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Abstract 
 

It is important for anyone solving a system of linear equations, including engineers, to know 
whether or not the linear system is ill-conditioned. If the system is extremely ill-conditioned, 
the solution, even if it is exact, will not be of much practical use because the solution will be 
highly sensitive to tiny changes in the problem. Little work has been done on the scaling of 
matrices in recent years. In this paper, we introduce the properties of our SCALGM 
algorithm and present an approximate equation for the Euclidean condition number κ2 of any 
matrix A ∈  Rm×n after the matrix has been rescaled using our SCALGM algorithm, in terms 
of the minimum angle between a column vector of A and the linear subspace spanned by the 
remaining columns of A. Numerical evidence is presented supporting this relationship. 
 
 
Introduction 
 
Matrix scaling, or equilibration, has been an important subject in the scientific computing on 
linear algebraic systems. The relative change in the solution can be as large as the product of 
the relative change in the problem and the “condition number” of the matrix of coefficients, 
as the latter has been defined by Wilkinson [21]. Related to this is the fact that the number of 
digits, base b, that are unavoidably lost in solving a linear system using finite precision 
arithmetic can be as large as the logarithm, base b, of the condition number. Thus, a 
condition number of 10^7 can mean that a solution using 32-bit floating point arithmetic 
(type REAL or float) has no accurate digits in it. 
 
Unfortunately, poorly scaled linear systems will often appear to be ill-conditioned, using the 
usual definition of condition number, when they really are not (that is, when the sensitivity is 
actually low or moderate). Our work addresses the problem of measuring the “true 
condition” number of a matrix, independent of its scaling. The true condition number turns 
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out to be correlated with the minimum angle between a column vector of the matrix and the 
subspace defined by the n-1 other column vectors. 
 
We apply our iterative algorithm, called SCALGM, which works on any given nonzero 
matrix A∈  Rm×n to produce the row and column scale factors in the form of diagonal matrices 
D and E, respectively, such that the scaled matrix DAE is well-scaled. More properties of the 
scaled matrix performed by SCALGM will be introduced later. 
 
Let A∈  Rm×n and let S = SCALGM(A). For some column j of S, let θj(S) be the angle 
between the jth column of S and the linear subspace spanned by the remaining columns of S, 
and let θmin(S) be the minimum angle among them. We believe the minimum angle θmin(A) 
contains the essential information pertaining to the condition number κ2(A) of any well-
scaled matrix A. If θmin = 90o, the matrix is optimally well-conditioned; as θmin → 0o, the 
“true condition number” increases without limit. Below is an approximate equation we have 
found from our experiments for the relation between the condition numbers κ2(S) and the 
minimum angles θmin(S) for well-scaled matrices S obtained from our scaling method, namely 
the SCALGM algorithm: 
 

κ2(S) ≈ 1.4 (90/ θmin(S)) − 0.4 , 
 
where θmin(S) is measured in degrees. 
 
 
Matrix Scaling 
 
The objective of scaling matrices A is to find suitable row and column scale factors, written 
as diagonal matrices, D and E, respectively, such that the scaled matrices DAE satisfy the 
desired properties. For instance: 
 

 Forsythe and Moler [9] present the motivation of scaling to make pivoting work well. 
 Berman, Parlett, and Plemmons [2] give a necessary and sufficient condition for A to 

be diagonally equivalent to an orthogonal matrix Q, and offer an algorithm that either 
produces positive diagonal matrices D and E such that DAE is orthogonal or it fails if 
no such pair D, E exists. (Note: Every orthogonal matrix Q is really orthonormal; the 
Euclidean norm of every column is unity, and hence is, in a sense, optimally well-
scaled.) 

 Bunch [4] presents an algorithm for any symmetric matrix A (with no null rows) such 
that the scaled matrix DAE is equilibrated in the ∞-norm. 

 Curtis and Reid [7] propose an algorithm for scaling based on the assumption that the 
given matrix can be scaled into the required form such that all scaled matrix elements 
are of comparable size. Thus, the usual pivoting strategies for Gaussian elimination 
can be applied on the scaled matrix. 

 Fulkerson and Wolfe [11] present a method for finding scale factors that minimize the 
ratio of the matrix entry of largest absolute value to that of smallest non-zero absolute 
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value. These authors state that it is believed that such a number is a useful condition 
number. 

 Rothblum, Schneider, and Schneider [16] present an algorithm so that for a given 
nonnegative symmetric matrix A and a positive vector r, it either finds a positive 
diagonal matrix D such that B = DAD has row maxima prescribed by r or shows that 
no such D exists. 

 Parlett and Reinsch [15] present an algorithm based on the work of Osborne [14] on 
balancing a matrix for calculation of eigenvalues and eigenvectors. 

 Skeel [18] shows the effect of scaling on the stability of Gaussian elimination. 
 The problem of optimal scaling of matrices with respect to the condition number κ2 

has been extensively studied, as seen in papers presented by Bauer [1], Braatz and 
Morari [3], Businger [5], Forsythe and Strauss [10], Golub and Varah [12], McCarthy 
and Strang [13], Rump [17], and Watson [20]. 

 
We apply our iterative convergence algorithm, called SCALGM, below. 
 
Basic “Scale up”" algorithm: 
     Divide each row (or column) in a matrix by the smallest non-zero magnitude of any 
element in that row (or column). 
 
Basic “Scale down” algorithm: 
     Divide each row (or column) in a matrix by the largest magnitude of any element in that 
row (or column). 
 
SCALGM algorithm: 
     Iterate until converged. 
        Call the matrix at the beginning of an iteration “the original matrix.” 
        Step 1) Scale the original matrix up by rows, then by columns, 
                   saving the scale factors. 
        Step 2) Scale the original matrix up by columns, then by rows, 
                   saving the scale factors. 
        Step 3) Scale up the rows of the original matrix by the geometric mean 
                   of the row factors from Step 1 and Step 2 above, 
                   and scale up the columns of the original matrix analogously. 
        Steps 4–6) Scale down the resulting matrix similarly. 
     After the above iteration converges, iterate Steps 4–6 only, 
        until converged. 
 
In practice, the matrix to be rescaled is not altered; all rescaling is done by modifying row 
and column scale factors. SCALGM works on any given non-zero matrix A∈  Rm×n to 
produce the row and column scale factors in the form of diagonal matrices D and E, 
respectively, such that the scaled matrix DAE satisfies the following properties: 
 

1. The maximum magnitude of elements in DAE is 1. 
2. The non-zero rows and columns of DAE are equilibrated in the ∞-norm. 
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3. The ratio of the minimum magnitude of nonzero elements to the maximum magnitude 
of elements in DAE is maximized. 

4. The minimum magnitude m of non-zero elements in DAE must occur in a pair or 
more. 

5. Algorithm SCALGM preserves symmetry. 
 
 
 
Measuring Linear Dependence by Angles  
 
Let A = [a1|…|an] ∈  Rm×n, where aj is the jth column vector of A with 
 

aj =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅
⋅

mj

j

a

a1

. 

   
Let x = [x1,… ,xn]T ∈  Rn×1. We may view Ax ∈  range(A) as 

 

   ∑
=

n

j
jj ax

1
∈  L(a1, … ,an), 

 
where L(a1, … ,an) is the linear span of the column vectors aj of A, or the linear space 
spanned by the column vectors aj of A. In fact, range(A) = L(a1, … ,an). In this section, we 
will investigate this problem: let A = [a1|…|an] ∈  Rm×n be given with m ≥ n, and A does not 
have to be of full rank.(If m < n, simply consider AT instead of A.) From the column vectors 
of A, we compute the angle θj between aj and L(a1,… ,aj−1,aj+1,… ,an), as illustrated in Figure 
1 . 
 
 

 
Figure 1: Computing the Angle θj 

 

aj 

θj 

L(a1,… ,aj−1,aj+1,… ,an) 
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Note that L(a1,… ,aj−1,aj+1,… ,an) ∈  Rm×(n−1), denoted by jÂ , is a submatrix of A by 
removing the jth column vector from A, and thus  
 

range( jÂ ) = L(a1,… ,aj−1,aj+1,… ,an). 
 

Now, we are ready to find the orthogonal projector Pj ∈  Rm×m that projects any vector onto 
range( jÂ ). In particular, for aj∈Rm,1 ≤ j ≤ n, we have 
 

(aj − Pjaj) ⊥  Pjaj . 
 
Let θj = ∠ (aj, Pjaj). Then 0 ≤ θj ≤ π/2. Solve for each θj, and let θmin = min{θj : 1 ≤ j ≤ n}, 
then 0 ≤ θmin ≤ π/2. Our approach is based on the following properties for determining the 
orthogonal projector P that projects aj onto the linear subspace Sj, so as to find the angle θj 
by using the property of the inner product: 
 

aj
T (Pjaj) = ja jj aP cos(θj). 

 
Property 1. If A = [a1|…|an] ∈  Rm×n has full rank n ≤ m, then the orthogonal projector P that 
projects onto range(A) = L(a1, … ,an) ∈Rm is 
 

P = AA† ∈  Rm×m, 
 

where A† = (AT A)−1AT ∈  Rm×m is the pseudoinverse of A. 
 
 
Property 2. If Q = [q1|…|qn] ∈  Rm×n is an orthogonal matrix, then the orthogonal projector P 
that projects onto range(Q) = L(q1,… ,qn) ∈  Rm is 
 

P = QQT . 
 

It is well known that every matrix A ∈  Rm×n(m ≥ n), regardless of the rank of A, has a full 
QR decomposition A = QR, and, hence, a reduced QR decomposition A = RQ ˆˆ , where Q ∈  
Rm×m, Q̂  ∈  Rm×n are orthogonal matrices and R ∈  Rm×n, R̂  ∈  Rn×n are upper-triangular 
matrices. Moreover, if A is of full rank = n, then A has a unique reduced QR decomposition A 
= RQ ˆˆ  with rjj > 0. Therefore, we have the following property: 
 
Property 3. If A is of full rank and A = RQ ˆˆ  is the reduced QR decomposition, then 

(i) range(A) = range( Q̂ ), and 
(ii) the orthogonal projector P that projects onto range(A) is P = Q̂ Q̂ T . 
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What if the given matrix A ∈  Rm×n is not of full rank? For example, rank(A) = k < n ≤ m. The 
reduced QR decomposition is still our choice for the rank-deficient matrix as to how to find 
an orthogonal matrix Q̂  ∈  Rm×k and an upper-triangular matrix R̂  ∈  Rk×k such that A = RQ ˆˆ  
and thus 
 

range(A) = range( Q̂ ) . 
 
By Property 3, the orthogonal projector P that projects vectors onto range(A) is 
 

Q̂ Q̂ T  ∈  Rm×m . 
 

The QR decomposition is important in numerical linear algebra and useful in its applications. 
Two well-known stable algorithms are Modified Gram Schmidt Orthogonalization (MGS) 
and Householder Triangularization. 
 
The important property of the QR decomposition is that every matrix A ∈  Rm×n with m ≥ n, 
not necessarily of full rank, has the QR decomposition, written as 
 

A = QR, 
 
satisfying that Q ∈  Rm×m is an orthogonal matrix and R ∈  Rm×n is an uppertriangular matrix. 
 
Example 1. Consider A = [a1|…|an] ∈  Rn×n: 
If θmin(A) = 0, then clearly, for some column vector aj of A, aj ∈  range( jÂ ), that is, aj is a 
linear combination of other columns of A, and, hence, A is singular with κ2(A) = ∞. 
If θmin(A) = π/2, then ai ⊥ aj for all i ≠  j. Thus, we have 
 

ATA = diag( 2
1a ,…, 2

na ), 
and hence, 

 

 κ2(A) = 
},...,min{
},...,max{

1

1

n

n

aa
aa

. 

 
Next, consider A ∈  Rn×n and let S = [s1|…|sn] = SCALGM(A):  
If θmin(S) = 0, then κ2(S) = ∞. 
If θmin(S) = π/2, then, by the property of SCALGM [Row and Column Equilibrated in ∞-
norm], we have  
  

1 ≤ min{ 1s ,… , ns } ≤ max{ 1s  ,… , ns  } ≤ n , 
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since 0 ≤ |sij| ≤ 1, the upper bound n  for 2-norm of columns sj is attained if sj = [1,… ,1]T, 
and the lower bound 1 for 2-norm of columns sj is attained if sj = some unit vector. Thus, 
 

κ2(S) = 
},...,min{
},...,max{

1

1

n

n

ss
ss

≤ n . 

 
The condition numbers κ2(A) of badly scaled matrices A can be very large, even when θmin(A) 
= π/2. For instance, 
 

A = ⎥
⎦

⎤
⎢
⎣

⎡
−5

5

100
010

, 

 
we have θmin(A) = π/2 and κ2(A) = 1010, but if S = SCALGM(A), then S is the identity I2 with 
θmin(S) = π/2 and κ2(S) = 1 . 
 
Now, let S* be the optimal two-sided scaled matrix of A with κ2(S*) = µ and denote ρ (A) the 
spectral radius of A (i.e., the largest absolute value |λ| of an eigenvalue λ of A): 
 

ρ (A)= max{|λ| : λ ∈  Λ(A)}. 
 

Then, an estimated interval, due to Rump [17], for the condition number of the optimal two-
sided scaled matrix D*

1AD*
2, is 

 
[ ρ (|A−1| |A|)/n , ρ (|A−1| |A|)]. 

 
Finally, to approach the condition number µ = µ(A) of the optimal two-sided scaled matrix 
D*

1AD*
2 , we construct an objective function and apply the pattern search method [8, 19] and 

its C code [6] on it to find the optimal scale factors that minimize the condition number. The 
experimental results are sampled in the next section. 
 
 
Experimental Results 
 
Let A = [a1|…|an]  ∈  Rm×n  be given, and let  θj  =  θj(A) be the angle, measured in degrees, 
between the jth column vector aj of A and the linear subspace L(a1,… ,aj−1,aj+1,… ,an) 
spanned by other columns of A. Denote θmin = θmin(A) = min{θ1, … ,θn}. In this section, we 
will compare the condition number of some matrices that have been scaled using SCALGM 
to an empirical formula 
 

f(A) = 1.4(90/θmin(A)) − 0.4 
 
that we have found to be a reasonable, if rough, approximation for κ2(A), in terms of the 
minimum angle θmin(A) discussed above. All angles will be measured in degrees. 
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Example 2. Consider A ∈  R4×4 as follows: 
 

A = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

5036384.0524769.801517864.03718530.0
2756261.12709231.229973998.70175972.0
0343257.04177203.12956969.579878992.9
4921243.151305800.02100848.71480770.0

 

 
 
Then, we have θ1 = 7.6290198, θ2 = 7.5595667, θ3 = 85.4822349, and θ4 = 47.8432547. 
Thus, θmin(A) = 7.5595667. The 2-norm condition number, κ2(A) = 64.1742100, and 
1.4(90/θmin(A)) − 0.4 = 16.2676219. 
 
Now, let S = SCALGM(A), then we have 
 

S = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0248746.00000000.10021193.00297831.0
2278069.00000000.14037436.00050962.0
0021193.00220076.00000000.10000000.1
0000000.10021193.01315657.00155002.0

, 

 
and we have θ1 = 15.8723160, θ2 = 15.0347404, θ3 = 49.5444269, and θ4 = 59.2475015. 
Thus, θmin(S) = 15.0347404. The 2-norm condition number, κ2(S) = 8.0578672, and observe 
1.4(90/θmin(S)) − 0.4 = 7.9805903, which is very close to κ2(S). The ratio ρ(S) of min/max in 
magnitude is 0.0021193. 
 
The estimated interval for the condition number µ of the optimal two-sided scaled matrix is 
[0.6306089,2.5224355] . 
 
Next, let T = PatternSearch(S), then we have 
 

T = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1582436.06651569.10258673.09153895.0
5726785.06580056.09473666.10618953.0
0008268.00022474.07485433.08848862.1
1062209.20011684.05316732.01577278.0

, 

 
and we have θ1 = 61.1521800, θ2 = 53.8934825, θ3 = 62.2106164, and θ4 = 61.2947051. 
Thus, θmin(S) = 53.8934825. The 2-norm condition number, κ2(T) = 2.0020228, and observe 
1.4(90/θmin(T)) − 0.4 = 1.9379450, which is very close to κ2(T) and within the above 
estimated interval. The ratio ρ(T) of min/max in magnitude is 0.00082680/2.10622093 = 
0.00039255. Table 1 shows the summary from the previous results. 
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Table 1: Interval for µ:  [0.6306089,  2.5224355] 

 
 A S T 
θ1 7.6290198 15.8723160 61.1521800 
θ2 7.5595667 15.0347404 53.8934825 
θ3 85.4822349 49.5444269 62.2106164 
θ4 47.8432547 59.2475015 61.2947051 
θmin 7.5595667 15.0347404 53.8934825 
ρ - 0.0021193 0.00039255 
κ2 64.1742100 8.0578672 2.0020228 

f(θmin) - 7.9805903 1.9379450 
 

Example 3. Consider A ∈  R4×4 as follows: 
 

A = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4314422.10505958.01500312.453745248.1
0227214.02626770.00680433.03460217.0
7655003.144953060.10213314.547811361.1
7526810.123127063.00784926.170926612.0

 

 
Now, let S = SCALGM(A), then we have 
 

S = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1091433.00170377.00000000.13513716.0
0195857.00000000.10170377.00000000.1
9409447.04208410.00000000.13805432.0
0000000.11082947.03890154.00243606.0

. 

 
Next, let T = PatternSearch(S), then we have 
 

T = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0863229.00424350.09729141.09256365.0
0069121.01113581.10073965.01754749.1
8108517.01420381.10600407.10922594.1
4434180.14922486.06907233.01171181.0

. 

 
The results for matrices A, S, and T regarding the angles θj, θmin, the ratio ρ of min/max in 
magnitude, the 2-norm condition numbers κ2, the values of the fitting function f(θmin), as well 
as the estimated interval for the optimal condition number µ are summarized in Table 2. 
 

Table 2: Interval for µ:  [3.6213799, 14.4855194] 
 

 A S T 
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θ1 4.8352583 6.3541657 10.8802034 
θ2 4.9049531 14.7800779 14.5441070 
θ3 10.4000159 6.6880465 12.9141023 
θ4 10.0054682 17.3776228 16.0505446 
θmin 4.8352583 6.3541657 10.8802034 
ρ - 0.01703767 0.00039255 
κ2 460.2705191 23.9129780 14.4856257 

f(θmin) - 19.4295112 11.1806658 
 
 

Example 4. Consider A ∈  R6×3 as follows: 
 

A = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0238598.0
2439024.0
0240973.0
4947489.0

9185153.49
0622383.0

1287199.0
2130833.0
0291091.0
0453816.0
8894167.10

0269694.0

0650553.0
3740146.0
0910166.0
3807229.2
0149600.0
2436341.4

 

 
Now, let S = SCALGM(A), then we have 
 

S = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0460428.0
0932186.0
0378462.0
0297065.0
0000000.1
0020965.0

0000000.1
3278651.0
1840528.0
0109700.0
8782185.0
0036574.0

8782185.0
0000000.1
0000000.1
0000000.1
0020965.0
0000000.1

. 

 
Next, let T = PatternSearch(S), then we have 
 

T = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2631015.0
0000610.0
0000248.0
4753033.0
2857143.2
0209650.0

5974026.2
0000975.0
0000547.0
0797817.0
9124348.0
0166244.0

5338714.0
0000696.0
0000696.0
7021277.1
0005098.0
0638298.1

. 

 
The results for matrices A, S, and T regarding the angles θj, θmin, the ratio ρ of min/max in 
magnitude, the 2-norm condition numbers κ2, the values of the fitting function f(θmin), as well 
as the estimated interval for the optimal condition number µ are summarized in Table 3. 
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Table 3: Interval for µ:  [0.3607154,  2.1642922] 

 
 A S T 
θ1 88.6713931 55.7560570 73.4727064 
θ2 1.1215613 36.8741891 61.8206507 
θ3 1.1215571 42.4600963 63.7554493 
θmin 1.1215571 36.8741891 61.8206507 
ρ - 0.00209650 0.00000953 
κ2 245.2917162 4.1852132 1.6924102 

f(θmin) - 3.0170243 1.6381539 
 
 
Conclusion 

 
In practice, we suggest measuring the true condition number of a matrix by rescaling the 
matrix using our algorithm and then computing the value of the conventional condition 
number, while solving the re-scaled linear system. This method does not greatly increase the 
time to solve a problem and can give a much better measure of the sensitivity of the solution 
to small perturbations in the problem than does the usual method.  We believe that solving 
linear systems in engineering problems by this method will provide valuable information to 
the practitioner concerning the reliability and sensitivity of the solution. 
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