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Abstract 
 
Many engineering and engineering technology majors believe that their mathematics courses 
are not connected to concrete concepts that they can readily grasp. This (perceived) lack of 
real-world connection is a well-documented barrier to student learning and is pervasive in 
mathematics education. Often the mathematical material itself is not overly complex; it is 
more that the concepts are new and alien to the students’ experience. This, unfortunately, 
creates an increased level of anxiety that interferes with their learning. While this newness is 
true for many engineering concepts as well, a solid connection to the real world reduces the 
newness anxiety. In this work, the authors have developed and implemented a prototype of a 
mathematical, laboratory-based assignment to connect Fourier transforms to real-world 
applications using experiential learning methodology. In this way, students will experience 
hands-on manipulation of the data in the transform plane and observe the effect on the object 
in the inverse transform plane. Our long-term intention is to develop a series of real-world, 
hands-on laboratory experiments for the more difficult mathematical concepts. This work 
will describe the details of the transform laboratory exercise and the learning results in the 
context of our overall goal of developing experiential methods to realistically and effectively 
make mathematical concepts more engaging and intuitively available to the students. 
 
Introduction  
 
“This is just theory—they don’t connect any of this to the real world!” “I do fine in all my 
engineering courses, but I just don’t get the math [courses].” How often have engineering and 
mathematics faculty heard these statements from students frustrated with their performance 
in math courses? Regardless of whether a math faculty member relates the concepts to real 
engineering applications, students’ comments and frustrations remained markedly similar—
“I just don’t get it,” or “I don’t see why we really need to know this.” Beyond the excuses, 
real or not, engineering and engineering technology students, in general, find the 
mathematics courses the most difficult and least intellectually accessible of all the technical 
courses. 
 
“Math anxiety” is the common jargon that expresses students’ frustration that significantly 
interferes with learning [1, 2, 3, 4]. There is a host of literature that presents current thinking 
and mitigation techniques to reduce this debilitating math anxiety and improve student 
learning [5, 6, 7, 8]. However, very little of this work relates subject familiarity and/or 
students’ ability to connect the concepts to something in the real world. As evidenced by 
engineering students learning in technical fields other than mathematics (e.g., engineering 
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courses, physics, and chemistry, where their performance is significantly better), this 
connection to the real world and a resultant level of familiarity can have significant impact 
on student learning. Further, there is an obvious lack of work relating the pedagogical 
advantages of experiential learning to a mathematics education [9, 10, 11, 12, 13, 14]. 
 
Two common distinctions between the pedagogy of engineering and mathematics are the 
teaching-learning format and the connection of the material to everyday life. Engineering has 
a long tradition of student-centered experiential learning through its extensive use of 
laboratories and capstone courses. Recently, this format has been expanded in many 
engineering programs that emphasize the use of industrial design projects as a vehicle for 
learning specific engineering concepts. In contrast, mathematics courses are typically taught 
in a more teacher-centered environment of material/concept presentation, practice problems, 
and testing. Most mathematics curriculums attempt to connect the theoretical material to the 
field of engineering by presenting examples and assigning practice problems related to the 
field. However, the problems are typically somewhat randomly chosen, and while 
engineering related, they are not coherently related to a specific topic. Thus, students do not 
make any real and meaningful connections.  
 
This work presents an initial effort to increase experiential learning of mathematics through the 
creation of a laboratory-based mathematics modules and analysis of the concomitant results.  
 
The Class/Laboratory 
 
This initial effort was to design, develop, and implement a mathematics module that 
monopolizes on the positive elements of experiential student learning that are commonly and 
successfully employed in engineering classes and that makes clear connections to the real 
world, providing a clear need for learning the material. 
 
While experiential learning has shown to significantly improve learning, the method has 
some downsides to be considered. Listed below are the positive elements that were 
incorporated into the module design and negative elements that were minimized. 
 
Positive Elements:  

• Active student engagement. 
• Increased excitement about learning. 
• Material becomes more relevant to student’s interests. 
• The mathematical concepts are perceived as less threatening than when presented in a 

traditional format. 
• Hands-on learning. 

Negative Elements: 
• Perceived as being more time consuming than traditional methods. 
• Effect of students having different academic backgrounds, which places constraints 

on specifics of the laboratory. 
• Requires specialized laboratory equipment. 

The specific topic chosen for the initial module was Fourier transforms, which is taught in an 
upper division engineering mathematics course. Fourier transform/analysis is a common 
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mathematical tool used in many practical areas of engineering, such as control systems. It is 
also one that students find particularly obtuse.  
 
The specific goals of this effort were to maximize the positive learning elements, minimize 
the negative ones, and assess the overall value and feasibility of a laboratory-based 
mathematics courses. 
 
Brief Introduction to Fourier Transforms, Analysis, and Optics 
Fourier transforms are used to convert (transform) events in time or space, such as images 
and sound, into their frequency representations. While our interaction with events and objects 
in time and space occurs constantly, visualizing them as a series of frequencies is far from 
intuitive. The practical/engineering advantage of this transform is that a signal representing 
the event or object can be manipulated more easily in its frequency form than in time. The 
common example is adjusting the bass, midrange, or treble on a sound system. While we 
listen to the changes in amplitude of pressure in time (sound), the adjustments to improve the 
sound are done on specific ranges of frequency (i.e., the changes are made in the frequency 
domain and not in the time domain).  
 

 
 

Figure 1: A sum of sinusoidal waves of differing frequencies and amplitudes are used to 
recreate an event in time or space—a square wave. K is the number of sine waves of different 
frequencies and amplitudes added to approximate the image. While reconstructing a simple 
square wave is used for this illustration, this could represent the image of white dashed lines 

on a highway—dash, no dash, or white line, black line.  
 
Fourier analysis is predicated on the theory that all of our interactions that occur in time or 
space can be expressed as a sum of sinusoidal waves of differing frequencies and amplitudes. 
Figure 1 shows a square wave being constructed by a sum of sinusoidal waves—the more 



 
Proceedings of The 2008 IAJC-IJME  International Conference 

ISBN 978-1-60643-379-9 
 

sine waves added, the more accurately the square wave is reproduced. The frequency 
representation of an event in time or an object in space can be obtained mathematically by 
integrating the function that represents the event or object over all time or space. This strictly 
mathematical format of presenting the Fourier transform concept is neither intuitive, nor 
engaging, nor connected to students’ knowledge of the world, even when an engineering 
problem is used as an example.  
 
To actively engage students, an experiential Fourier transform module was developed 
utilizing Fourier optics. This optical setup allows one to see and/or manipulate the Fourier 
transform of an object or event in space or time. The frequency representation of the object is 
visualized by the intensity and spacing of dots of light. Figure 2 shows a simple example of a 
sinusoidally varying image in space and the associated optical Fourier transform. Note: the 
transform contains three dots of light. The two outer dots are redundant, with each 
representing the sinusoidal image. The frequency is contained in the dot’s distance from the 
center, and the amplitude information is given by the intensity of light of the dot. The central 
dot represents a constant level of background light and is referred to as the DC frequency. 
Finally, the frequency representation is transformed back into a reconstructed image of the 
original.   
 
 

 
 

Figure 2: Example of a Fourier transform—a) the original object is a sinusoidally varying 
image, b) the Fourier transform of the image, and c) a reconstructed image created from the 

transform data. 
 

 
An outline of the optical laboratory setup is presented below, followed by the laboratory 
procedure. Student response to participation in this module will be presented.  
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Experimental Setup 
 
The basic Fourier transform setup is shown in Figure 3. The system has four parts: light 
source and beam expander, working area, Fourier transform plane, and image reconstruction. 
A 22 Watt HeNe laser is used as the light source. The laser beam is aligned with a 
microscope objective that expands the beam to a working diameter of approximately 8.5 cm. 
To obtain a columnated beam, where the light is neither diverging nor converging, lens l1 is 
placed a distance f1 from the microscope objective. f1 is the focal distance of the lens. The 
working area, where the beam is columnated, is where objects or images to be transformed 
are placed. The Fourier transform of the real object is viewed in the focal plane of lens l2—
the Fourier transform plane. Finally, as the light beam continues, the inverse Fourier 
transform reconstructs the object that is imaged on a screen. Figure 2 shows what would 
appear at three positions within the system for a transparent plastic sheet imprinted with a 
sinusoidally varying image in the working area—the object in the working area, the Fourier 
transform, and the reconstructed image of the original object. 

 
 

Figure 3: Optical Fourier transform laboratory setup.   
 
Experimental Procedure  
 
As an introductory comment to this procedure, it should be made clear that the students do 
not need to have any special knowledge of optics beyond elementary knowledge of the 
function of a lens. The optical system is simply used as a tool that allows students to be 
directly involved in using and manipulating images, their Fourier transforms, and the 
resultant reconstructed images.   
 
Introduction  
1. Present the idea that any object or image in space or time can be represented by a sum of 

sinusoidal waves of different frequencies and amplitudes. Use the standard square wave 
example shown in Figure 1.  
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Basic Fourier Optics (Focal Plane Equals Fourier Transform Plane) 
2. Now moving to the experimental system and monopolizing on student’s basic 

understanding of a lens, an object is placed in the working area, and students are asked to 
describe what they would expect to see at the image plane (i.e., the screen). 

3. Student predictions are tested, and the image of the object is shown on a screen.  
4. A transparency imprinted with a sinusoid (Figure 2a) is placed into the working area and 

is viewed on the image screen. Students are instructed to find the focal point and predict 
what one would see. 

5. Using card stock, the students find the focal point, which shows a bright dot in the center 
of the beam.  

6. Turn out the lights and let the students’ eyes become dark adjusted.   
7. Ask the students to repeat step five. 
8. Discuss what is observed and the fact that the focal plan of a lens is a Fourier transform 

plane, where the frequencies and amplitudes are represented by the spacing of the dots 
and their intensity.   

9. Place a more complicated object into the working area—a standard sieve (wire mesh)— 
which acts as a 2-D hat function in space where light passing and no light passing are 
periodic in both the x- and y-directions. Students observe the response in the Fourier 
plane, Figure 4. 

 

 
 

Figure 4: Optical Fourier transform of a standard sieve (2-D square wave function)  
 

Optical Fourier Analysis/Applications (Filtering in the Fourier Plane) 
10. With the sieve still in the working area, perform the filtering shown in Figures 5b and 5c. 

Observe and discuss the results. 
11. As a separate filtering, remove all the dots except the central dot, as shown in Figure 5d. 

Observe and discuss the results. This discussion should make use of the example in 
Figure 1 and the initial discussion in step one. 

12. Using the filtering setup, as in Figure 5e, remove the central dot. Observe and discuss 
results. Again, relate the results to the discussion in step one. This specific filtering 
format is called Schlieren imaging.  
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Figure 5: Removal of specific frequency components in the Fourier plane by filtering 
(blocking) and the resultant reconstructed image, where a) original object-no filtering, b) 

filtering all but one horizontal row, c) filtering all but one vertical row, d) filter all but central 
dot, and e) filtering of the main or central dot.   

 
Fourier Transforms: Advanced Applications Using Schlieren Imaging  
Scenario 1: You work for an advanced jet engine manufacturing company and were assigned 
to verify the actual direction of the exhaust of the company’s new vectoring engine that 
varies the direction of thrust to change the direction of the aircraft. Recalling your knowledge 
of Fourier optics, you set up a Schlieren system to analyze the exhaust. Present a 
demonstration for your boss and explain how the system works. 
 
13. Using the filtering setup, as in Figure 5e, set up a Schlieren imaging system. Verify the 

system as one that detects the edges or rapidly changing parts of an image, and place a 
finger into the working space. The edges/outline of the finger should be shown by a 
bright red line on a dark background.  

14. Now that the system is working, place the exhaust of the jet engine—a hair dryer—into 
the working area. Discuss what you observe. Is the exhaust uniform?  
 

Scenario 2: You work for an optical glass company. Currently, quality control is done by 
hand, with people visually inspecting the glass for minute scratches. You believe you could 
dramatically improve the inspection process using Fourier filtering (Schlieren).  
 
15. Using the Schlieren/Fourier filtering system, show how you can detect fine scratches in a 

piece of glass plate. Discuss the results. Make a mental note of the quantity and size of 
the scratches detected in the Fourier filtered image.  

16. Turn on the lights and observe the scratches on the glass plate. Discuss the enhancement 
of scratch detection using the Fourier filtering system. 

 



 
Proceedings of The 2008 IAJC-IJME  International Conference 

ISBN 978-1-60643-379-9 
 

Results/Discussion  
 
The intent of the laboratory format was to actively engage the students, increase their 
excitement in learning about Fourier transforms, make the material more relevant and 
connected to the real world, and present the material in a hands-on format and in a less 
threatening environment.  
 
Beginning the laboratory with a topic, such as the physics of a simple lens, which is common 
knowledge to any engineering student, immediately set the tone of a more relaxed 
environment. This quickly got them over any anxiety regarding a mathematics laboratory and 
the complex-looking optical setup. Further, this format of beginning with material that 
students understand intuitively gave them grounding when the material became more 
complex and unfamiliar. At moments of confusion, students may return to the familiar basic 
concepts and return to the unfamiliar material in a more relaxed state.  
 
It is important to move quickly to new material because some students begin to disengage 
thinking (e.g., “I already know this!”). For this reason, within a few minutes of beginning the 
assignment, the students are presented with the complete picture of the focal plane and the 
presence of an optical Fourier transform. Apart from the revelation of this new information 
and a more complete picture, this directly challenges their early training in optics and lens, 
which only presented a single dot of light at the focal point—a dramatic simplification of the 
reality that is almost universally taught in physics classes. This introduction of the bigger 
picture and the notion of an optical Fourier transform took students by surprise and held their 
attention.  
 
The laboratory was designed around the idea of letting concepts build without instilling 
excessive anxiety. While this began by starting at a common knowledge point and, thus, low 
anxiety, a second anxiety reducing concept was integral to the design—active engagement of 
the students in their learning. The students were broken into the following working groups: 
 
• Image (reconstruction)—accurately describe the image and any changes as a result of 

filtering in the Fourier plane. 
• Fourier transform (focal) plane—find the focal plane and accurately describe the details 

of the Fourier transform. 
• Working area—correctly introduce objects into the working area and accurately describe 

the object.  
• Analysis (entire class)—develop logical arguments that connect the object to the 

transform and the transform to the reconstructed image.  
 
Although students were instructed to rotate groups, many of them could not wait. Students 
commonly left their group after hearing a description by another group to see the response 
for themselves. The response of, “Let me see,” was common. All this occurred in a 
completely darkened room.  
 
The level of direct, hands-on student engagement and excitement continued and, for most, 
increased as the laboratory progressed. However, at the beginning, students needed some 



 
Proceedings of The 2008 IAJC-IJME  International Conference 

ISBN 978-1-60643-379-9 
 

training on what constituted a quality description of the images. Initially, they were a little 
reticent to fully describe the image and would make comments such as, “I just see a bunch of 
lines.” However, with a little coaching and with the revelation of the Fourier plane, they 
quickly became more active and engaged and would provide accurate descriptions such as, “I 
see a set of perpendicular lines with equal spacing,” (these represented the sieve wires.) 
Further, they were able to pay close attention to detail that they could detect small changes, 
such as the lines doubling when Schlieren filtering enhanced the edges of the sieve wires and 
removed the actual image of the wires. Similarly, their descriptions of what they saw in the 
Fourier plane and the filtering used became more accurate as they became more engaged.  
 
Apart from some explanations, procedural directions, and clues, students were required to 
draw their own conclusion from the data they acquired. Although they were given clues such 
as, “relate your observations to the introductory example of a Fourier transform” (see Figure 
1), their deductions were very astute.  
 
Students reported that the laboratory module gave them a solid grounding, connecting 
Fourier concepts to real-world application. This connection allows students to increase or 
maintain interest in the concepts when presented in the more theoretical and abstract 
environment of the lecture room by allowing the material to be grounded to clear and 
intellectually accessible use in the real world.  
 
In general, it was amazing how quickly and easily students adapted to the experiential format 
of learning a complex mathematical concept. In review of student comments on the 
laboratory experience, no one mentioned a concern regarding their lack of background in 
optics. Although this was a concern in the design of the module, the students readily adapted.  
Beyond their initial surprise at finding more than a simple dot in the focal plane, the students 
did not report any difficulty in accepting the optical Fourier concept and working with the 
equipment. Nearly all students reported that this module was helpful. They found it 
particularly useful to have had the experiential component prior to the traditional, formal 
lecture.  
 
Regarding the length of the module of 50 minutes, a little more time would be useful. The 
initial laboratory ran long by approximately 10 minutes. Additionally, many students wanted 
to stay and continue working with the equipment or spend time discussing the concepts and 
applications. One hour and 15 minutes would probably be a more appropriate amount of 
time.   
 
As stated, many students wanted to stay and either experiment with the system or further 
discuss Fourier transforms and their uses. This level of excitement and interest is in contrast 
to a typical mathematical lecture on FT, where engineering students might, at best, stay to 
discuss parts of the math that they did not understand. It was impressive to see the students 
actively engaged in the laboratory to the point where the discussion continued after the 
formal laboratory was over. In many ways, it appeared that they forgot that they were 
learning mathematics and were simply excited about the material.     
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Conclusion 
 
An experiential mathematic module on Fourier transforms was designed and implemented in 
an advanced engineering mathematics course. The module was designed to improve student 
learning through direct hands-on experiential learning and to make the material relevant to 
the student by connecting the material to real-world applications.  
 
This initial effort showed positive results for all of the project goals: actively engage 
students, increase student excitement about learning, increase relevance of the material, 
decrease the threatening nature of the learning environment, and increase hands-on learning.  
 
The effort also attempted to minimize the effects of time constraints, variances in student 
knowledge of optics, and need for specialized equipment. The module was taught during one 
regular class period of 50 minutes. However, a longer period of one hour and 15 minutes 
would be a more appropriate amount of time. No student reported any concern regarding 
their lack of knowledge of optics. However, specialized equipment is needed. For our setup, 
equipment was borrowed from other laboratories.  
 
Overall, this initial effort demonstrated that students can learn complex mathematical 
concepts using a combination of experiential and traditional methods. This effort will 
continue to include larger groups of students so that statistical data can be obtained.  
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