
Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

Paper 167, IT P401 
 

VLSI and SPICE Modeling of ALU 
 

Saeid Moslehpour 
University of Hartford 

moslehpou@hartford.edu 
 

Srikrishna Karatalapu 
University of Hartford 

srikrishna.karatalapu@gmail.com 
 
 

 
Abstract 
 
The Arithmetic and Logic Unit (ALU) is a combination circuit that performs a number of 
arithmetic and logical operations within a microprocessor. The demand for faster and 
compact ALUs makes it desirable to test the ALU in conjunction with pre-design parts prior 
to manufacture. This may be accomplished in a process using CAD and SPICE simulation 
software. Our purpose is to realize a method for importing a layout drawn in Tanner L-edit 
and simulated in T-Spice into PSpice which is referred to as software talking. To do so we 
use an eight-function instruction set called Complimentary Metal Oxide Semiconductor 
Arithmetic and Logic Unit (CMOS ALU) which is laid out in Tanner L-edit and produces an 
extracted net-list which is simulated in T-Spice.  An ALU equivalent design is then modeled 
in PSpice for further testing with pre-manufactured parts of the PSpice library. 
 
ALU Design 
 
The top-level module consists of a four bit ALU. An eight function instruction set CMOS 
ALU performs the following: addition, subtraction, AND, NAND, OR, NOR, XOR and 
XNOR. Each of these functions is performed on two four-bit input bitwise operations. The 
bitwise output results in the 8X1 multiplexer. Each of the single bit building blocks are 
cascaded together to form a four bit ALU [1]. 
 
The eight-function instruction set of the CMOS ALU: 
 
ADDITION: The output performed by a Ripple-Adder consists of four sum-bits and a single 
carry-out bit. 
SUBTRACTION: The input is complimented using twos compliment. The output of the 
Ripple-Adder consists of four sum bits and a single carry-out bit. 
NAND: The NAND gate is a universal gate used to construct various logic operations. 
AND: The AND gate is a basic gate which can be constructed in CMOS by inverting the 
NAND gate. 
NOR: The NOR gate is a universal gate and can be used to construct various logic 
operations. 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

OR: The OR gate is a universal gate and can be constructed in CMOS by inverting the NOR 
gate. 
XOR: The XOR gate can be constructed by a combination of NAND and NOR gates. 
XNOR: This is constructed by inverting the XOR gate. 
 
Each of the CMOS ALU functions are performed on a single bit input in Tanner L-edit using 
0.6 micron technology. The layout is the extract using the M12_5 model file. The extracted 
net-list is then simulated using T-Spice.  Figure 1. shows the four bit ALU block diagram. 

 
Figure 1: Four bit ALU Block Diagram 

 
The device is then modeled in OrCAD-PSpice A/D, a simulation program that models the 
behavior of a circuit containing any mix of analog and digital devices. Used with OrCAD 
Capture for design entry, PSpice A/D is a software-based breadboard circuit that can used to 
test and refine a design before manufacture. [2] PSpice modeling involves writing code the 
PSpice editor, Verilog, to model electronic devices. The result is the ALU model. 
 
CMOS Design Methodology  
 
CMOS Design methodology consists of eleven components. 
INVERTER: The inverter consists of an NMOS and a PMOS connected in series. The 
PSWITCH is connected from a ‘1’ source i.e. the VDD to the output and input The NSWITCH 
is connected from a ‘0’ source i.e. the GND to the output and the input.  
NAND GATE: The CMOS NAND gate is derived examining the K-MAP. The ‘0’ dictates the 
AND structure which is constructed using two NMOS in PARALELL. The ‘1’ dictates the OR 
structure which is constructed using two P-MOS connected in SERIES  
AND GATE: The CMOS AND gate has been designed by inverting the CMOS NAND gate. 
The output of AND is high only when both the inputs are high i.e. the output is low when any 
one of the inputs is low.  
NOR GATE: The CMOS NOR gate is derived examining the K-MAP. The ‘0’ dictates the 
AND structure which is constructed using two NMOS in parallel. The ‘1’ dictates the OR 
structure which is constructed using two P-MOS connected in series. 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

OR GATE: The CMOS OR gate has been designed by inverting the CMOS NOR gate. The 
output of OR is high only when both or any one of the inputs is high i.e. the output is low only 
when both the inputs are low.  
XOR GATE: The Exclusive-OR, or XOR function can be described verbally as, "Either A or 
B, but not both.” The output of an XOR gate is high only when any one of the inputs is low i.e. 
for the output of the XOR gate to be high both the inputs should be either high or low. A XOR 
gate can be designed by a combination of NAND and OR gates. 
XNOR GATE: The XNOR gate is designed by inverting the XOR gate .The output of the 
XNOR gate is high when both the inputs are low and both the inputs are high. A CMOS 
representation of the XNOR  
FULL-ADDER: The full-adder circuit adds three one-bit binary numbers (C A B) and outputs 
two one-bit binary numbers, a sum (S) and a carry (C).   The full-adder is usually a component 
in a cascade of adders, which add 8, 16, 32, etc. binary numbers.  The output of XOR gate is 
called SUM, while the output of the AND gate is the CARRY. The AND gate produces a high 
output only when both inputs are high. The XOR gate produces a high output if either input, 
but not both, is high. The ‘C’ for an ADDER is always made low 
SUBTRACTOR: Binary subtraction is performed by adding the two’s compliment of the 
number to be subtracted. 2’s compliment of a number can be achieved by inverting the number 
and adding one to it. This is achieved by inverting each bit of the number to be subtracted and 
adding ‘1’ by means of the carry-in. The carry-in of a Subtractor must be ‘1’. 
MULTIPLXER: A multiplexer is a combinatorial circuit that is given a certain number 
(usually a power of two) data inputs, let us say 2n, and n address inputs used as a binary 
number to select one of the data inputs. The multiplexer has a single output, which has the 
same value as the selected data input. In the present design an 8x1 Multiplexer has been used 
for each single bit out depending on input needed to send out. This also ensures a faster ALU 
as the functions are performed as soon as the input is fed to the ALU. [3] 
 
The 3 control signals (S [2-0]) show the desired output in the order as shown below: 
 

000 ADDITION 
001 AND 
010 NAND 
011 OR 
100 NOR 
101 XOR 
110 XNOR 
111 SUBTRACTION 

 
FOUR BIT ALU: Each of the single bit ALU are cascaded to form a four bit ALU.  Figure 
2. shows detailed four bit ALU block diagram 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
Figure 2: Detailed four bit ALU block diagram 

 
PSpice Design Methodology 
 
OrCAD productivity tools are designed to boost productivity for smaller design teams and 
individual printed circuit board (PCB) designers. The powerful, tightly integrated PCB 
design suites include design capture, librarian tools, a PCB editor, an auto/interactive router, 
and optional analog and mixed-signal simulator. The affordable, high-performance OrCAD 
product line is easily scalable with the full complement of Cadence Allegro PCB solutions.  
The OrCAD product line is owned by Cadence Design Systems, Inc. and supported by a 
worldwide network. 
 
Digital Primitives 
 
Digital primitives are primarily used in sub-circuits to model complete devices. Stimulus 
devices are used in the circuit to provide input for other digital devices during the simulation. 
Digital primitives are low-level devices whose main use is modeling off-the-shelf parts, often 
in combination with each other. Digital primitives should not be confused with the sub-
circuits in the libraries that use them in the present design stimulus behavior has been used in 
creating an equivalent model of the four bit CMOS ALU[4]. 
 
Behavioral Primitives 
 
The simulator offers three primitives to aid in the modeling of complex digital devices: the 
Logic Expression, Pin-to-Pin Delay, and Constraint Checker primitives. These devices are 
distinct from other primitives in that they allow data-sheet descriptions to be specified more 
directly, allowing a one-to-one correspondence using the function diagrams and timing 
specifications. The Logic Expression primitive, LOGICEXP, uses free-format logic 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

expressions to describe the functional behavior device. The Pin-To-Pin Delay primitive, 
PINDLY, describes propagation delays using sets of rules based on the activity on the device 
inputs. Each of the stimulus behavior parts are described in detail below: 
 
• Device format 

U<name> LOGICEXP (<no. of inputs>, <no. of outputs>)  
+ <digital power node> <digital ground node> 
+ <input node 1> ... <input node n> 
+ <output node 1> ... <output node n> 
+ <timing model name> 
+ <I/O model name> 
+ [IO_LEVEL = <value>]  
+ [MNTYMXDLY = <value>]  
+ LOGIC:  
+     <logic assignment>* 
 

• Timing Device Format  
    
MODEL <timing model name> UGATE [model parameters 

• Arguments and options 
1. LOGIC Marks the beginning of a sequence of one or more <logic assignments>. A 
<logic assignment> can have one of the two following forms: 
<Output node> = {<logic expression >}  
<temporary value>   =    {<logic expression>}One of the output node names as it appears in 
the interface list.  
Assignments to an <output node> causes the result of the <logic expression> to be scheduled 
on that output pin. Each <output node> must have exactly one assignment 

 
Any target of an assignment which is not specified as one of the nodes attached to the device 
defines a temporary variable. Once assigned, <temporary values> can be used inside 
subsequent <logic expressions>. They are provided to reduce the complexity and improve the 
readability of the model. The rules for node names apply to <temporary value> names[5]. 
• Logic Expression Operators 

 A C-like, infix-notation expression that returns one of the five digital logic levels. Like 
all other expressions, <logic expressions> must be surrounded by curly braces { }. They 
can span one or more lines using the + continuation character in the first column position.  
The logic operators are listed below from highest-to-lowest precedence 
~ Unary not 
& and 
^ Exclusive or 
| Or 

PSPICE MODEL EDITO 
The Model Editor is used either to generate a new model or edit an existing model to create a 
new model [7]. To generate a new model the method below has to be followed.  Figure 3. 
shows PSpice model editor and  Figure 4. shows model editor with new model creation. 
a. From the File menu in Model Editor, choose mew. 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

• Using model menu from model menu chose copy from 
 

 
Figure 3: PSpice model editor 

 
b. Select the any Model from the source library. 
c. Click OK 
d. Manually type in the behavioral or digital primitives of the device to be modeled   

 

 
Figure 4: model editor with new model creation 

 
e. Save the file as “.lib”. 

 
Exporting the Model to Capture Library 
 

The Model Editor is used import the model into capture. To generate a new model in 
capture the method below has to be followed. 

• Using File menu 
a. From the file menu in Model Editor, choose export to capture part library. 
Figure 5. shows PSpice export to capture part library. 

 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
Figure 5: PSpice export to capture part library 

 
B. Figure 6. show the path for importing from PSpice to capture library. 
 

U1

MY_ALU

A0_I
1

A1_I
2

A2_I
3

A3_I
4

B0_I
5

B1_I6

B2_I
7

B3_I
8

S0_I
9

S1_I
10

S2_I
11

SC_I
12

CN_I
13

F0_O
14

F1_O
15

F2_O 16

F3_O
17

COUT_O
18

SOUT_O
19

 
Figure 6 ALU part created in capture 

 
Note: Capture automatically creates the part in capture 
 

Configuring New Model Library 
 
After generated the part library has been generated for a new/customized model library, the 
model library must be made available to the design. To ensure this the model library 
containing custom simulation models is added to the project simulation profile. 
 

1. In Capture, open Analog or Mixed-Circuit project. 
2. From the PSpice menu choose Edit Simulation Profile. 
3. Select the Configuration Files tab. 
4. In the Category list box, select Library. 
5. In the Filename text box, specify the location of the model library. 
6. To make the library available to all designs, click Add as Global. If you want the 

library to be used only in the current design, select Add to Design and close the 
Simulation Settings dialog box. 

7.  



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
Figure 7: Defining a global parameter 

 
Note: Instead of editing a simulation profile, you can also create a new simulation 
profile. To do this, choose New Simulation Profile from the PSpice menu in Capture.  
Figure 7 show how to define a global parameter. 

 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
Figure 8: CMOS Four Bit ALU Layout 

 
Figure 8. shows CMOS Four Bit ALU Layout. 
 
ALU Measurements 
 

1. TOTAL NO. OF DEVICES : 982  MOS 
2. APPROXIMATE AREA OF THE ALU1431385.2 sqr microns 
3. RISE TIME :10.13 nanoseconds 
4. FALLTIME : 20.08 nanoseconds 
5. TPLH : 11.53 nanoseconds 
6. TPHL : 13.37 nanoseconds 
7. PROPAGATION DELAY: 12.45 nanoseconds 
8. SKEW: 48. 

 
 
 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
Table 1: Illustration of ALU functions 

 
A 

INPUT 
B 

INPUT
FUNCTION 
(CONTROL 

SIGNAL) 

OUTPUT 

1010 0100 ADD(000) 1110 
1010 0100 AND(001) 0000 
1010 0100 NAND(010) 1111 
1010 0100 OR(011) 1110 
1010 0100 NOR(100) 0111 
1010 0100 XOR(101) 1110 
1010 0100 XNOR(110) 0001 
1010 0100 SUB(111) 0110 

 
 
 

 
Figure 9: T-SPICE B inputs of a four bit ALU 

 
 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
Figure 10: T-SPICE inputs of a four bit ALU 

 

 
Figure 11: Outputs of four bit ALU for all functions 

 
Table 1., Figure 9., 10 and 11 demonstrate functionality and input/output timing diagrams. 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

U1

MY_ALU

A0_I1

A1_I
2

A2_I3

A3_I4

B0_I
5

B1_I6

B2_I7

B3_I
8

S0_I9

S1_I10

S2_I 11

SC_I
12

CN_I 13

F0_O 14

F1_O
15

F2_O 16

F3_O 17

COUT_O
18

SOUT_O 19

 
Figure 12: ALU in Capture with pin layout 

 
Figure 12. shows ALU symbol in OrCAD capture. 
 
PSpice Model Editor Codes 
 
PSpice codes are demonstrated below. 

 
.SUBCKT my_alu A0_I A1_I A2_I A3_I B0_I B1_I B2_I 
+ B3_I S0_I S1_I S2_I SC_I CN_I 
+ F0_O F1_O F2_O F3_O COUT_O SOUT_O 
+ OPTIONAL: DPWR=$G_DPWR DGND=$G_DGND 
+ PARAMS: MNTYMXDLY=0 IO_LEVEL=0 
Umy_aluLOG LOGICEXP (13, 6) DPWR DGND 
+ A0_I A1_I A2_I A3_I B0_I B1_I B2_I 
+ B3_I S0_I S1_I S2_I SC_I CN_I 
+ F0_O F1_O F2_O F3_O COUT_O SOUT_O 
+ D0_GATE IO_STD 
+ IO_LEVEL= {IO_LEVEL} 
+ LOGIC: 
+   A0   = {A0_I} 
+   A1   = {A1_I} 
+   A2   = {A2_I} 
+   A3   = {A3_I} 
+   B0   = {B0_I} 
+   B1   = {B1_I} 
+   B2   = {B2_I} 
+   B3   = {B3_I} 
+   S0   = {S0_I} 
+   S1   = {S1_I} 
+   S2   = {S2_I} 
+   CN   = {CN_I} 
+   SC   = {SC_I} 
* 
* Intermediate terms: 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

* 
*LOGIC OUTPUT OF F0  
+ 
I01={((~S2&~S1&~S0)&((A0^B0)^CN))|((~S2&~S1&S0)&(A0&B0))|((~S2&S1&~S0)
&~(A0&B0))|((~S2&S1&S0)&(A0|B0))} 
+ 
I02={((S2&~S1&~S0)&~(A0|B0))|((S2&~S1&S0)&(A0^B0))|((S2&S1&~S0)&~(A0^B
0))|((S2&S1&S0)&(A0^~B0^SC))} 
+ F0_O= {(I02|I01)} 
*LOGIC OUTPUT OF F1 
+ I11 = {(A0&B0)| (B0&CN)| (CN&A0)}  
+ I12 = {(A0&~B0)| (~B0&SC)| (SC&A0)}  
+I13={((~S2&~S1&~S0)&((A1^B1)^I11))|((~S2&~S1&S0)&(A1&B1))|((~S2&S1&~S
0)&~(A1&B1))|((~S2&S1&S0)&(A1|B1))} 
+I14={(S2&~S1&~S0&~(A1|B1))|((S2&~S1&S0)&(A1^B1))|((S2&S1&~S0)&~(A1^B
1))|((S2&S1&S0)&(A1^~B1^I12))} 
+ F1_O = {I14|I13} 
*LOGIC OUTPUT OF F2 
+ I21 = {(A1&B1)| (B1&I11)| (I11&A1)}  
+ I22 = {(A1&~B1)| (~B1&I12)| (I12&A1)} 
+I23={((~S2&~S1&~S0)&(A2^B2^I21))|((~S2&~S1&S0)&(A2&B2))|((~S2&S1&~S0)
&~(A2&B2))|((~S2&S1&S0)&(A2|B2))} 
+I24={((S2&~S1&~S0)&~(A2|B2))|((S2&~S1&S0)&(A2^B2))|((S2&S1&~S0)&~(A2^
B2))|((S2&S1&S0)&(A2^~B2^I22))} 
+ F2_O = {I24|I23} 
*LOGIC OUTPUT OF F3 
+ I31 = {(A2&B2)| (B2&I21)| (I21&A2)}  
+ I32 = {(A2&~B2)| (~B2&I22)| (I22&A2)} 
+I33=((~S2&~S1&~S0)&(A3^B3^I31))|((~S2&~S1&S0)&(A3&B3))|((~S2&S1&~S0)&
~(A3&B3))|((~S2&S1&S0)&(A3|B3))} 
+ 
I34={((S2&~S1&~S0)&~(A3|B3))|((S2&~S1&S0)&(A3^B3))|((S2&S1&~S0)&~(A3^B
3))|((S2&S1&S0)&(A3^~B3^I32))} 

 
 PSPICE ALU WIRING 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

U1

MY_ALU

A0_I
1

A1_I2

A2_I
3

A3_I
4

B0_I5

B1_I
6

B2_I
7

B3_I8

S0_I
9

S1_I
10

S2_I
11

SC_I 12

CN_I
13

F0_O
14

F1_O 15

F2_O
16

F3_O
17

COUT_O 18

SOUT_O
19

D
PW

R
20

DGND
21

A0

1
0

0

A1
A2

1

A3

1

B0

1

B1

1

B2

0

B3

S0 S1 S2
B[3-0]

1
0

S[3-0]

S4
DSTM1

S4
DSTM2

S4
DSTM3

V

V
V

HI
LO F0

0

F1

0

F2

0

F3

0

COUT

1
0

SOUT

5.000V

V1

5V

0

A[3-0]

 
Figure 13: ALU simulation in PSpice capture 

 
 

           Time           Time
0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us

 1 A0};;B 1001 0111 1010
 1 B0};;B 0111 0010 0001
 1 S0};;B 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011
 1 F0};;B 0000 0001 1110 1111 0000 1110 0001 0010 1001 0010 1101 0111 1000 0101 1010 0101 1001 0000 1111 1011
     COUT
     SOUT

 
Figure 14 ALU simulation outputs in PSpice 

 
Figure 13. shows the schematic and Figure 14 shows input/output timing diagram. 

 
Conclusion 
 
To stay competitive in today's market, engineers must take a design from engineering 
through manufacturing with shorter design cycles and faster time to market. To be 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

successful, you need a set of powerful, intuitive, and integrated tools that work seamlessly 
across the entire design flow [6]. 
 
OrCAD personal productivity tools have a long history of addressing these demands-and 
more. And with the technique described above it makes Digital Design a mere child’s play. It 
helps designer create and test different design of his choice with even touching a piece of 
hardware. The present paper outlines a simple but an important method of designing digital 
devices in OrCAD PSpice.  The method is better explained with the help of an eight 
instruction set four inputs ALU. 
 
References 
 
[1] Behrooz Vahidi, Senior Member, IEEE, and Jamal Beiza “Using PSpice in Teaching 

Impulse Voltage Testing of Power Transformers to Senior Undergraduate Students” in 
IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005 

[2] L. Puglisi, P. Ferrari, P. Tenca, and A. Rebora, “An advanced application of PSpice 
modeling and simulation for design optimization of push-pull dc/dc converter,” in 
Proc. 7th Inst. Elect. Eng. Int. Conf. Power Electronics Variable Speed Drives, 
Genoa, Italy, Sep. 1998, pp. 117–120. 

[3]  William Gerard Hurley, Senior Member, IEEE, and Chi Kwan Lee “Development, 
Implementation, and Assessment of a Web-Based Power Electronics Laboratory in 
IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 4, NOVEMBER 2005. 

[4]  Stephen Prigozgy, senior IEE E  member “Novel application of Spice in engineering 
education”  in IEEE vol for education ,vol 32,No 1 Feb. 1989 

[5]  J. M. Deskur, “PSpice simulation of power electronic and motion control systems,” 
Proc. IEEE Int. Symp. Industrial Electronics, pp. 195–200,Jul. 1997. 

[6]  K. T. Chau and C. C. Chan, “A Spice compatible model of permanent magnet dc 
motor drives,” in Proc. 1995 IEEE Int. Conf. Power Electronics and Drive Systems, 
vol. 1, Kowloon, Singapore, Feb. 1995, pp.477–482. 

[7]  OrCAD PSpice help manual. 
 
Biography 
 
Saeid Moslehpour is an Assistant Professor in the Electrical and Computer Engineering 
Department in the College of Engineering, Technology, and Architecture at the University of 
Hartford. He holds PhD (1993) from Iowa State University and Bachelor of Science, Master 
of Science (1990), and Education Specialist (1992) degrees from University of Central 
Missouri. His research interests include logic design, CPLDs, FPGAs, electronic system 
testing and distance learning. 
 
Srikrishna Karatalapu received his Bachelor of Science degree in electrical engineering in 
Hyderabad, India and Master of Engineering degree from the University of Hartford in 2006. 
 


