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Abstract 

 

In this paper, we present some observations on the stability of a special class of quasiperiodic 

systems.  In quasiperiodic system, the periodicity of parametric excitation is incommensurate 

with the periodicity of the certain terms multiplying state vector. We present a Lyapunov type 

approach and the Lyapunov- Floquet (LF) transformation to derive stability conditions. This 

approach can be utilized to investigate the robustness, stability margin and design controller 

for the system.  

 

Introduction 

 

A large class of engineering systems, such as, structures subjected to quasiperiodic are 

described by linear ordinary differential equations with time varying coefficients.  These 

linear systems, in general, are described as 

                                                                  ( ) ;  t= y A y&                                                    (1)      

where ( )tA  is an n n×  quasiperiodic matrix and y is an n dimensional vector.  In general, it 

is not a trivial problem to determine if equation (1) is asymptotically stable, simply stable or 

unstable.  The researchers have used perturbation type techniques to analyze this equation or 

numerical approaches to investigate the stability of this system [1-3].   

 

In this work, we address the stability of a special class of quasiperiodic systems called as 

periodic quasiperiodic systems where equation (1) can be written as  

                                                         0 1[ ( ) ( )] ;  t tε= + y A A y&                                          (2) 

Where 0 ( )tA has the principal period T  and 1( )tε A has the period 1T . It is noted that these 

periods are incommensurate. These types of equations arise in parametrically excited Micro 

Electro Mechanical Systems (MEMS) [4]. It is noted that ε  is a small parameter indicating 

that the magnitude of the quasiperiodic component in small compared to the periodic 

component. It is also noted that ( )tA  has a strong parametric excitation. In this paper we 

present the methodology to investigate the stability of the system given by equation (2) using 

the Lyapunov-Floquet (L F) Transformation. 

 

This paper is organized as follows.  In section 2, a brief mathematical background on the L-F 

transformation is provided.  Section 3 discusses the stability conditions followed by an 

example. The discussion and conclusions are presented in section 4. 
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2. Mathematical Background 

2.1 Floquet Theory and L-F Transformation 

Consider equation (1), if 0ε =  i.e. the system is purely time periodic then the state transition 

matrix (STM) ( )tΦ  of equation (1) can be factored as [5]  

                                    ( ) ( ) , ( ) ( 2 ), (0)tt t e t t T= = + =
R

Φ Q Q Q Q I                                  (3)                               

where the matrix ( )tQ  is real and periodic with period 2T , R  is an n n×  real time invariant 

matrix and I  is the identity matrix.  Matrix ( )tQ  is known as the Lyapunov–Floquet (L-F) 

transformation matrix [5]. 

 

The transformation ( ) ( ) ( )t t t=y Q z produces a real; time invariant representation of purely 

time periodic system (equation (1) with 0ε = ) given by  

                                                           ( ) ( )t t=z A z&                                                              (4) 

It is to be noted that matrix A  in equation (4) is time invariant. 

 

2.2 Construction of Lyapunov Functions 

Lyapunov’s direct method is widely used in the stability analysis of general dynamical 

systems.  It makes use of a Lyapunov function ),( txV .  This scalar function of the state and 

time may be considered as some form of time dependent generalized energy.  The basic idea 

of the method is to utilize the time rate of energy change in ),( txV for a given system to 

judge whether the system is stable or not.  The details about Lypunov's method and stability 

theorems can be found in reference [6]. 

 

For a linear system with constant coefficients are concerned, it is rather simple to find a 

Lyapunov function.  Consider the linear system 

                                 ( ) ( )t t=x Ax%&
% %

                               (5)  

where A  is a constant matrix.  A quadratic form of ( )V x  may be assumed as 

                                    ( ) TV =x x Px
% % %

      

where P  is a real, symmetric and positive definite matrix.  Then 

                  ( ) ( )T T T TV = + = +x x Px x Px Ax Px x PAx% %& & &
% % % % % % % % %

                          (6)  

            or                               ( ) ( )T TV = +x x A P PA x% %&

% % %
                                 (7)

According to the Lyapunov theorem for autonomous systems, if ( )V x&  is negative definite 

then the null solution is asymptotically stable [6].  Therefore, one can write 

                                    T
+ = −A P PA C% %            (8)  

where C  is a positive definite matrix.  Equation (8) is called the Lyapunov equation.  It has 

been shown by Kalman and Bertram [7] that if has eigenvalues with negative real parts 

(asymptotically stable), then for every given positive definite matrix C , there exists a unique 

Lyapunov matrix P .  In this study, matrix C  is always taken as the identity matrix. 

 

3. Stability of periodic quasiperiodic systems 

Consider the periodic quasiperiodic linear differential equation given by equation (2).  In 

order to determine the stability bounds on 1( )tA , we first assume that time-periodic part of 
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equation (2) [ 0 ( )tA ] is asymptotically stable.  Using the L-F transformation ( ) ( ) ( )t t t=y Q z , 

equation (2) can be written as 

                                          [ ( )]tε= +z A G z&                                         (9)

  

where 1

1( ) ( ) ( ) ( )t t t t
−

=G Q A Q .  It is to be noted that A  is a constant matrix whose 

eigenvalues have negative real parts.  We follow the approach presented by Infante  [8]  to 

obtain the stability bounds. 

 

Theorem-1  [8]:  If, for some positive definite matrix B  and some ε > 0, 

                        1

max{ [ ( ) [ ( )] ]T T
E t tλ ε

−
+ + + ≤ −A G B A G B                       (10)

then equation (9) is almost surely asymptotically stable in the large. 

 

Proof:  Consider the quadratic (Lyapunov) function ( ) TV =z z Bz .  Then along the 

trajectories of equation (9), define 

                
( ) [( ( )) ( ( ))]

( )
( )

T T

T

V t t
t

V
λ

+ + +
= =

z z A G B B A G z

z z Bz

&

                        (11) 

From the properties of pencils of quadratic forms [9] we can obtain the inequality 

     1 1

min max[( ( )) ( ( )) ] ( ) [( ( )) ( ( )) ]T T
t t t t tλ λ λ

− −
+ + + ≤ ≤ + + +A G B A G B A G B A G B      (12)

  

where maxλ and minλ , are the maximum and minimum real eigenvalues of a pencil.  It follows 

from equation (11) and equation (12) that 

                 0 0

1
0

0
( ) ( )[ ( ) ]

0 0[ ( )] [ ( )] [ ( )]

t t

t t
d t dt

t t
V t V t e V t e

λ τ τ λ τ τ
−

−∫ ∫
= ≡z z z       (13)  

It can be observed that, if { ( )}E tλ ε≤ −  for some 0ε > , [ ( )]V tz is bounded and that 

[ ( )] 0V t →z  as ∞→t .  This is the condition imposed by inequality given by (10), which 

proves the results.  Since ( ) ( ) ( )t t t=y Q z  the stability of equation (9) implies the stability of 

equation (2). 

 

It is remarked that a necessary condition for inequality (10) to hold is that the eigenvalues of 

matrix A  have negative real parts.  It is also possible to obtain a result which is easier to 

compute but not as sharp. 

 

Corollary:  If, for some positive definite matrix B and some ε  > 0, 

        1 1

max max{ [ ( ) ( ) ]} [ ]T T
E t tλ λ ε

− −
+ ≤ − + −G BG B A BAB                   (14)

then equation (9) is almost surely asymptotically stable in the large. 

 

Proof:  The proof follows immediately from theorem by noting that 
1 1 1

max max max( ) [( ( )) ( ( )) ] [ ] [ ( ) ( ) ],T T T
t t t t tλ λ λ λ

− − −
≤ + + + ≤ + + +A G B A G B A BAB G BG B  

                                                                                                                                         (15) 

The second inequality being obtained by performing two maximization separately. Further, 

using {}E  operator                     
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                           1 1

max max{ ( )} [ ] { [ ( ) ( ) ]}T T
E t E t tλ λ λ ε

− −
≤ + + + ≤A BAB G BG B       (16) 

yields the desired result.  It is obvious that, unless the second inequality in (15) is an equality, 

the stability results obtained will not as good as those given by the theorem. It is noted that 

this theorem and corollary can be extended to study stability and robustness of a linear time-

periodic system subjected to random perturbations in a straightforward fashion and for the 

details, we refer the reader to reference 10.  

 

Example 

Consider the system 

                                            [ ( ) ( )]t tε= +y A A y
)

%&                                           (17) 

where 

 
2

2

0 01 cos ( ) 1 sin( )cos( )
( ) , ( )

( ) 01 sin( ) cos( ) 1 sin ( )

t t t
t t

f tt t t

α ω α ω ω
ω

α ω ω α ω

 − + −  
= =   

−− − − +   
A A

)
%        

   α  is a system parameter and πω 2= .  The state transition matrix (STM), ( )tΦ of 

this system [11] is given as  

   

( 1)

( 1)

cos( ) sin( )
( ) ( )

sin( ) cos( )

t t

t

t t

e t e t
t t e

e t e t

α ω ω

α ω ω

ω ω

ω ω

− −

− −

 
= = 

− 

R
Φ Q                       (18) 

Factoring the state transition matrix as shown above, the Lyapunov-Floquet transformation 

matrix ( )tQ  is found as 

     

( 1)cos( ) sin( ) 0
( ) ,

sin( ) cos( ) 0

t

t

t

t t e
t e

t t e

α ω

ω

ω ω

ω ω

−

−

  
= =   

−   

R
Q                   (19) 

It is noted that the system is unstable for all α > 1. Using the L-F transformation 

( ) ( ) ( )t t t=z Q y  (c. f. equation (19)) equation (17) to yields a time-invariant system given by

                                            

                                                                         ( ) ( )t t=z Az&                                           (20)  

Let  ( ) ( )T t t=V z Bz , where B  is a constant, symmetric, positive definite matrix. 

Then   [ ]T T T T T
= + = + ≡ −V z Bz z Bz z A B BA z z Cz& & &                   (21)

Setting               
11 12

2

12 22

1 0

0 1
,

B B

B B

   
= = =   

  
B C I                               (22)  

substituting equations (22) into equation (21), yields 
)1(2

1
11 −

−=
αω

B   (α < 1), 012 =B  and 

ω2
1

22 =B .  

 Therefore,  

   
1

2 ( 1) 1

1
2

0 2 ( 1) 0
,

0 0 2

ω α

ω

ω α

ω

− −
− − −   

= =   
  

B B          (23) 

Since 011 >B for 1<α  and 

   2

1
2 ( 1) 1

1 2 ( 1)
2

0
( ) 0

0
Det

ω α

ω α

ω

−

−

−
= = − >B         (24) 
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Therefore, B  is a positive definite symmetric matrix and Lyapunov stability conditions are 

satisfied. 

  

Once B  matrix is constructed, the stability theorem and the corollary can be used to 

determine the stability conditions for the system. Simple computations yield 

 

1

2

2

( ) [ ( )]

[( 2)cos ( ) 1] ( )
2 ( 1) 2 ( )sin( )cos( )

1

[( 2)cos ( ) 1] ( ) 2 2 ( )sin( )cos( )

T T
t t

t f t
f t t t

t f t f t t t

α ω
ω α ω ω

α

α ω ω ω ω

−
= + + +

 − − +
− + = − 

− + − −  

D A G B A G B

          (25) 

Setting [ ] 0Det λ− =D I ,  the eigenvalues λ of the D  matrix are computed  as 

2 2 2 2 4 2

1,2

1
(2 ) [2 ( 1) ( )sin( ) (2 cos ( ) cos ( ) 1) ( )]

1
f t t t t f tλ ω α ω α ωα α ω α ω α ω

α
= − − ± + − + − −

−
 (26) 

Application of the theorem yields 

max

2 2 2 2 4 2

{ [ ]} (2 )

1
{ [2 ( 1) ( )sin( ) (2 cos ( ) cos ( ) 1) ( )]} 0

1

E

E f t t t t f t

λ ω α

ω α ωα α ω α ω α ω
α

= − −

+ + − + − − ≤
−

D

     (27) 

or, 

2 2 2 2 4 21
{ [2 ( 1) ( )sin( ) (2 cos ( ) cos ( ) 1) ( )]} (2 )

1
E f t t t t f tω α ωα α ω α ω α ω ω α

α
+ − + − − ≤ −

−
  (28) 

     

Using Schwarz’s Inequality [9], )}({)})({( 22 tfEtfE ≤ ,   one obtains 
2 2 4 2 2 22 ( 1) { ( )} {sin(2 ) (2 {cos ( )} {cos ( ) 1) { ( )} 4 (1 )E f t E t E t E t E f tωα α ω α ω α ω ω α− + − − ≤ −     (29) 

Since 0)}2{sin( =tE ω , 
2

1
)}({cos2

=tE ω  and 
8

3
)}({cos4

=tE ω , inequality (29)yields 

                                       
αα

αω

838

)1(32
)}({

2

22
2

−+

−
≤tfE                     (30) 

    

The results obtained from condition (30) for α   from  0 to 1 are shown in Fig. 1. 

 

In order to get the conditions for almost sure asymptotic stability from the corollary, matrices 
1[ ( ) ( ) ]T t t −

+G BG B  and 1[ ]−
+A BAB  are calculated as 

           

2

1

2

1

( 2)cos ( ) 1
2sin( )cos( )

( ) ( ) ( ) 1

( 2)cos ( ) 1 2sin( )cos( )

2( 1) 0

0 2

T

t
t t

t t f t

t t t

α ω
ω ω

α

α ω ω ω

α ω

ω

−

−

 − +
− + = − 

− + −  

− 
+ =  

− 

G BG B

A BAB

      (31)  
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The maximum eigenvalues of matrices given by (31) are computed as 

             

2 2 4
1

max

1

max

1 2 cos ( ) cos ( )
[ ( ) ( ) ] ( )

1

[ ] 2(1 )

T t t
t t f t

α ω α ω
λ

α

λ α ω

−

−

− +
+ =

−

+ = − −
T

G BG B

A BAB

      (32)  

Applying the corollary  

              1 1

max max{ [ ( ) ( ) ] [ ]T T
E t tλ λ ε

− −
+ ≤ − + −G BG B A BAB                   (33)  

yields 

                    ωα
α

ωαωα
)1(2}

1

)(cos)(cos21
)({

422

−≤
−

+− tt
tfE        (34)  

Then using Schwarz’s Inequality in equation (34), one obtains 

                        22
422

2 )1(4
1

)(cos)(cos21
)( ωα

α

ωαωα
−≤


















−

+− tt
tfE           (35) 

or 

                        234222 )1(4}]{cos}{cos21)}[({ ωαωαωα −≤+− tEtEtfE          (36)  

Since 
2

1
)}({cos 2

=tE ω  and 
8

3
)}({cos 4

=tE ω , inequality (36) provides the condition for 

almost sure asymptotic stability from corollary as 

                                      
2

23
2

388

)1(32
)}({

αα

ωα

+−

−
≤tfE                                (37)  

As expected, condition (37) is weaker than condition(30).  Fig. 1 displays the result obtained 

from equation (37) for α  in the range of 0 to 1.  A comparison of conditions yielding from 

the theorem and the corollary is also shown in Fig. 1. 

 
Figure 1: Stability results for example 1 obtained by the Theorem and Corollary 
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4. Discussions and Conclusions 

 

In this paper, simple and efficient computational techniques to guarantee sufficient conditions 

for almost sure asymptotic stability of periodic quasiperiodic systems have been presented.  

First, the Lyapunov-Floquet transformation has been utilized to convert the periodic part of 

time-periodic system to a time-invariant form.  For the linear periodic-quasiperiodic system, a 

theorem and related corollary have been suggested using the results previously obtained by 

Infante [8].   In order to apply the theorem and the corollary successfully, it is observed that 

the eigenvalues of matrix A , which governs the stability of the system, must have negative 

real parts and matrix B  must be  positive definite. One example is presented to show the 

application.   It is expected that this methodology would be useful in studying stability and 

designing controllers for a number of MEMS where governing differential equations have 

time periodic quasiperodic coefficients. The approaches presented in this paper can be 

extended to study stability and robustness of a linear time-periodic system subjected to 

random perturbations.  
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