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Abstract 

 

In this paper, we propose and investigate simple bit-error aware lossless compression 

algorithms for the compression and transmission of image data under the bit-error 

environment. We focus on enhancing two-stage lossless compression algorithms. The first 

stage uses a simple linear predictor, whereas at the second stage, we apply bi-level block 

coding, interval entropy coding, and standard entropy coding. The key coding parameters of 

the predictor, bi-level block coding, or entropy coding parameters are  protected by the usage 

of a forward error correction scheme such as (7,4) Hamming coding. The residues from bi-

level bloc coding or the residue offsets from Huffman coding are not protected to 

compromise the performance of compression ratio. Our compression experiments 

demonstrate that when the bit error rate (BER)  in the channel is equal to or less than 0.001, 

the lossless compressed image can be recovered with a good quality.  

 

Introduction 

 

Lossless image compression methods are usually required for compression and transmission 

of image data whenever a lossy compression approach cannot be applied. Such systems 

include medical imaging, remote sensing, and high cost archiving systems. Especially in the  

medical data transmitting and archiving system, the usage of lossy compressed images for 

diagnostic purposes is prohibited by law in many countries. It is also preferred for the image 

data of mechanical fault diagnosis to be lossless compressed. In general, a lossless 

compression algorithm consists of two stages as described in references [1-6]. The first stage 

performs predictions to remove data correlation in order to produce residue data. The 

resultant residues have reduced amplitudes and are assumed to be statistically independent 

with an approximate Laplacian distribution [1-3]. The second stage further compresses 

residue data using an entropy coding algorithm—that is, Huffman coding or arithmetic 

coding [1-6]. Much research work has been conducted to improve the compression ratio 

using a more complex predictor as well as either adaptive Huffman or arithmetic coding with  

increased algorithm complexity. In addition, the usage of lossless image compression could 

improve transmission throughput if the compressed image data is transmitted over a network 

system. However, if bit errors occur in a noisy channel during transmission or in the storage 
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media, the recovered image will be damaged and will become useless. This outcome results 

from the fact that a standard entropy coder generates instantaneous codes, which are sensitive 

to bit errors. Although this problem can be cured by applying a forward error control scheme 

[7], adding additional bits required by the error correction coding can significantly degrade 

the performance of the compression ratio and may even cause the expansion of image files. 

For example, if an 8-bit grayscale image is lossless compressed to 5 bits per pixel, using a 

(7,4) Hamming code (adding three parity bits for every 4 data bits for a single bit error 

correction) for bit-error protection will increase the compressed data size by 75%; that is, 

8.75 bits per pixel, which indicates image file expansion.  

 

This paper investigates two new simple algorithms: predictive bi-level block coding and 

predictive interval entropy coding for bit-error aware lossless image compression. To gain a 

compromised compression ratio, only the prediction parameter, bi-level block coding and 

interval entropy coding parameters are protected by the (7,4) Hamming codes. The standard 

predictive entropy coding with bit error correction is also included for comparison purposes. 

We evaluate and compare the algorithm performances in terms of the compression ratio and 

the peak signal to noise ratio (PSNR) versus the bit error rate (BER). 

 

Bit-Error Aware Two-Stage Lossless Image Compression 

 

Figure 1 shows a block diagram of our bit-error aware two-stage lossless compression 

algorithms. For the first predictive stage, we use up to three neighboring pixels as depicted in 

Figure 2: the left-hand neighbor (A), the upper neighbor (B), and the upper-left neighbor (C).  

X is the predicted pixel.  
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Figure 1: Bit-error aware two-stage lossless image compression scheme 
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Figure 2: Neighboring pixels for the predictor in an image 

 

Predictive coding is a simple and effective method to remove redundancy of image signals 

[1-3]. Lossless JPEG [3, 8] contains simple predictors that use the neighboring pixels in 

Figure 2. The JPEG-LS standard [1] contributes an improvement to lossless JPEG prediction 

by adding the median filtering process. In addition, the CALIC algorithm [2] offers a slightly 

better performance of the compression ratio by significantly increasing the amount of 

computational complexity. For this work, we adopt the linear predictor proposed in [3], 

which is expressed as  

 

   ( ) (3 3 2 ) / 4P X A B C= + −      (1) 

 

This predictor is effective for error resilience, since the predictor output is essentially a 

weighted sum of neighboring pixels with coefficients less than 1. The predictor parameters 

required to be stored include the predictor type (3 bits), and the image pixels in the first 

column and first row each with an 8-bit pixel size. These parameters are further protected 

using the feed forward error-correction scheme—the (7,4) Hamming coding. 

 

As shown in Figure 1, the second stage is a residue coding stage. We apply bi-level block 

coding and interval entropy coding methods [9] to encode image residue data line by line. In 

each line, the key coding parameters are protected using the error control scheme and the 

residue samples are left as they are to gain a compromise of the compression efficiency. 

Therefore, the recovered image is no longer lossless when bit errors are introduced by a 

transmission channel.  

 
Second Stage Residue Coding 

 

For the residue image obtained from the prediction at the first stage, it is assumed that the 

redundancy of image signals is removed. The residue samples are assumed to be uncorrelated 

and to follow the Laplacian distribution approximately. Our objective is to develop residue 

coding schemes so that they are less sensitive to the bit-error environment.  

                                              

A. Bi-level Block Coding for Prediction Errors 

 

We first apply a bi-level block coding scheme [9]. Although it is not as efficient when 

compared to an entropy coder in terms of lossless compression, it is more robust to bit-errors. 

Furthermore, after applying the feed forward error control scheme, we can achieve better 

compression efficiency, since the bi-level block coder requires a smaller number of bits by 
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the bit-error protection algorithm than the amount required by the entropy coder. Assuming 

that we code the image residue sequence line by line, the coding rules are given in Table 1.  

 

Table 1: Bi-level block coding rules 

 

1. Divide a line of residue data with a length of n m x= ×  into m  blocks, in 

which each block consists of x  samples; that is, x  is the block size. There are 

two types of blocks: the level-0 block and the level-1 block.           

1 0 0N0NL
0N1N 1N L

1N

a. Level-1 block b. Level-0 block

1 1 bitsN x× + 0 1 bitsN x× +

data samplesx
1442443

data samplesx
1442443

 
2. For a level-1 block, any sample in the block requires only 1N  bits ( 1 0N N<  

[original sample size]) to encode.  Encode each sample using 1N  bits and add 

the prefix “1” to designate the block as the level-1 block. 

3.  For a level-0 block, at least one of the samples in the block needs more than 

1N  bits to encode. Encode each sample in the block using 0N  bits and add the 

prefix “0” to indicate the level-0 block. 

 

As shown in Table 1, there are two types of residue blocks, as indicated by a prefix “1” 

(level-1 block) and prefix “0” (level-0 block), respectively. In the level-1 block, we assume 

that each sample in the block requires 1N  bits to encode, whereas for the level-0 block, we 

assume that at least one data sample requires 0N  bits, where 1 0N N< .  We expect that the 

probability of level-1 blocks is much greater than the probability of level-0 blocks. Hence, the 

block size x  and level-1 sample size of 1N  need to be determined optimally to achieve coding 

efficiency.  Considering that the probability of the level-1 block is 1

x
P p= , the probability of 

the level-0 blocks becomes 0 11 1 x
P P p= − = − , where 01p p= −  is the probability of a data 

sample requiring less or equal to encode using 1N  bits, and 0p (which is close to zero) is the 

probability of a data sample requiring more than 1N  bits and less than or equal to 0N  bits to 

encode. For a image residue sequence containing m  blocks in which there are k  level-1 

blocks and ( m k− ) level-0 blocks, the coding length and its probability are, respectively, 

given below: 

  

   0 1( ) ( )L k m N x m k N xk= + − +     (2) 

   1 1( ) (1 ) (1 )k m k xk x m k
m m

P k P P p p
k k

− −   
= − = −   
   

  (3) 

 

We can obtain the average total length 
ave

L  as 
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   0 0 1

0

( ) ( ) ( ) ( )
m

x

ave

k

L P k L k m N xm N N xmp
=

= = + − −∑   (4) 

By minimizing the average length for a fixed 1N ,  the optimal coding parameters for *
x  and 

1N  can be searched according to the algorithm listed in Table 2. The derivation of the 

algorithm can be found in [9].   

 

Table 2: Algorithm for searching the optimal coding parameters 

 

1. Find 0N  for a given data sequence. Initially, set 1 0 2N N= −  and 
* 4x = . 

2. For 1 01,2,3, 1N N= −  

    Estimate 0p , the probability of the sample requiring more than 1N   

    bits to encode, and calculate the optimal block size: 

                          
*

0 1 01/ ( )x N N p= −  

    Round up the block size to an integer value. 

           If 
*

0 0.3x p× ≤ , calculate the average bits per sample: 

                          ( ) 0 1 0 1min
/ 2 ( )aveL n N N p N= − +  

          Record 1N  and 
*

x  values for the next comparison  

   End loop 

After completing search loops, select 1N  and 
*

x  corresponding to the smallest 

value of ( )
min

/aveL n . 

 

The data format of predictive bi-level block coding is proposed in Figure 3. As shown in 

Figure 3, the packing scheme packs the predictor type and coding parameters, which are 

further protected using the (7,4) Hamming codes as a header. After prediction, the residue 

coding process operates line by line. Similarly, the bi-level block coding parameters are 

protected by Hamming coding followed by the unprotected encoded residue bit steam.   

 

(1,1) (1, )X X ML

pixel size bitsM ×
144424443

P

0N 1N
Block

types

(1,2) (1, )X X NL

( 1) pixel size bitsN − ×
14444244443{

3 bits

{
4 bits

{
9 bits

x
Hamming coding

protection

variable bits
1442443

m bi-level block residues ....m x×

Hamming coding

protection

0N 1N
Block

types
x

Hamming coding

protection
m bi-level block residues ....m x×

Prediction

Line 1

Line 2

{
4 bits
{
9 bits

 
 

Figure 3: Data format of predictive bi-level block coding 
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B. Interval Entropy Coding for Prediction Errors 

 

The interval Huffman coding (its arithmetic version can similarly be developed) can be 

considered as an alternative method for the second stage image residue coding. For interval 

entropy coding, we divided each residue into the residue interval and defined its offset 

portion (residue offset) below: 

 
0 1( )

( ) [ ( ) / 2 ]
N N

q n floor r n
−=       (5) 

0 1( )
( ) 2 ( )

N N
offset r n q n

−= − ×       (6) 

 

where each interval (symbol) ( )q n , which is quantized from a residue ( )r n , is entropy 

encoded and error protected like the coding parameters, leaving the offset bits as they are. 

Function ( )floor x  runs x  into the nearest integer towards negative infinity. It has been 

shown that the entropy coding can only compress approximately one to two bits per sample 

of a perfect Laplacian sequence [6]. We assume that our entropy coder achieves 
0

N β−  bits 

per pixel, where 1 2β ≈ −  bits. Assuming that ( )q n  follows a perfect Laplacian distribution, 

choosing the smaller symbol size 1N  for the interval entropy coder will gain approximately 

the same compression performance. In this work, we choose 1 3N = , since it gives the best 

results in our experiments. The interval Huffman codes are listed in Table 4. The data format 

for predictive interval Huffman coding is depicted in Figure 4. 

            

               Table 4: Interval Huffman codes 

 

q(n) Interval 

codes 

q(n) Interval 

codes 

0 1 +2 01011 

-1 00 -3 010100 

+1 011 +3 010110 

-2 0100 -4 0101011 
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Figure 4: Data format of predictive interval entropy coding 
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C. Standard Huffman Coding for Prediction Errors 

 

For comparison purposes, we also include a standard Huffman coding scheme as shown in 

Table 5 for residue coding. These Huffman codes coincide with the first nine (9) lines in the 

baseline JPEG algorithm for compressing the DC coefficients [8,10]. Each image residue is 

encoded using a prefix for code word size as shown in Table 5, cascaded by the binary 

amplitude bits. For example, to encode -3,-2,+2, and +3, we have 01100, 01101, 01110, and 

11111, respectively. For our experiment, the only codeword size bits are protected using (7, 

4) Hamming codes. The data format is similar to that of Figure 4. 

            

          Table 5: Huffman codes 

 

Code size  

(No. bits) 

Amplitude code Code size 

(no. bits) 

Amplitude code 

00  (0) 0 110 (5) -31,…,-16,+16,…,+31 

010  (1) -1,+1 1110 (6) -63,…,-32,+32,…,+63 

011 (2) -3,-2,+2,+3 11110 (7) -127,…,-64,+64,…,+127 

100 (3) -7,...,-4,+4,…,+7 111110 (8) -255,…,-128,+128,…,+255 

101 (4) -15,...,-8,+8,…,+15 111110 (9) -512,….,256,+256,…,+512 

 

Performance Evaluation and Comparisons 

 

We apply our proposed bit-error aware lossless compression algorithms to eight bit grayscale 

images (“Lena” and “Boat”), each with the image size of 512x512 pixels. To evaluate the 

performances for the bit-error environment, in addition to using the average bits per pixel 

(ABPP) and compression ratio (CR), we also use the peak signal to noise ratio (PSNR in dB) 

as an error metric to measure the recovered image quality. The PSNR is defined below: 

 

   10

255
PSNR dB 20 log

RMSE

 
= ×  

 
    (7) 

 

where RMSE is the root mean squared error given by 

              

   2

1 1

1 ˆRMSE [ ( , ) ( , )]
N M

i j

X i j X i j
M N = =

= −
×
∑∑     (8) 

 

Note that ( , )X i j  represents the original pixel, while ˆ ( , )X i j  is the recovered pixel. Figure 5 

shows our typical experimental results for compressing the “Lena” image using each 

algorithm under the bit-error rate (BER) = 35 10−× . Figure 5 depicts the compression results 

for the “boat” image. It can be seen that the recovered image from predictive bi-level block 

coding matches well with pixel levels when compared to their respective original images. 
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Typical compression results at BER = 310−  for the ABPPs, CRs, and PSNRs are listed in 

Table 6. For compressing the “Lena” image, the predictive bi-level block coding offers the 

lowest ABPP of 5.73 bits, the highest CR of 28.38%, and the highest PSNR of 34.24 dB. We 

achieve similar results for compressing the “boat” image.  However, the standard predictive 

Huffman coding essentially has a data expansion with 8.02 bits per pixel instead of 

compression.  

 

Figures 6 and 7 show experimental results of the PSNRs versus the BER for coding the 

“Lena” and “boat” images, respectively. We obtain the final PSNR based on the average of 

ten (10) independent runs at the given BER. When the BER> 310− , the predictive bi-level 

block coding algorithm offers the highest PSNR, hence producing the best signal quality. On 

the other hand, when the BER < 310− , the predictive interval Huffman coding and predictive 

Huffman coding algorithms tend to gain a better image quality at the same PSNR level.  

However, the predictive bi-level block coder still offers a good quality of the recovered image 

with the highest compression ratio. Similar results are obtained for compressing other types 

of  images in our database. 

Orginal image Predictive+bi-level block coding

Predictive+interval Huffman coding Predictive+Huffman coding

 
Figure 3: Compression results using predictive bi-level block coding, predictive interval 

Huffman coding, and predictive Huffman coding at BER = 35 10−×  
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Orginal image Predictive+bi-level block coding

Predictive+interval Huffman coding Predictive+Huffman coding

 
Figure 5: Compression results using predictive bi-level block coding, predictive interval 

Huffman coding, and predictive Huffman coding at BER = 35 10−×  

 

 

Table 6: Performance Comparisons of Lossless Compression at BER= 310−  

(Each PSNR is in dB and is obtained by averaging 10 independent runs) 

 

Algorithms Image: Lena Image: Boat 

Predictive 

bi-level block coding 

ABPP: 5.73 bits 

CR: 28.38% 

PSNR: 34.24 dB 

ABPP: 6.12 bits 

CR: 23.5% 

PSNR: 31.72 dB 

Predictive 

interval Huffman coding 

ABPP: 6.63 bits 

CR: 17.13% 

PSNR: 30.89 dB 

ABPP: 7.10 bits 

CR: 11.25% 

PSNR; 28.98 dB 

Predictive  

Huffman coding 

ABPP: 7.39 bits 

CR: 7.63% 

PSNR: 33.04 dB 

ABPP: 8.02 bits 

CR: Expansion 

PSNR: 29.97 dB 

 

. 
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Figure 6: PSNR performances versus the bit-error rate for “Lena” image 
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Figure 7:  PSNR performances versus the bit-error rate for “boat” image 
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Conclusion 

 

We have developed the predictive bi-level block coding and interval Huffman coding 

algorithms for bit-error aware lossless image compression. The prediction parameters at the 

first stage and the bi-level block coding and interval Huffman parameters are protected by 

adding (7,4) Hamming error correction codes, thus leaving residues or offset residues as they 

are to gain a compromised compression ratio. When the bit error rate is larger than 0.001, the 

developed predictive bi-level block coder offers a better signal quality, as well as the highest 

compression ratio. On the other hand, when the bit error rate is less than 0.001, the developed 

predictive interval Huffman coding tends to achieve a higher signal quality. However, the 

predictive bi-level block coding can still maintain a commendable signal quality with a 

higher compression ratio. 
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