a set of linear inequalities. Lipset, Deering and
Judd [8] extended [6] to precisely quantify both necessary and sufficient conditions for
deadlock to exist. In this research, they redefined the order of a knot, defined a special
state called an evaluation state and the concept of order reduction. The approach was to
put the system into an evaluation state and then compute the order. Deering [16]
improved [8] by further refining the order of a knot, evaluation state and eliminated the
need for order reduction. Zhang, Judd and Deering [15] developed a Deadlock
Avoidance Algorithm (Daa) based on [8] and [16] that avoided deadlock and executed in
polynomial time. Zhang, Judd and Deering [18] expanded upon [15] and [16] to quantify
the sufficient conditions for a system state to be live and derived the liveness necessary
and sufficient conditions for an evaluation state. Zhang and Judd [19] extended [18] to
allow choice in process flow or flexible part routing.

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Modeling a Manufacturing System

A Flexible Manufacturing System consists of a set R of finite resources, e.g. robots,
buffers, and machines, which produce a finite set P of products. Each resource Rr ∈ has
a capacity of cap(r) units that can perform the required operations. The capacity function
can be extended to a set of resources, that is

.anyfor),cap()cap(11
1

RRrR
Rr

⊆= ∑
∈∀

For each product Pp∈ , the process plan rrrp mK21)plan(= defines the sequence of
resources that are required to produce p. Resource mr is the terminal resource for product
p. It is assumed that all process plans are fixed, finite and sequential. A part is an
instance of a product that flows through the system. At any given time, a manufacturing
system is working on a set Q of parts. The function)(class q returns the product p to
which part q belongs.

A manufacturing system can be represented by a Wait Relation Graph (WRG)

),(AVG = . Each vertex represents a resource; that is, V=R. A directed arc is drawn
from vertex 1r to vertex 2r , if 2r immediately follows 1r in at least one process plan.
Each arc will be labeled with the part(s) that will flow through it. A subgraph

GARG ⊂=),(111 of a WRG consists of a subset of the resources and arcs of G so that all
the arcs in 1A connect resources in 1R . The union (intersection), denoted
by)(2121 GGGG ∩∪ , of two subgraphs is the union (intersection) of the component
resource and arc sets. A path),(pp ARP = is a subgraph whose resources and arcs can
be ordered in the list nn raarar 12211 −K where each arc in the list connects the resources
on either side. When specifying a path, writing the arcs is redundant. Therefore, only the
resources will be enumerated when a path is defined. A simple path is a path with no
repeated elements in the ordered list. A closed path is a path with the same first and last
element. A simple circuit is a closed path with no repeated elements in the ordered list
except the first and last element.

The function)(n q returns a positive integer that represents the position in))(class(plan q
of the operation that is currently processing q. When a new part q is added to the
system, then 1)(n =q . As the part is moved from resource to resource according to its
plan,)(n q is incremented until it reaches the end of its plan and exits the system. The
state n of a manufacturing system is a vector containing the current n(q) for all Qq∈ . A
state n of a manufacturing system is live if a sequence of part movements exist that will
empty the system. A state n of a manufacturing system is dead, or deadlocked, if it is not
live.

(1)

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Given a manufacturing system),(ARG = , let Aa ∈ and Rr∈ . Then the function
)(tail a returns the resource at the tail of the given arc; the function)head(a returns the

resource at the head of the arc. A unit of the resource)(tail ar = is said to be committed
to arc a if it is processing a part q whose next resource in its process plan is)(head a . It
is important to note that the number of resource units committed to the outgoing arcs of r
can be less than the number of busy units. This happens when some of the busy units are
being used for terminal operations. A resource unit is free if it is not committed to an arc;
by this definition a busy unit which is not committed is still termed free. A resource is
free if any of its units are free. A resource is empty if it contains no parts. The
commitment function),com(na returns the number of resource units that are committed
to arc a when the system is in state n. The commitment function is extended to a set of
arcs as follows:

AAnanA
Aa

⊆= ∑
∈∀

11 anyfor),,(com),com(
1

.

A part is enabled if either the next resource in its process plan contains at least one
resource unit that is not busy or the part is in the last step of its process plan. Suppose
that the system is in state 0n ; there exists an arc a such that resource)head(2 ar = is free
and the part in the resource)tail(1 ar = is committed to a. Then, when 1r finishes its
operation, this part can be moved to resource 2r . This process is called propagation. The
symbol kn is used to denote the state of the system after the thk propagation. A part q in
WRG G can be shifted to resource r if it can be propagated to r without propagating any
other part in G. A part q in WRG G is said to have a free exit if it can be shifted its
terminal resource mr in G.

Slack, Knot, Order and Space

This section will summarize the major concepts and results from [6, 8, 13, 16]. This
section defines the concept of slack, knot, order and space.

The slack is the number of free resources units available for parts to flow on a subgraph.

Definition 1: The slack of any subgraph GARG ⊆=),(111 is given by

),com()cap(),slack(111 nARnG −= .

A closed path c in a WRG G is in primary deadlock in state n if 0),slack(=nc .

An interesting phenomenon happens when two simple circuits are joined by a single
capacity resource as opposed to a multiple capacity resource. Consider the two
manufacturing system depicted in Figure 3 and Figure 4. Here, two simple circuits are
joined by resource 0r , and all parts are committed to their outgoing arcs. In Figure 3 and

(2)

(3)

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Figure 4, the labels indicating which parts flows through each arc have been left off for
simplicity.

r0

c2c1

r2 r3

r1 r4

a2 a1

q2

q3

q1

q4

Figure 3: Two simple circuits intersecting at a single capacity resource

Assume that all resources in both systems are of a capacity of one except where
2)(cap 0 =r and part 5q is committed to arc 1a (see Figure 4). Further assume in both

systems that if 1q is moved to resource 0r , it will be committed to arc 1a and if part 2q is
moved to resource 0r , it will be committed to arc a2.

r0

c2c1

r2 r3

r1 r4

a2 a1

q2

q3

q1

q4

q5

Figure 4: Two simple circuits intersecting at a multiple capacity resource

Even though resource 0r is free in both manufacturing systems, Figure 3 shows a dead
system and Figure 4 a live one. In Figure 3, if either part q1 or q2 is moved into 0r , then
primary deadlock will result on circuit 2c or 1c , respectively. In Figure 4, if part 1q were
moved into 0r , then primary deadlock will result on circuit 2c . However, moving part

2q will not cause deadlock since this move will allow the parts to propagate along circuit

2c . This observation motivates the following definitions.

Definition 2: Let 1c and 2c be any two closed paths in a WRG of a manufacturing
system. If 21 cc ∩ consists of exactly one resource with a capacity of one, then this
resource is called a knot with respect to 21 cc ∪ .

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Clearly, 0r in Figure 3 is a knot with respect to 21 cc ∪ since cap(0r) = 1 and 021 rcc =∩ .
Resource 0r in Figure 4 is not a knot with since cap(0r) = 2. The next two definitions
are needed to define the order of a knot.

Definition 3: Let 1c and 2c be two closed paths in a WRG G. Path 1c is connected to 2c
if 021 ≠∩ cc and a part currently exists in the system that must propagate from 1c to 2c
without leaving 21 cc ∪ .

Definition 4: Given two closed paths 1c and 2c , then 1c and 2c are cross connected if 1c
is connected to 2c and 2c is connected to 1c .

Definition 5: Let the closed path c in state n consist of two closed paths, 1c and 2c , such
that 21 ccc ∪= and kcc =∩ 21 where k is a knot. The order of knot k with respect to the
closed path c in state n is defined as

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise. ,0

 connected. cross are and if ,1
),,(order 21 cc

nck

The order of any simple circuit is zero.

The order of 0r in Figure 3 is one since 1c and 2c are cross connected
since 1),,(order 210 =∪ nccr .

Definition 6: Let c be a closed path in a WRG G in state n that contains m knots. Then,
the order of c is given by

∑
=

=
m

i
i ncknc

1
),,order(),order(.

Definition 7: Let c be a closed path in a WRG G of a manufacturing system in state n.
The free space on a closed path c is the difference between the slack and the order

 G),(order),(slack),(space Ccncncnc ∈∀−=

where GC is the set of all closed paths in G.

The following theorem proves that if all closed paths of a WRG G have space greater
than zero, G is live.

(4)

(5)

(6)

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Theorem 1: Let GC be the set of all closed paths in a non-empty WRG G in state n. If

 GCcnc ∈∀> 0),space(,

then G is live.

Proof. See [16].

Examples

This section consists of three examples demonstrating the method. The third example
will show a condition where a live system is evaluated to be dead.

Example 1: Let the WRG G in Figure 5 be in state n. The manufacturing system is
composed of six resources, 1r , 2r , 3r , 4r , 5r and 6r , all with unit capacity. The system
contains seven closed paths. Let GC represent the set of closed paths in G, i.e.

 },,,,,,{ 321323121321 ccccccccccccCG ∪∪∪∪∪= .

Suppose that the system manufactures three products, 1p , 2p and 3p , specified by the
following process plans: 32611)(plan rrrrp = , 56432)(plan rrrrp = , and 1653)(plan rrrp = .
Assume that parts a, b, and c belong to product classes 1p , 2p and 3p respectively.
Suppose that the system is in state]1,1,2,1[)]n(),(n),(n),(n[21 == cbban .

c1

c2

r1

r2

r5

c3a c

r6

r4

r3

b1

b2

a

a b

b

cc

a

bc

 Figure 5: Manufacturing system for example 1

Table 1 on the next page shows the capacity, commitment, slack, order and space
computations in state n .

(7)

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Table 1: Circuit parameters for example 1

Subgraph Capacity Commitment Slack Order Space

1c 2 1 1 0 1

2c 4 2 2 0 2

3c 2 1 1 0 1

21 cc ∪ 5 3 2 0 2

31 cc ∪ 3 2 1 0 1

32 cc ∪ 5 3 2 0 2

321 ccc ∪∪ 6 4 2 1 1

Clearly, the space of all closed paths is greater than zero. The manufacturing system is
live according to Theorem 1. Table 2 shows one possible sequence of moves to empty
the system.

 Table 2: Part movements to empty system in example 1

Part Movement Resulting State after move

a to 6r 2 2 1 1

a to 2r 3 2 1 1

c free exit 3 2 1 -

1b free exit 3 - 1 -

2b free exit 3 - - -

a free exit - - - -

Example 2: Let the WRG G in Figure 6 be in state 0n . The process plans for parts a, b
and c are as presented in Table 3. Let 12411 rrrrc = , 24322 rrrrc = , and 46543 rrrrc = . Assume
that the state of the system is 1] 2, 1, 2,[)](),(),(),([210 == cnbnanann .

Table 3: Process plans for example 2

Part Process Plan
a 2412 rrrr
b 65432 rrrrr
c 246 rrr

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

c1
r1

r2

r3

r4

c3

a1

r6

b

a,c
a

a

b

b

c

b

a2

b

c

r5
a,c

b
c2

Figure 6: Manufacturing system for example 2

Table 4: Circuit parameters for example 2

Subgraph Capacity Commitment Slack Order Space

1c 3 2 1 0 1

2c 3 1 2 0 2

3c 3 1 2 0 2

21 cc ∪ 4 3 1 0 1

31 cc ∪ 5 3 2 0 2

32 cc ∪ 5 2 3 1 2

321 ccc ∪∪ 6 4 2 1 1

Clearly, the space of all closed paths is greater than zero. The manufacturing system is
live according to Theorem 1. Table 5 shows one possible sequence to empty the system.

Table 5: Part movements to empty system in example 2

Part Movement Resulting State after move

1a to 4r 3 1 2 1

2a to 1r 3 2 2 1

1a free exit - 2 2 1

2a free exit - - 2 1

b to 4r - - 3 1

b to 5r - - 4 1

c free exit - - 4 -

b free exit - - - -

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Example 3: Theorem 1 can conclude that a system is live if the space of all closed paths
is greater than zero. If the space is zero the system may be live or dead. Consider the
following two cases.

Case 1: Suppose that the system in Figure 7 has the process plans depicted in Table 6.

Table 6: Process plans for example 3

Part Process Plan
a 64321 rrrrr
b 12435 rrrrr
c 53246 rrrrr

Assume that the system is in state]1,1,1[],,[== cban .

r1 r2

r3

a

c

r4

r5

r6

b

b

a

c

a a,c

c b

a,b

ac

c,b
b

c1
c4

c2

c3

Figure 7: Manufacturing system for example 3, Case 1

The space of all closed paths in Figure 7 is greater than zero except for the closed path
which contains the entire system, 0),space(04321 =∪∪∪ ncccc . Even though the space
is zero the system is live. Now consider a WRG with the same structure except for a
different system state and part routings.

Case 2: Suppose the system in Figure 8 has the process plans as depicted in Table 7.

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Table 7: Process plans for example 3

Part Process Plan
a 5321 rrrr
b 6435 rrrr
c 1246 rrrr

Assume that the system is in state]1,1,1[)](),(),([== cnbnann .

r1 r2

r3

a

c

r4

r5

r6

b

c

b

a

a a

a b

b

bc

c
c

c1
c4

c2

c3

Figure 8: Manufacturing system for example 3, Case 2

As in case 1, the space of all closed paths in Figure 8 is greater than zero, except for the
closed path that contains the entire system, 0),space(04321 =∪∪∪ ncccc . In this case,
the system is dead. The space condition cannot distinguish between the two cases.

The Deadlock Avoidance Algorithm

An algorithm that implements the methods presented herein can be applied to any process
control systems to avoid deadlock. The algorithm insures propagating an enabled part
would not transition a live system to a dead state. The algorithm can be implemented in
two different levels. A first level implementation, which is less restrictive, would be to
define the order of all knots to as one. A second level of implementation would compute
the order of each knot per Definition 5. Implementing the algorithm at this second level
would allow more live states but would add more complexity. A flowchart of these two
implementations is depicted in Figure 9.

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

Space of c > 0

1. Create the System WRG
2. Let CG be the set of all closed paths
3. Identify all Knot Resources

yes

Undetermined State
(Conclude System is Dead)

System is live

For each c in CG

Let CG = CG – {c}
Let c be an element of CG

 |CG |= 0

no

yes

no

Level of
Implementation

Second LevelFirst Level

Order of Knots State DependentAll Knots are Order One

Figure 9: First and second level implementation flowchart

Conclusion

A deadlock avoidance algorithm was developed that avoids both primary and impending
deadlock in a Flexible Manufacturing Systems. The concepts of slack, knot, order and
space was derived from circuit observations and interactions using Wait Relation Graphs.
The algorithm insures deadlock is avoided by not allowing a live system to enter dead
states by satisfying a set of linear inequalities, space > 0 for all closed paths.

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

The algorithm does detect all dead states. The algorithm does not detect all live states as
shown in Example 3. A special state called the evaluation state presented in [16] and
[18] is necessary to determine the liveness of these indistinguishable states. This will be
addressed in future publications.

References

[1] Banaszak, Z. and B. Krogh. 1990, “Deadlock Avoidance in Flexible
Manufacturing Systems with Concurrently Competing Process Flows.” IEEE
Trans. on Robotics and Auto. , vol. 6, no. 6, pp. 724-733.

[2] Barkaoui, K. and I.B. Abdallah 1995, "A Deadlock Method for a Class of FMS,"
Proceedings of the 1995 IEEE Int. Conf. On Systems, Man and Cybernetics,
1995, pp. 4119-4124.

[3] Cho, H., T.K. Kumaran, and R. Wysk 1995, "Graph-Theoretic Deadlock
Detection and Resolution for Flexible Manufacturing Systems," IEEE Trans. on
Robotics and Auto., vol. 11, no. 3, pp. 550-527.

[4] Fanti, M., G. Maione and B. Turchiano 1996, "Deadlock detection and recovery
in flexible production systems with multiple capacity resources," Industrial
Applications in Power Systems Computer Science and Telecommunications
Procedings of the Mediterranean Electrotechnical Conference, vol. 1, pp. 237-
241.

[5] Hsieh, F. and S. Chang 1994, "Dispatching-driven deadlock avoidance controller
synthesis for flexible manufacturing systems," IEEE Trans. Robotics and Auto.,
vol. 10, no. 2, pp. 196-209.

[6] Judd, R. P. and T. Faiz 1995, "Deadlock Detection and Avoidance for a Class of
Manufacturing Systems," Proceedings of the 1995 American Control Conference,
pp. 3637-3641.

[7] Judd, R. P., P. Deering, and R. Lipset 1997, "Deadlock Detection in Simulation of
Manufacturing Systems," Proceedings of the 1997 Summer Computer Simulation
Conference, pp. 317-322.

[8] Lipset, R., P. Deering, and R. P. Judd 1997, "Necessary and Sufficient Conditions
for Deadlock in Manufacturing Systems," Proceedings of the 1997 American
Control Conference, vol. 2, pp. 1022-1026.

[9] Lipset, R., P. Deering, and R. P. Judd 1998, "A Stack-Based Algorithm for
Deadlock Avoidance in Flexible Manufacturing Systems," Proceedings of the
1998 American Control Conference.

[10] Viswanadham, N., Y. Narahari, and T. Johnson. 1990. “Deadlock Prevention
and Deadlock Avoidance in Flexible Manufacturing Systems Using Petri Net
Models,” IEEE Trans. on Robotics and Auto., vol. 6, no. 6, pp. 713-723.

[11] Zhou, M. and F. DiCesare 1992, “Parallel and Sequential Mutual Exclusion for
Petri Net Modeling of Manufacturing Systems with Shared Resources.” IEEE
Trans. on Robotics and Auto., vol. 7, no. 4, pp. 550-527.

[12] Zhou, M. 1996, "Generalizing parallel and sequential mutual exclusions for Petri
net synthesis of manufacturing systems," IEEE Symposium on Emerging
Technologies & Factory Automation, vol. 1, 1996, pp 49-55.

Proceeding of The 2008 IAJC-IJME International Conference
ISBN 978-1-60643-379-9

[13] Wysk R., Yang, N. and Joshi, S., “Detection of Deadlocks in Flexible
Manufacturing Systems,” IEEE Transactions Robotics and Automation, Vol. 7,
No. 6, pp. 853-858, 1991

[14] Ezpeleta, J., Colom, J., Martinez, J., “A Petri Net Based Deadlock Prevention
policy for Flexible Manufacturing Systems,” IEEE Trans. on Robotics and
Automation, Vol. 11, No. 2, pp. 173-184, April 1995.

[15] Wenle Zhang, Robert P. Judd and Paul Deering, “Evaluating Order Of Circuits
For Deadlock Avoidance In A Flexible Manufacturing System”, Proceedings of
the 2003 American Control Conference, pp. 3679-3683, June 2003, Denver.

[16] Deering, E Paul “Necessary and Sufficient Conditions for Deadlock in
Manufacturing Systems”, PhD Dissertation, 2000, Ohio University

[17] Fanti, M.P., Maione, B., Mascolo S., and Turchiano, B., “Control Polices
Conciliating Deadlock Avoidance and Flexibility in FMS Resource Allocation”,
IEEE Symposium on Emerging Technologies & Factory Automation., Vol. 1,
IEEE, Piscataway, NJ, USA., pp. 343-351, 1995.

[18] Wenle Zhang, Robert P. Judd and Paul Deering,”Necessary and Sufficient
Conditions for Deadlocks In Flexible Manufacturing Systems Based On A
Digraph Model.” 2004 Asian Journal of Controls, Vol 6, No 2, pp. 217-228

[19] Wenle Zhang and Robert P. Judd,”Evaluating Order Of Circuits For Deadlock
Avoidance In A Flexible Manufacturing System.” 2007 Asian Journal of
Controls, Vol 9, No. 2, pp. 111-120

Biography

PAUL DEERING is currently Assistant Professor in the Industrial Technology
Department in the Russ College of Engineering and Technology at Ohio University. He
has worked in the area of Information Technology for 20+ years and has taught many
engineering and computer science courses for the Russ College.

