
 

Proceedings of The 2011 IAJC-ASEE International Conference 

ISBN 978-1-60643-379-9 

Paper 032, INT 301 

  

Sufficient Conditions for a Flexible Manufacturing System to be 

Deadlocked  
 

Paul E. Deering, PhD 

Department of Engineering Technology and Management 

Ohio University 

deering@ohio.edu  

 

Abstract 

In recent years, researchers have been interested in scheduling algorithms to avoid 

deadlock in Flexible Manufacturing Systems (FMS).  FMS are discrete event systems 

characterized by the availability of resources to produce a set of products.  Raw parts, 

which belong to various product types, enter the system at discrete times and are 

processed concurrently while sharing a limited number of resources.  In such systems, a 

situation may occur in which parts become permanently block.  This is called deadlock.  

This paper presents the sufficient conditions for deadlock to exist in a FMS; it models a 

FMS using digraphs to calculate slack, knot, order and space; it identifies three types of 

circuits that are fundamental in determining if a FMS is in deadlock. 

Introduction 

Moving the wrong part in a manufacturing system could place the live (deadlock-free) 

system into a deadlocked state or dead state.  The only recourse would be to manually 

resolve the deadlock and reset the FMS to a live state.  Clearly, avoiding deadlock 

altogether would lead to increased production and decreased labor costs.  To prevent 

manual deadlock resolution a Deadlock Avoidance Algorithm (DAA) was developed in 

[1].  The DAA did not allow the system to enter any dead states and proved sufficient 

conditions for the system to be live.  The DAA introduced the idea of space.  If space > 0 

of all closed paths in the manufacturing then deadlock would be avoided.  The only 

problem was that some live states were detected dead states. See figure 1.  The DAA in 

[1] only proved sufficient conditions for a system to be live.  
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Figure 1: Live States detected as Dead 

 

 

This paper will prove sufficient condition for the manufacturing system to be dead and is 

the partial results of reference [2].  This paper is organized as follows:  the first section 

discusses previous research on deadlock in a FMS; the next section defines a 

mathematical model of a manufacturing systems; circuit parameter slack, knot order and 

space is then defined; the next section introduces three types of circuit uses to proves 

sufficient conditions for a manufacturing systems to be dead. 

Related Research  

Many researchers use Petri nets [3-9] as a formalism to describe deadlock in a 

manufacturing system. Banaszak and Krogh [3] proposed a deadlock avoidance 

algorithm (DAA), which developed a restriction policy based on production route 

information to guarantee that no circular wait situations would occur. Their DAA is 

sufficient for avoiding deadlocks but is not an optimal solution. Viswanadham, Narahari, 

and Johnson [6] developed a deadlock avoidance algorithm that employed a look-ahead 

policy. This algorithm did not detect all deadlocked states, and the authors suggested 

using a recovery mechanism in case of system deadlock. Zhou and DiCesare [7] and 

Zhou [8] generalized the sequential mutual exclusions (SME) and parallel mutual 

exclusions (PME) concepts and derived the sufficient conditions for a Petri net (PN) 

containing such structures to be bounded, live, and reversible. In general, PN solutions 

are suitable for manufacturing systems that contain few resources but become very 

complicated for larger systems. 

 

Another formalism to describe the manufacturing system is to use graphs [10-20]. In this 

approach, the vertices represent resources and the edges represent part flows between 

resources. Wysk, Joshi, and Yang [16] were the first to develop a specialized directed 

graphical structure called a wait relation graph (WRG) to model a manufacturing system. 

In reference [16], they developed a string manipulation procedure that yields a set of 

control actions to detect and recover from primary deadlock. Cho, Kumaran, and Wysk 

[10] used system status graphs to develop the concept of simple and non-simple bounded 

circuits with empty and non-empty shared resources to detect part flow deadlock and 

impending part flow deadlock. This method introduced the concept of a bounded circuit 

to detect deadlock. The method detected deadlock based on characteristics of this 

bounded circuit. The methods in references [16] and [10] could only handle single 

capacity resources. Fanti, Maione, and Turchiano [11] used a graph called working 

procedure digraph and developed a simple graph-theoretic method for deadlock detection 

and recovery in systems with multiple capacity resources. This algorithm did not prevent 

deadlock from occurring either, but it suggested a suitable recovery strategy.   

 

Judd and Faiz [12] expanded on the original formulation proposed by reference [16] and 

the first to define slack, order, and space to avoid deadlock. This method provided 

sufficient conditions for deadlock by satisfying a set of linear inequalities. Lipset, 
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Deering, and Judd [14] extended reference [12] to precisely quantify necessary and 

sufficient conditions for deadlock to exist. In this research, they redefined the order of a 

knot, defined a special state called an evaluation state, and defined the concept of order 

reduction. The approach was to put the system into an evaluation state and then compute 

the order.  Deering [2] and [1] improved reference [14] by further refining the order of a 

knot and evaluation state, as well as eliminating the need for order reduction.  Zhang, 

Judd, and Deering [17] developed a deadlock avoidance algorithm (DAA) based on 

references [14] and [2], which avoided deadlock and was executed in polynomial time. 

Zhang, Judd, and Deering [19] expanded upon references [17] and [2] to quantify the 

sufficient conditions for a system state to be live and derived the liveness necessary and 

sufficient conditions for an evaluation state.  Zhang and Judd [20] extended reference 

[19] to allow choice in process flow or flexible part routing. 

Modeling a Manufacturing System 

An FMS consists of a set, R, of finite resources, such as robots, buffers, and machines, 

which produce a finite set, P, of products. Each resource Rr ∈  has a capacity of cap(r) 

units that can perform the required operations. The capacity function can be extended to a 

set of resources, that is: 

 

.anyfor),cap()cap( 11

1

RRrR
Rr

⊆= ∑
∈∀

 

For each product Pp ∈ , the process plan  rrrp mK21)plan( = defines the sequence of 

resources that are required to produce p. Resource mr  is the terminal resource for product 

p. It is assumed that all process plans are fixed, finite, and sequential. A part is an 

instance of a product that flows through the system. At any given time, a manufacturing 

system is working on a set Q  of parts. The function )( class q  returns the product p to 

which part q belongs. 

 

A manufacturing system can be represented by a WRG, ),( AVG = . Each vertex 

represents a resource; that is, V=R.  A directed arc is drawn from vertex 
1r  to vertex 

2r , if 

2r  immediately follows 
1r  in at least one process plan. Each arc will be labeled with the 

part(s) that will flow through it. A subgraph GARG ⊂= ),( 111
 of an WRG consists of a 

subset of the resources and arcs of G, so that all the arcs in 
1A  connect resources in 

1R .  

The union (intersection), denoted by )( 2121 GGGG ∩∪ , of two subgraphs is the union 

(intersection) of the component resource and arc sets. A path ),( pp ARP =  is a subgraph 

whose resources and arcs can be ordered in the list nn raarar 12211 −
K

,
 where each arc in 

the list connects the resources on either side. When specifying a path, writing the arcs is 

redundant. Therefore, only the resources will be enumerated when a path is defined. A 

simple path is a path with no repeated elements in the ordered list. A closed path is a path 

(1) 
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with the same first and last element. A simple circuit is a closed path with no repeated 

elements in the ordered list, except the first and last elements. 

 

The function )(n q  returns a positive integer that represents the position in )](class[plan q  

of the operation that is currently processing q. When a new part q  is added to the system, 

then 1)(n =q . As the part is moved from resource to resource according to its plan, )(n q  

is incremented until it reaches the end of its plan and exits the system. The state n of a 

manufacturing system is a vector containing the current n(q) for all Qq ∈ . A state n of a 

manufacturing system is live if a sequence of part movements exist that will empty the 

system. A state n of a manufacturing system is dead, or deadlocked, if it is not live. 

 

Given a manufacturing system ),( ARG = , let  Aa ∈  and Rr ∈ . Then, the function 

)(tail a  returns the resource at the tail of the given arc; the function )head(a  returns the 

resource at the head of the arc. A unit of the resource )(tail ar =  is said to be committed 

to arc a if it is processing a part q whose next resource in its process plan is )(head a . It is 

important to note that the number of resource units committed to the outgoing arcs of r 

can be less than the number of busy units. This happens when some of the busy units are 

being used for terminal operations. A resource unit is free if it is not committed to an arc; 

by this definition, a busy unit that is not committed is still termed free. A resource is free 

if any of its units are free. A resource is empty if it contains no parts. The commitment 

function ),com( na  returns the number of resource units that are committed to arc a when 

the system is in state n. The commitment function is extended to a set of arcs as follows: 

 

AAnanA
Aa

⊆= ∑
∈∀

11 anyfor),,(com),com(
1

. 

A part is enabled if either the next resource in its process plan contains at least one 

resource unit that is not busy, or the part is in the last step of its process plan. Suppose 

that the system is in state 
0n ; there exists an arc a such that resource )head(2 ar =  is free 

and the part in the resource )tail(1 ar =  is committed to a. Then, when 
1r  finishes its 

operation, this part can be moved to resource 
2r . This process is called propagation. The 

symbol 
kn  is used to denote the state of the system after the thk  propagation. A part q in 

WRG G  can be shifted to resource r if it can be propagated to r without propagating any 

other part in G.  A part q in WRG G is said to have a free exit if it can shift its terminal 

resource 
mr  in G. 

Slack, Knot, Order, and Space 

This section will summarize the major concepts and results from [2, 12, 14, 16]. This 

section defines the concept of slack, knot, order, and space. 

 

The slack is the number of free resource units available for parts to flow on a subgraph. 

  

(2) 
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Definition 1:  The slack of any subgraph GARG ⊆= ),( 111
  is given by 

 

),com()cap(),slack( 111 nARnG −= . 

 

A closed path c in a WRG G is in primary deadlock in state n if 0),slack( =nc .         

 

Definition 2: Let 
1c  and 

2c  be any two closed paths in a WRG of a manufacturing 

system. If 
21 cc ∩  consists of exactly one resource with a capacity of one, then this 

resource is called a knot with respect to 
21 cc ∪ .             

 

Definition 3: Let 
1c  and 

2c  be two closed paths in a WRG G. Path 
1c  is connected to 

2c  

if 021 ≠∩ cc  and a part currently exists in the system that must propagate from 
1c  to 

2c  

without leaving 
21 cc ∪ .                

 

Definition 4: Given two closed paths 
1c  and 

2c , then 
1c  and 

2c  are cross-connected if 
1c  

is connected to 
2c  and 

2c  is connected to 
1c .              

 

Definition 5: Let the closed path c in state n consist of two closed paths, 
1c  and 

2c , such 

that 
21 ccc ∪=  and kcc =∩ 21

 , where k is a knot. The order of knot k with respect to the 

closed path c  in state n is defined as: 

 

 








=
otherwise. ,0

 connected. cross are   and  if ,1
),,(order

21 cc
nck  

The order of any simple circuit is zero.               

 

Definition 6: Let c be a closed path in a WRG G in state n that contains m knots. Then, 

the order of c is given by:  

∑
=

=

m

i

i ncknc
1

),,order(),order( . 

Definition 7: Let c be a closed path in a WRG G of a manufacturing system in state n. 

The free space on a closed path c is the difference between the slack and the order: 

 

 G  ),(order),(slack),(space Ccncncnc ∈∀−=  , 

where GC  is the set of all closed paths in G.     

The following theorem proves that if all closed paths of a WRG G have space greater 

than zero, G is live.  

 

(3) 

(4) 

(5) 

(6) 
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Theorem 1: Let GC  be the set of all closed paths in a non-empty WRG G in state n. If, 

 

 GCcnc ∈∀> 0),space( , 

then G is live. 

Proof: See reference [2].               

Sufficient Conditions for a System to be Dead 

The previous section proved sufficient conditions for a manufacturing system to be live; 

that is, if the space of all closed paths in a manufacturing system is greater than zero, then 

the system is live.  This section will prove sufficient conditions for a manufacturing 

system to be dead.  Unfortunately, this cannot be proven in the general case, since there is 

insufficient information in the WRG to determine these conditions.  However, when the 

system is in a special system state called an evaluation state, it can be shown that a 

manufacturing system is dead if one of the closed paths equals zero.  The following 

example will demonstrate this more clearly. 

 

Example 1:  Let the WRG G in Figure 2 be in state n .  Suppose that the process plans for 

parts a, b and c appear as presented in Table 1.  Assume that the state of the system is 

1] 1, 1,[)](),(),([ == bnbnann .  Table 2 depicts the order and space computations for this 

system. 

Table 1  Process plans for example 1 

 

Part Process Plan 

a  
432 rrr  

b  
134 rrr  

c  
1321 rrrr  

 

 

c1

r2

r4r1

bc2

c a

b
b,c

b,c a

a,c

c

r3

a

 
Figure 2  Manufacturing system for example 1 

 

 

Table 2  Order and space computations for example 1 

 

(7) 
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Circuit Order Space 

1c  0 1 

2c  0 1 

21 cc ∪  1 0 

 

Since the space of the union between 1c  and 2c  is zero, the method previously presented 

in reference [1] cannot conclude whether the system is live or dead.  This revised method 

will show that the order in which parts flow through order-one knots is required to 

describe sufficient conditions for a dead system.  For example, knowing that parts a and b 

must pass through 3r  before any other parts can leave 1c  and 2c  and that the space of the 

union between 1c  and 2c  is zero, will allow researchers to know that the system in Figure 

1 to be dead. 

 

This section will contain three parts: the first section shows necessary and sufficient 

conditions which render basic closed path as dead; the next two sections show sufficient 

conditions for deadlock of chained and complex closed paths. 

Basic Closed Paths 

Definition 8:  A basic closed path c  is a closed path in a WRG G in state n such that 

0),(order =nc . 

 

Theorem 1:  Given a basic closed path )(R,Ac =  in state n.  If 0),space( =nc  then c is 

dead. 

 

Proof:  See reference [2]. 

 

Theorem 1 allows us to conclude that space greater than zero of a basic closed path is 

necessary and sufficient for the system to be live.  The next section addresses a particular 

closed path that contains order-one knots. 

Chained Closed Paths 

This section defines a chained closed path and introduces a special state called an 

evaluation state.  A series of definitions, some lemmas and a theorem will prove that if a 

chained closed path is in an evaluation state and its space is equal to zero, then the 

chained closed path is dead. 

 

Definition 9:  A chained closed path c is a closed path containing one or more order-one 

knots with respect to c, such that c can be decomposed into a set of basic closed paths 

which intersect at only the order-one knots. 

 

The following is a simple example of a chained closed path: 
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Example 2:  Consider the manufacturing system in Figure 3.  Assume that all a part types 

flow to the right from 1c  to 3c , and that all b part types flow to the left from 3c  to 1c .  In 

this state, resources 2r  to 3r  are order-one knots. The manufacturing system can be 

decomposed into three simple circuits, 1c , 2c  and 3c .  Let  321 cccc ∪∪= .  In this 

example, c is a chained closed path, since c can be decomposed into basic closed paths so 

that each circuit intersects each other at only the order-one knots (i.e. 221 rcc =∩  and 

332 rcc =∩ ).  

 

c1 c2

r1 r2 r4

c3a

r3

b

a a

bbb

a

ab

 
Figure 3  A chained closed path 

 

The following example will help the reader conceptualize the need for an evaluation 

state:  

 

Example 3.  Suppose that a part exists in all the resources shown in Figure 4 except 4r .  

Each part is committed to the outgoing arc of its resource.  Assume that all part a  types 

must flow to circuit 2c  before completion and parts 1d  and 2d  must flow to circuit 1c  

before completion.  Call this state n.  This state may, or may not, be dead, depending on 

the ultimate destination of part b in the resource 7r . 

 

Case 1. Suppose part b must move to resource 4r  and then to 5r  and exit the system.  

Clearly, in this case, state n is a live state. 

 

Case 2. Suppose part b must flow to 4r  and commit to circuit 1c .  Then state n is a dead 

state. 
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c1 c2

r4

r2

r1

r7

r6

r5

r8

case 1

b exit

case 2

b flow to c1 to exit

b

d1

d2
a1

a3

a2

 
Figure 4  Manufacturing system for example 3 

 

 To distinguish and to evaluate these two cases, the dynamics of the part crossing through 

the knot should be analyzed more closely.  Notice that in both cases, all part a’s must 

cross knot 4r  before any other part on 1c  can leave 1c .  But the part crossing dynamics 

are different on circuit 2c  in the two cases.  Notice that in case 1, part b can leave circuit 

2c  before part 1d  must cross knot k.  In other words, a resource may become free on 2c  

before part 1d  must cross the knot.  In this state, we conclude that state n is not in an 

evaluation state.  The method in the reference [2] cannot determine if deadlock exists by 

computing the space in state n.   Notice that in Case 2, part b must cross knot 4r  before 

any other part can leave 2c .  In this situation, no part can escape 2c  before the crossing 

must occur.  The state of the system in case 2 is considered to be an evaluation state.  

These ideas motivated the following definitions. 

 

Definition 10:  Let 1c  and 2c  be two closed paths in a WRG G such that kcc =∩ 21  

where k is an order-one knot.  If a part q on 1c  propagates to k and commits to an arc on 

2c , then q is said to cross knot k. 

 

Definition 11:  A basic closed path in a WRG G is always in an evaluation state. 

 

Definition 12:  An empty chained closed path in state n is in an evaluation state. 

 

Definition 13:  Let a non-empty chained closed path c be in state n.  A chained closed 

path c can be divided into two closed paths, 1c  and 2c , at any order-one knot k such that 

kcc =∩ 21 .  Then chained closed path c is in an evaluation state if  

 

1. all order-one knots are empty, and 
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2. for each order-one knot k, two parts, 1q  and 2q  exist, such that 

 

a. part 1q  must cross from 1c  to 2c  before any other part can leave 1c , and 

2c  is in an evaluation state after the move; and 

 

b. part 2q  must cross from 2c  to 1c  before any other part can leave 2c , and 

1c  is in an evaluation state after the move. 

 

The system in Example 2 is in an evaluation state.  Resources 2r  and 3r  are order-one 

knots.  For order-one knot 2r , part a must cross from 1c  to 32 cc ∪  before any other part 

can leave 1c , and part b must cross 32 cc ∪  to 1c  before any other part can leave 32 cc ∪ .  

For order-one knot 3r , part a must cross from 21 cc ∪  to 3c  before any other part can 

leave 21 cc ∪  and part b must cross 3c  to 21 cc ∪  before any other part can leave 3c .    

After moving either part a or part b, both 32 cc ∪  and 21 cc ∪  are in evaluation states. 

 

The next lemma will show how the parts are committed when a chained closed path is in 

an evaluation state. 

 

Lemma 1:  Given a chained closed path ),( ARc =  in a WRG G that is in an evaluation 

state n, 0),( =ncspace  if, and only if, all order-one knots are empty in c and all other 

resources in c are filled and committed to resources on c. 

 

Proof:  See reference [2]. 

 

The next two lemmas are preliminary results that are required to prove the final theorem 

of this section. 

 

Lemma 2:  Given a chained closed path c  that is in an evaluation state n, if 

0),space( =nc  then a part q exists such that when it is moved, it will fill an order-one 

knot and commit an outgoing arc of that knot on c. 

 

Proof: See reference [2] 

 

Lemma 3:  Given a non-empty chained closed path c  that is in an evaluation state 0n , if 

0),(space 0 =nc  then propagating any part will create a chained closed path 2c  such that 

cc ⊂2  and 0),(space 12 =nc . 

 

Proof:  See reference [2] 

 

Definition 14:  If any subgraph in a WRG G is dead, then G is dead. 
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Theorem 2:  Given a non-empty chained closed path c  that is in an evaluation state 0n , if 

0),(space 0 =nc , then c is dead. 

 

Proof:  See reference [2] 

Complex Closed Paths 

Closed paths that are not basic closed paths or chained closed paths are classified as 

complex closed paths. This section will introduce complex closed paths.  It will also be 

shown, if a complex closed is in an evaluation state and it contains a path with space 

equal to zero, then this is sufficient for determining if the system is dead. 

 

We will first define a complex closed path and its various components, then follow these 

definitions with an example. 

 

Definition 15:  A complex closed path is a closed path that contains one or more order 

one knots that is not a chained closed path. 

 

Definition 16:  A complex path can be decomposed into two paths, one being a chained 

closed path and the other is called the auxiliary closed path.  The intersection of the 

auxiliary closed path intersects and the chained closed path must contain one or more 

order one knots of the chained path. 

 

Definition 17:  A bypass path is the portion of the auxiliary path that does not intersect 

the chained closed path. 

 

Definition 18:  The first arc on the bypass path is a bypass arc. 

 

Consider the following example. 

 

Example 4:  Suppose that the system in Figure 5 has the following parts and process 

plans as depicted in Table 3. 

 

Table 3  Process plans for example 4 

 

Part Process Plan 

a  
4321 rrrr  

b  
1624 rrrr  

d 
1653 rrrr  

 

Assume that the system is in state ]2,3,1,1,3[)](),(),(),(),([ 2121 == dndnbnanann . 
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r5

r4r2r1

r3
r6

c1 c2

c3d1

b
b,d

a

a

a

a

dd

d

b

b

abd2

a1

a2

 
Figure 5  Complex closed path for example 4 

 

The system consists of three simple closed paths: 16211 rrrrc = , 24322 rrrrc = , and 

2165323 rrrrrrc = .  The 1),,(order 212 =∪ nccr .  Clearly, the manufacturing system in Figure 

5 is not a basic closed path.  The system cannot be a chained closed path either since 

321 )( ccc ∩∪  is not a knot.  According to Definition 15, the system in Figure 5 is a 

complex closed path.  The complex closed path can be decomposed into a chained closed 

path, (i.e., 21 cc ∪ , and an auxiliary closed (i.e., 3c ).  Closed path 3c  is an auxiliary closed 

path since the intersection of 3c  and the chained closed path 21 cc ∪  contain the order-one 

knot 3r .  The simple path 653 rrr  is a bypass path that joins 1c  and 2c  together.  Arc ba  on 

resource 3r  is a bypass arc since it leaves 3r  along the auxiliary closed path 3c . 

 

We next define the evaluation state for a complex closed path. 

 

 Definition 19: A complex closed path in a WRG G is in an evaluation state if its bypass 

arcs are not committed. 

 

Definition 20: An empty subgraph that is a complex closed path in a WRG G in state n is 

in an evaluation state. 

 

Definition 21:  A WRG G is in an evaluation state if all closed paths in G are in an 

evaluation state. 

 

The system in Example 4 is in an evaluation state.  This is because part 1a  in resource 3r  

is not committed to the bypass arc ba .  The chained closed path 21 cc ∪  is in as evaluation 

state per Definition 13.  The space of the chained closed path 21 cc ∪  is zero.  Clearly, the 

system is dead.  The next theorem proves this concept in general. 

 

Theorem 3:  Given a complex closed path pc  that is in an evaluation state 0n , if any 

chained closed path pcc ⊂*  has 0)*,( 0 =ncspace , then pc  is dead. 
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Proof:  See reference [2]. 

Conclusion 

Three types of closed paths were identified to prove sufficient conditions for a 

manufacturing system to be dead.  A special state called an evaluation state was 

introduced.  It was showed that if a basic, chained or complex closed path that is in an 

evaluation state with space=0 then the system is dead.  Unfortunately, determining if a 

closed path is in an evaluation state is a problem.  The problem is there is insufficient 

information in the WRG to determine if a system is in an evaluation state.  This is a topic 

of future research. 
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