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Abstract 
 
Many countries are currently experiencing deteriorating bridge networks due to aging and 
growth of vehicular loads in both magnitude and volume. Repair and rehabilitation are 
necessary to preserve the load capacity and service performance of these bridges. Highway 
bridges need to be assessed to identify the structurally deficient ones early. In this way, the 
state, local, and federal policymakers can determine which bridges are in need of immediate 
attention. Note that the assessment of bridges involves a significant amount of uncertainty. 
To this end, the reliability theory of structures can be a helpful tool to quantify the risk 
involved in this process of bridge assessment. This paper addresses this issue and examines 
the safety and reliability of bridges using reliability-based algorithms. 
 
Introduction 
 
Structural safety has traditionally been described and quantified in terms of factors of safety. 
The theory of structural reliability instead quantifies structural safety using a measurement of 
risk, taking into account the uncertainty involved. It is also worth mentioning that structural 
safety is time variant. This is because the load demand and the capacity of a structure may 
change over time. For example, many developed countries are currently experiencing a 
problem of aging and deteriorated bridge networks. These structures’ safety has been of 
concern also due to observed growth of load in both magnitude and volume. Evaluation, 
repair, and rehabilitation are necessary for the preservation of the load capacity and service 
performance of these existing bridges. To minimize cost of replacement or repair, the 
evaluation needs to accurately reveal the current load-carrying capacity of the bridge and to 
cover future loads and further changes in the capacity.  
 
This study examined 10 randomly selected bridges in the state of Michigan. Safety and 
reliability of these bridges were assessed using the reliability-based algorithms that measure 
the safety reserve in a structure covering the focused uncertainty involved. The concept of 
structural reliability was used for the assessment of bridges. Bridge reliability will be 
measured using the structural reliability index β, which has been used in several recent 
research projects related to bridge safety [1, 2, 3], including NCHRP Project 12-33, 
Development of LRFD Bridge Design Specifications. In that project, the LRFD bridge 
design code was calibrated with respect to structural reliability index β. The design load was 
examined in the context of the load and resistance factor design (LRFD) following 
requirements of the LRFD bridge design code [4]. The target reliability index of 3.5 for 
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calibrating the AASHTO LRFD Bridge Design Specifications [5] was used as the criterion 
for evaluating the reliability of the bridges.  
 
Structural Reliability Algorithm 
 
The reliability of a structure is defined here as its probability to fulfill the safety requirement 
for a specified period or its lifetime. An important component of structural reliability is 
concerned with the calculation or estimation of the probability of a limit state violation for 
the structure during its lifetime. The probability of occurrence of structural failure or a limit 
state violation is a numerical measure of the likelihood of its occurrence. Its estimate may be 
obtained using measurements of the long-term frequency of occurrence of the interested 
event for generally similar structures or using numerical analysis and simulation. Reliability 
estimates for structures are often obtained using analysis and simulation, based on 
measurement data for the elements involved in modeling. For example, for highway bridge 
structures, statistics of data for these elements are used in modeling, such as bridge 
components’ strengths, sizes, deterioration rates, truck load magnitudes, traffic volume, etc.  
 
The likelihood that a random variable may take a particular value is described by its 
probability distribution function [6] or cumulative distribution function (CDF) and 
probability density function (PDF). The most important characteristic parameters of a 
random variable are its mean value or average value, standard deviation, and probability 
distribution type. The standard deviation gives a measure of dispersion or variability. The 
standard deviation of a random variable R with a mean µR is often symbolized as σR. A 
dimensionless measure of the variability is the coefficient of variation (COV), which is the 
ratio between the standard deviation and the mean value, σR /µR. 
 
The margin of safety for a bridge component can be defined as 
 

Z = R – S,        (1) 
 
where R is the resistance or the load-carrying capacity of the structural component, and S is 
the load effect or the load demand to the component. They are modeled as random variables 
here because their uncertainty is evident. In general, the uncertainty associated with the 
resistance is due to material production and preparation process, construction quality control, 
etc. The uncertainty associated with load effect is related to truck weight, truck type, traffic 
volume, etc.  
 
The probability of failure Pf is the probability that the resistance R is lower than the total 
applied load S: 

[ ] [ ] =≤=≤= 0ZPSRPP rrf ∫
∞−

=
0

zz )0(Fdz)z(f ,   (2) 

 
where [ ]EPr  is the probability of occurrence of the event E, fz(z) is the probability density of 
the variable Z, and Fz(0) is the value of the CDF for Z at Z=0. Thus, the probability of failure 
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is obtained by summing the probabilities that Z has an outcome smaller than 0. It is also 
represented by the cumulative probability distribution function Fz(0). Note that the failure 
probability in equation (2) refers to a load effect in a structural component. Hence, this 
definition can be applied to a variety of load effects, such as moment, shear, and even 
possibly displacement. It also can be applied to a variety of bridge structural components, 
such as beams, slabs, and piers. 
 
When the probability densities of R and S are available, equation (2) can also be expressed as 

∫
∞+

∞−

= dx)x(f)x(FP sRf ,       (3) 

where fs(x) and FR(x) are the PDF of S and the CDF of R, respectively. 
 
The structural reliability is defined as the probability that R is greater than S (or Z is greater 
than 0). It is also called the probability of survival Ps and is thus defined as the complement 
of the probability of failure: 
 

fs P1P −= .        (4) 

 
Structural safety can be measured by structural reliability index β [7]. The reliability index β 
is defined as follows using equation (2) 
 

β = φ -1 (1- Pf),        (5)
         

where φ-1(.) is the inverse function of the standard normal random variable’s CDF. Equation 
(5) indicates that β  is inversely monotonic with Pf. That is to say, a small Pf leads to a large 
β, or a large Pf to a small β. Thus, a large β indicates a safer structural component, and a 
small β indicates a less safe one.  
 
Dead Load Effect Statistics 
 
The dead load was modeled as a uniformly distributed load. The nominal values were 
calculated using the available bridge plans for the 10 sample bridges provided by the MDOT. 
Each dead load has an associated bias and coefficient of variation (COV). The COV was 
defined as the ratio of the standard deviation to the mean value. The dead load bias, biasD , 
was expressed in terms of the nominal dead load effect, Dnom, and the mean dead load effect, 
Dmean, as 

nom

mean
bias D

DD = .        (6)  
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Since the nominal value of a dead load effect was estimated according to the bridge’s plans, 
the mean value of the dead load effect was readily obtained by multiplying the nominal value 
by the bias. 
 
Live Load Effect Statistics 
 
Modeling the live load effect statistics of a bridge is not a trivial task mainly because it 
requires measurement data to cover their variation over a long period of time. Such data are 
usually not available. Thus, using the available measurement data that were collected over 
only a shorter period of time would require the prediction or projection of future loads. 
Therefore, bridge load modeling is often associated with a certain degree of subjective 
judgment of uncertainty. It is important, however, to note that “the objective of load 
modeling is not to come up with an exact mathematical formulation of the loads and their 
effects, but to develop models to represent the most salient features of the loading 
phenomenon” [8]. 
 
Weigh-in-motion (WIM) data were used as live loads for the bridge structures for this study. 
These data were collected using WIM scales. These scales are dynamic weighing systems 
that determine weights while vehicles are in motion. They enable vehicles to be weighed 
with little or no interruption of their travel. WIM scales have been designed to sense the 
weights of the axles passing over the instrument through the use of piezo sensors, strain 
gauges, or hydraulic or pneumatic pressure transducers. The readings are transmitted to a 
receiving unit, where they are converted to actual weights [9].  
 
This study used the WIM truck weight data from four different types of highways referred to 
as Functional Classes (FC). They included Principal Arterial – Interstate – Rural (FC01), 
Principal Arterial – Other – Rural (FC02), Principal Arterial – Interstate – Urban (FC11), and 
Principal Arterial – Urban (FC12). These WIM weight data were collected over only a period 
of several days for each site. To perform the reliability analysis for the entire lifespan of the 
bridges, it was necessary to project the live load effect (moment or shear) to the expected 
bridge life (75 years).  
 
For modeling flexure and shear effect of truck live load (moving load), moment and shear 
influence lines were developed first for each bridge’s critical sections. Each influence line for 
a particular section and a particular load effect was used individually to obtain live load 
effect data for that section and load effect. Then, every truck in the WIM dataset was “run” 
through the influence line to find the truck’s maximum load effect, using a computer 
program. The input parameters of the computer program are the influence lines and WIM 
dataset. For each influence line, after all the trucks in the WIM dataset had been used in this 
simulation process, a set of maximum live load effects was obtained to generate the statistics 
for that load effect. The results of maximum load effect for all the trucks consequently 
provided a set of data for modeling the random variable of that load effect.  
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Once the live load effect statistics for each critical section on each bridge were determined as 
described, the data were projected to a 75-year statistical distribution. The following 
approach was used for this projection.  
 
First, an equivalent number of days of data (EDD) was determined using the following 
equation: 

ADTT
mEDD = ,       (7) 

 

where m is the number of trucks in the dataset used for a case of reliability analysis, and 
ADTT is the average daily truck traffic for the focused bridge site. Essentially, EDD indicates 
the equivalent days of WIM data used for the particular site focused in the reliability 
analysis. 
 
Secondly, an empirical CDF was constructed by sorting the dataset from smallest to largest 
load effects for the m trucks included in the dataset. The corresponding value of the CDF for 
the ith ranked load effect can be expressed as 
 

[ ] daysEDDfori
ij

j

daysEDDfor,i LLobPr
m

n
F <==

∑
≤ ,    (8) 

 
where nj is the number of trucks including load effects falling in the jth interval of the CDF. 
Thus, Fi is the cumulative probability for the load effect L to be lower than the ith interval 
represented by Li. 
 
Thirdly, the projected CDF of L for 75 years was then obtained using the EDD defined in 
equation (7) and the number of EDD in 75 years, N, as 
 

EDD
)year/days365)(years75(N = .     (9) 

 
The projected CDF, Fi,75 was estimated using 
 

N
i75,i FF = .        (10) 

 
This computation was based on an assumption that each time period of duration EDD within 
the time period of 75 years is statistically independent from the others.  
 
Bridge Beam Capacity Statistics 
 
To calculate the capacity of the bridge beam, basic principles of engineering structural 
analysis/structural mechanics were used. In this case, the bridge plans used for construction 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
 

were reviewed, and moment or shear capacities were computed. The determined values were 
taken as nominal resistance for probabilistic modeling. It should be noted that in the 
calculation of capacities, no resistance factors (i.e., strength reduction factors) were applied. 
 
Reliability Index Calculations 
 
This study used the structural reliability concept to evaluate the structural reliability of the 10 
highway bridges. These bridges were randomly selected from the suite of bridges constructed 
or re-constructed after 1990 in the state of Michigan. Two types of superstructures were 
considered for this investigation: steel beam bridges (steel) and pre-stressed concrete I-beam 
bridges (concrete). Five bridges of each type were evaluated. A target reliability index of 3.5 
was used in this study. This value was arbitrarily selected to provide the same average safety 
margin in the LRFD code. Note that the target level of 3.5 was selected not as an absolute 
criterion but rather a relative norm in the AASHTO LRFD code calibration process as the 
average of β  levels.  
 
For the reliability assessment of bridge components, the safety margin in equation (1) was 
further detailed as 

Z = R – (D + L),                   (11)    

 
where (D + L) = S. D and L are respectively dead and live load effects. Live load here refers 
to truck load effect to the bridge component. Both D and L were also modeled as random 
variables. To estimate the reliability index for the bridges, it was necessary to estimate the 
statistical distributions for the load effects as well as the structural resistance. The mean and 
COV of the total load effect S were derived from the mean and COV of the dead load effect 
D and live load effect L.  
 
Assuming that D and L were statistically independent of each other, the standard deviation σS 
was expressed as  
 

2 2 2
D LSσ σ σ= + ,         (12)   

 
where σ is the standard deviation, and subscripts S, D, and L are respectively for total, dead, 
and live load effect. The mean value for the total load effect S was then the sum of the means 
of D and L 

D LSµ µ µ= +  ,       (13) 

where µ indicates the mean. The COV of the total load effect was then expressed as 

S
S

S
V σ

µ
= .        (14) 
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The reliability index β defined in equation (5) was calculated using the First Order 
Reliability Method [10]. However, since both the load S and resistance R were assumed to be 
log-normally distributed, the calculation of the reliability index was simplified to  
 

( ) ( )
2 2

ln ln

R S

R S

V V

µ µ
β

−
=

+
 ,      (16) 

 
where µR and µS represent the means of the resistance and total load effect, and RV  and SV  
are their coefficients of variation, respectively. Figure 1 presents a flowchart of the overall 
procedure of reliability index analysis. 
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Unprojected shear  
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Perform reliability analysis 
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shear and moment 

 
 

Calculate resistances 
 

 
Determine reliability index 

 
Figure 1: Flowchart of reliability index calculation 

 
 

Results 
 
The reliability indices of the 10 sample highway bridges were calculated following the 
overall procedure shown in Figure 1. The results are shown in Figure 2 and Figure 3. As 
discussed earlier, the reliability index calculation model used here refers to beam flexure or 
beam shear.  
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It can be seen from Figure 2 and Figure 3 that the reliability index β  values for moment 
ranged from 3.6 to 5.8. In comparison, the β  values for shear ranged between 4.9 and 8.1. It 
can be seen that the values for the steel bridges and concrete bridges followed similar trends. 
The results show that the bridges under FC11 and FC12 consistently have the lowest β  
values. These lower levels of β  values are attributable to the heavier truck loads that are 
expected in FC11 and FC12, because these two functional classes are in the urbanized areas.  
 
Using the target reliability index of 3.5 as a threshold, results have shown that the bridges 
investigated in this study are adequate. Note also that the target value of 3.5 is used for a 
single structural component (i.e., a bridge beam) and not the entire bridge structural system. 
Hence, a value above 3.5 does not necessarily mean the bridge is safe, because it is not the 
component that determines the safety of a bridge, but the system. 
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Figure 2: Comparison of reliability indices for moment 
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Figure 3: Comparison of reliability indices for shear 
 
 
 
Conclusions 
 
The safety and reliability of highway bridges are essential for the nation’s economic growth. 
Bridge structural adequacy can be assessed using the reliability-based approach. Being able 
to identify structurally deficient bridges will help the policymakers prioritize those in need of 
immediate repair, rehabilitation, or even replacement. As a result, this will help maintain 
bridge systems to keep them safe and sound throughout their lifespan.  
 
Acknowledgements 
 
The Michigan Department of Transportation (MDOT), the U.S. Federal Highway 
Administration (FHWA), Roger D. Till, Dr. Gongkang Fu, Dr. John W. van de Lindt, and 
Yingmin Zhou are gratefully acknowledged for their significant contributions to this study. 
 
 
 
 
References 
 
[1] Nowak, A.S. (1999). Calibration of LRFD Bridge Design Code. NCHRP Report 368, 

Transportation Research Board, National Academy Press, Washington, D.C., U.S.A. 
[2] Moses, F. and Verma, D. (1987). Load Capacity Evaluation of Existing Bridges. 

NCHRP Report 301, Transportation Research Board, National Academy Press, 
Washington, D.C., U.S.A. 

[3] Fu, G. and Hag-Elsafi, O. “Vehicular Overloads: Load Model, Bridge Safety, and 
Permit Checking.” ASCE Journal of Bridge Engineering, Vol. 5, No. 1, Feb. 2000, 
49–57. 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
 

[4] AASHTO (1998). “LRFD Bridge Design Specifications.” 2nd Ed., Washington, D.C., 
U.S.A. 

[5] Nowak, A.S. (1999). Calibration of LRFD Bridge Design Code. NCHRP Report 368, 
Transportation Research Board, National Academy Press, Washington, D.C., U.S.A. 

[6]  Ang, A-H.S., and Tang, W.H. (1975). “Probability Concepts in Engineering Planning 
and Design, I.” John Wiley & Sons, New York.  

[7] Frangopol, D.M. (1999). Bridge Safety and Reliability. American Society of Civil 
Engineers, U.S.A. 

[8] Thoft-Christensen, P. and Baker, M.J. (1982) “Structural Reliability Theory and Its 
Applications.” Springer-Verlag, Berlin. 

[9] Traffic Monitoring Guide, U.S. Department of Transportation, Federal Highway 
Administration, October 1992.  

[10] Madsen, H.O., Krenk, S., and Lind, N.C. (1986). “Methods of Structural Safety.” 
Prentice Hall, Inc. Englewood Cliffs, NJ, U.S.A. 

 
 
 
  
Biography 
 
REYNALDO M. PABLO, JR. is an Assistant Professor in the Department of Manufacturing 
& Construction Engineering Technology and Interior Design at Indiana University-Purdue 
University, Fort Wayne, Indiana. He received his Ph.D. in Civil Engineering from the Wayne 
State University, Detroit, Michigan. His expertise lies in the areas of bridge design loading 
calibration, bridge design and evaluation, and reliability of bridge structures.  


