

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Paper 032, INT 301

Sufficient Conditions for a Flexible Manufacturing System to be

Deadlocked

Paul E. Deering, PhD

Department of Engineering Technology and Management

Ohio University

deering@ohio.edu

Abstract

In recent years, researchers have been interested in scheduling algorithms to avoid

deadlock in Flexible Manufacturing Systems (FMS). FMS are discrete event systems

characterized by the availability of resources to produce a set of products. Raw parts,

which belong to various product types, enter the system at discrete times and are

processed concurrently while sharing a limited number of resources. In such systems, a

situation may occur in which parts become permanently block. This is called deadlock.

This paper presents the sufficient conditions for deadlock to exist in a FMS; it models a

FMS using digraphs to calculate slack, knot, order and space; it identifies three types of

circuits that are fundamental in determining if a FMS is in deadlock.

Introduction

Moving the wrong part in a manufacturing system could place the live (deadlock-free)

system into a deadlocked state or dead state. The only recourse would be to manually

resolve the deadlock and reset the FMS to a live state. Clearly, avoiding deadlock

altogether would lead to increased production and decreased labor costs. To prevent

manual deadlock resolution a Deadlock Avoidance Algorithm (DAA) was developed in

[1]. The DAA did not allow the system to enter any dead states and proved sufficient

conditions for the system to be live. The DAA introduced the idea of space. If space > 0

of all closed paths in the manufacturing then deadlock would be avoided. The only

problem was that some live states were detected dead states. See figure 1. The DAA in

[1] only proved sufficient conditions for a system to be live.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Figure 1: Live States detected as Dead

This paper will prove sufficient condition for the manufacturing system to be dead and is

the partial results of reference [2]. This paper is organized as follows: the first section

discusses previous research on deadlock in a FMS; the next section defines a

mathematical model of a manufacturing systems; circuit parameter slack, knot order and

space is then defined; the next section introduces three types of circuit uses to proves

sufficient conditions for a manufacturing systems to be dead.

Related Research

Many researchers use Petri nets [3-9] as a formalism to describe deadlock in a

manufacturing system. Banaszak and Krogh [3] proposed a deadlock avoidance

algorithm (DAA), which developed a restriction policy based on production route

information to guarantee that no circular wait situations would occur. Their DAA is

sufficient for avoiding deadlocks but is not an optimal solution. Viswanadham, Narahari,

and Johnson [6] developed a deadlock avoidance algorithm that employed a look-ahead

policy. This algorithm did not detect all deadlocked states, and the authors suggested

using a recovery mechanism in case of system deadlock. Zhou and DiCesare [7] and

Zhou [8] generalized the sequential mutual exclusions (SME) and parallel mutual

exclusions (PME) concepts and derived the sufficient conditions for a Petri net (PN)

containing such structures to be bounded, live, and reversible. In general, PN solutions

are suitable for manufacturing systems that contain few resources but become very

complicated for larger systems.

Another formalism to describe the manufacturing system is to use graphs [10-20]. In this

approach, the vertices represent resources and the edges represent part flows between

resources. Wysk, Joshi, and Yang [16] were the first to develop a specialized directed

graphical structure called a wait relation graph (WRG) to model a manufacturing system.

In reference [16], they developed a string manipulation procedure that yields a set of

control actions to detect and recover from primary deadlock. Cho, Kumaran, and Wysk

[10] used system status graphs to develop the concept of simple and non-simple bounded

circuits with empty and non-empty shared resources to detect part flow deadlock and

impending part flow deadlock. This method introduced the concept of a bounded circuit

to detect deadlock. The method detected deadlock based on characteristics of this

bounded circuit. The methods in references [16] and [10] could only handle single

capacity resources. Fanti, Maione, and Turchiano [11] used a graph called working

procedure digraph and developed a simple graph-theoretic method for deadlock detection

and recovery in systems with multiple capacity resources. This algorithm did not prevent

deadlock from occurring either, but it suggested a suitable recovery strategy.

Judd and Faiz [12] expanded on the original formulation proposed by reference [16] and

the first to define slack, order, and space to avoid deadlock. This method provided

sufficient conditions for deadlock by satisfying a set of linear inequalities. Lipset,

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Deering, and Judd [14] extended reference [12] to precisely quantify necessary and

sufficient conditions for deadlock to exist. In this research, they redefined the order of a

knot, defined a special state called an evaluation state, and defined the concept of order

reduction. The approach was to put the system into an evaluation state and then compute

the order. Deering [2] and [1] improved reference [14] by further refining the order of a

knot and evaluation state, as well as eliminating the need for order reduction. Zhang,

Judd, and Deering [17] developed a deadlock avoidance algorithm (DAA) based on

references [14] and [2], which avoided deadlock and was executed in polynomial time.

Zhang, Judd, and Deering [19] expanded upon references [17] and [2] to quantify the

sufficient conditions for a system state to be live and derived the liveness necessary and

sufficient conditions for an evaluation state. Zhang and Judd [20] extended reference

[19] to allow choice in process flow or flexible part routing.

Modeling a Manufacturing System

An FMS consists of a set, R, of finite resources, such as robots, buffers, and machines,

which produce a finite set, P, of products. Each resource Rr ∈ has a capacity of cap(r)

units that can perform the required operations. The capacity function can be extended to a

set of resources, that is:

.anyfor),cap()cap(11

1

RRrR
Rr

⊆= ∑
∈∀

For each product Pp ∈ , the process plan rrrp mK21)plan(= defines the sequence of

resources that are required to produce p. Resource mr is the terminal resource for product

p. It is assumed that all process plans are fixed, finite, and sequential. A part is an

instance of a product that flows through the system. At any given time, a manufacturing

system is working on a set Q of parts. The function)(class q returns the product p to

which part q belongs.

A manufacturing system can be represented by a WRG,),(AVG = . Each vertex

represents a resource; that is, V=R. A directed arc is drawn from vertex
1r to vertex

2r , if

2r immediately follows
1r in at least one process plan. Each arc will be labeled with the

part(s) that will flow through it. A subgraph GARG ⊂=),(111
 of an WRG consists of a

subset of the resources and arcs of G, so that all the arcs in
1A connect resources in

1R .

The union (intersection), denoted by)(2121 GGGG ∩∪ , of two subgraphs is the union

(intersection) of the component resource and arc sets. A path),(pp ARP = is a subgraph

whose resources and arcs can be ordered in the list nn raarar 12211 −
K

,
 where each arc in

the list connects the resources on either side. When specifying a path, writing the arcs is

redundant. Therefore, only the resources will be enumerated when a path is defined. A

simple path is a path with no repeated elements in the ordered list. A closed path is a path

(1)

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

with the same first and last element. A simple circuit is a closed path with no repeated

elements in the ordered list, except the first and last elements.

The function)(n q returns a positive integer that represents the position in)](class[plan q

of the operation that is currently processing q. When a new part q is added to the system,

then 1)(n =q . As the part is moved from resource to resource according to its plan,)(n q

is incremented until it reaches the end of its plan and exits the system. The state n of a

manufacturing system is a vector containing the current n(q) for all Qq ∈ . A state n of a

manufacturing system is live if a sequence of part movements exist that will empty the

system. A state n of a manufacturing system is dead, or deadlocked, if it is not live.

Given a manufacturing system),(ARG = , let Aa ∈ and Rr ∈ . Then, the function

)(tail a returns the resource at the tail of the given arc; the function)head(a returns the

resource at the head of the arc. A unit of the resource)(tail ar = is said to be committed

to arc a if it is processing a part q whose next resource in its process plan is)(head a . It is

important to note that the number of resource units committed to the outgoing arcs of r

can be less than the number of busy units. This happens when some of the busy units are

being used for terminal operations. A resource unit is free if it is not committed to an arc;

by this definition, a busy unit that is not committed is still termed free. A resource is free

if any of its units are free. A resource is empty if it contains no parts. The commitment

function),com(na returns the number of resource units that are committed to arc a when

the system is in state n. The commitment function is extended to a set of arcs as follows:

AAnanA
Aa

⊆= ∑
∈∀

11 anyfor),,(com),com(
1

.

A part is enabled if either the next resource in its process plan contains at least one

resource unit that is not busy, or the part is in the last step of its process plan. Suppose

that the system is in state
0n ; there exists an arc a such that resource)head(2 ar = is free

and the part in the resource)tail(1 ar = is committed to a. Then, when
1r finishes its

operation, this part can be moved to resource
2r . This process is called propagation. The

symbol
kn is used to denote the state of the system after the thk propagation. A part q in

WRG G can be shifted to resource r if it can be propagated to r without propagating any

other part in G. A part q in WRG G is said to have a free exit if it can shift its terminal

resource
mr in G.

Slack, Knot, Order, and Space

This section will summarize the major concepts and results from [2, 12, 14, 16]. This

section defines the concept of slack, knot, order, and space.

The slack is the number of free resource units available for parts to flow on a subgraph.

(2)

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Definition 1: The slack of any subgraph GARG ⊆=),(111
 is given by

),com()cap(),slack(111 nARnG −= .

A closed path c in a WRG G is in primary deadlock in state n if 0),slack(=nc .

Definition 2: Let
1c and

2c be any two closed paths in a WRG of a manufacturing

system. If
21 cc ∩ consists of exactly one resource with a capacity of one, then this

resource is called a knot with respect to
21 cc ∪ .

Definition 3: Let
1c and

2c be two closed paths in a WRG G. Path
1c is connected to

2c

if 021 ≠∩ cc and a part currently exists in the system that must propagate from
1c to

2c

without leaving
21 cc ∪ .

Definition 4: Given two closed paths
1c and

2c , then
1c and

2c are cross-connected if
1c

is connected to
2c and

2c is connected to
1c .

Definition 5: Let the closed path c in state n consist of two closed paths,
1c and

2c , such

that
21 ccc ∪= and kcc =∩ 21

 , where k is a knot. The order of knot k with respect to the

closed path c in state n is defined as:

=
otherwise. ,0

 connected. cross are and if ,1
),,(order

21 cc
nck

The order of any simple circuit is zero.

Definition 6: Let c be a closed path in a WRG G in state n that contains m knots. Then,

the order of c is given by:

∑
=

=

m

i

i ncknc
1

),,order(),order(.

Definition 7: Let c be a closed path in a WRG G of a manufacturing system in state n.

The free space on a closed path c is the difference between the slack and the order:

 G),(order),(slack),(space Ccncncnc ∈∀−= ,

where GC is the set of all closed paths in G.

The following theorem proves that if all closed paths of a WRG G have space greater

than zero, G is live.

(3)

(4)

(5)

(6)

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Theorem 1: Let GC be the set of all closed paths in a non-empty WRG G in state n. If,

 GCcnc ∈∀> 0),space(,

then G is live.

Proof: See reference [2].

Sufficient Conditions for a System to be Dead

The previous section proved sufficient conditions for a manufacturing system to be live;

that is, if the space of all closed paths in a manufacturing system is greater than zero, then

the system is live. This section will prove sufficient conditions for a manufacturing

system to be dead. Unfortunately, this cannot be proven in the general case, since there is

insufficient information in the WRG to determine these conditions. However, when the

system is in a special system state called an evaluation state, it can be shown that a

manufacturing system is dead if one of the closed paths equals zero. The following

example will demonstrate this more clearly.

Example 1: Let the WRG G in Figure 2 be in state n . Suppose that the process plans for

parts a, b and c appear as presented in Table 1. Assume that the state of the system is

1] 1, 1,[)](),(),([== bnbnann . Table 2 depicts the order and space computations for this

system.

Table 1 Process plans for example 1

Part Process Plan

a
432 rrr

b
134 rrr

c
1321 rrrr

c1

r2

r4r1

bc2

c a

b
b,c

b,c a

a,c

c

r3

a

Figure 2 Manufacturing system for example 1

Table 2 Order and space computations for example 1

(7)

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Circuit Order Space

1c 0 1

2c 0 1

21 cc ∪ 1 0

Since the space of the union between 1c and 2c is zero, the method previously presented

in reference [1] cannot conclude whether the system is live or dead. This revised method

will show that the order in which parts flow through order-one knots is required to

describe sufficient conditions for a dead system. For example, knowing that parts a and b

must pass through 3r before any other parts can leave 1c and 2c and that the space of the

union between 1c and 2c is zero, will allow researchers to know that the system in Figure

1 to be dead.

This section will contain three parts: the first section shows necessary and sufficient

conditions which render basic closed path as dead; the next two sections show sufficient

conditions for deadlock of chained and complex closed paths.

Basic Closed Paths

Definition 8: A basic closed path c is a closed path in a WRG G in state n such that

0),(order =nc .

Theorem 1: Given a basic closed path)(R,Ac = in state n. If 0),space(=nc then c is

dead.

Proof: See reference [2].

Theorem 1 allows us to conclude that space greater than zero of a basic closed path is

necessary and sufficient for the system to be live. The next section addresses a particular

closed path that contains order-one knots.

Chained Closed Paths

This section defines a chained closed path and introduces a special state called an

evaluation state. A series of definitions, some lemmas and a theorem will prove that if a

chained closed path is in an evaluation state and its space is equal to zero, then the

chained closed path is dead.

Definition 9: A chained closed path c is a closed path containing one or more order-one

knots with respect to c, such that c can be decomposed into a set of basic closed paths

which intersect at only the order-one knots.

The following is a simple example of a chained closed path:

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Example 2: Consider the manufacturing system in Figure 3. Assume that all a part types

flow to the right from 1c to 3c , and that all b part types flow to the left from 3c to 1c . In

this state, resources 2r to 3r are order-one knots. The manufacturing system can be

decomposed into three simple circuits, 1c , 2c and 3c . Let 321 cccc ∪∪= . In this

example, c is a chained closed path, since c can be decomposed into basic closed paths so

that each circuit intersects each other at only the order-one knots (i.e. 221 rcc =∩ and

332 rcc =∩).

c1 c2

r1 r2 r4

c3a

r3

b

a a

bbb

a

ab

Figure 3 A chained closed path

The following example will help the reader conceptualize the need for an evaluation

state:

Example 3. Suppose that a part exists in all the resources shown in Figure 4 except 4r .

Each part is committed to the outgoing arc of its resource. Assume that all part a types

must flow to circuit 2c before completion and parts 1d and 2d must flow to circuit 1c

before completion. Call this state n. This state may, or may not, be dead, depending on

the ultimate destination of part b in the resource 7r .

Case 1. Suppose part b must move to resource 4r and then to 5r and exit the system.

Clearly, in this case, state n is a live state.

Case 2. Suppose part b must flow to 4r and commit to circuit 1c . Then state n is a dead

state.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

c1 c2

r4

r2

r1

r7

r6

r5

r8

case 1

b exit

case 2

b flow to c1 to exit

b

d1

d2
a1

a3

a2

Figure 4 Manufacturing system for example 3

 To distinguish and to evaluate these two cases, the dynamics of the part crossing through

the knot should be analyzed more closely. Notice that in both cases, all part a’s must

cross knot 4r before any other part on 1c can leave 1c . But the part crossing dynamics

are different on circuit 2c in the two cases. Notice that in case 1, part b can leave circuit

2c before part 1d must cross knot k. In other words, a resource may become free on 2c

before part 1d must cross the knot. In this state, we conclude that state n is not in an

evaluation state. The method in the reference [2] cannot determine if deadlock exists by

computing the space in state n. Notice that in Case 2, part b must cross knot 4r before

any other part can leave 2c . In this situation, no part can escape 2c before the crossing

must occur. The state of the system in case 2 is considered to be an evaluation state.

These ideas motivated the following definitions.

Definition 10: Let 1c and 2c be two closed paths in a WRG G such that kcc =∩ 21

where k is an order-one knot. If a part q on 1c propagates to k and commits to an arc on

2c , then q is said to cross knot k.

Definition 11: A basic closed path in a WRG G is always in an evaluation state.

Definition 12: An empty chained closed path in state n is in an evaluation state.

Definition 13: Let a non-empty chained closed path c be in state n. A chained closed

path c can be divided into two closed paths, 1c and 2c , at any order-one knot k such that

kcc =∩ 21 . Then chained closed path c is in an evaluation state if

1. all order-one knots are empty, and

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

2. for each order-one knot k, two parts, 1q and 2q exist, such that

a. part 1q must cross from 1c to 2c before any other part can leave 1c , and

2c is in an evaluation state after the move; and

b. part 2q must cross from 2c to 1c before any other part can leave 2c , and

1c is in an evaluation state after the move.

The system in Example 2 is in an evaluation state. Resources 2r and 3r are order-one

knots. For order-one knot 2r , part a must cross from 1c to 32 cc ∪ before any other part

can leave 1c , and part b must cross 32 cc ∪ to 1c before any other part can leave 32 cc ∪ .

For order-one knot 3r , part a must cross from 21 cc ∪ to 3c before any other part can

leave 21 cc ∪ and part b must cross 3c to 21 cc ∪ before any other part can leave 3c .

After moving either part a or part b, both 32 cc ∪ and 21 cc ∪ are in evaluation states.

The next lemma will show how the parts are committed when a chained closed path is in

an evaluation state.

Lemma 1: Given a chained closed path),(ARc = in a WRG G that is in an evaluation

state n, 0),(=ncspace if, and only if, all order-one knots are empty in c and all other

resources in c are filled and committed to resources on c.

Proof: See reference [2].

The next two lemmas are preliminary results that are required to prove the final theorem

of this section.

Lemma 2: Given a chained closed path c that is in an evaluation state n, if

0),space(=nc then a part q exists such that when it is moved, it will fill an order-one

knot and commit an outgoing arc of that knot on c.

Proof: See reference [2]

Lemma 3: Given a non-empty chained closed path c that is in an evaluation state 0n , if

0),(space 0 =nc then propagating any part will create a chained closed path 2c such that

cc ⊂2 and 0),(space 12 =nc .

Proof: See reference [2]

Definition 14: If any subgraph in a WRG G is dead, then G is dead.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Theorem 2: Given a non-empty chained closed path c that is in an evaluation state 0n , if

0),(space 0 =nc , then c is dead.

Proof: See reference [2]

Complex Closed Paths

Closed paths that are not basic closed paths or chained closed paths are classified as

complex closed paths. This section will introduce complex closed paths. It will also be

shown, if a complex closed is in an evaluation state and it contains a path with space

equal to zero, then this is sufficient for determining if the system is dead.

We will first define a complex closed path and its various components, then follow these

definitions with an example.

Definition 15: A complex closed path is a closed path that contains one or more order

one knots that is not a chained closed path.

Definition 16: A complex path can be decomposed into two paths, one being a chained

closed path and the other is called the auxiliary closed path. The intersection of the

auxiliary closed path intersects and the chained closed path must contain one or more

order one knots of the chained path.

Definition 17: A bypass path is the portion of the auxiliary path that does not intersect

the chained closed path.

Definition 18: The first arc on the bypass path is a bypass arc.

Consider the following example.

Example 4: Suppose that the system in Figure 5 has the following parts and process

plans as depicted in Table 3.

Table 3 Process plans for example 4

Part Process Plan

a
4321 rrrr

b
1624 rrrr

d
1653 rrrr

Assume that the system is in state]2,3,1,1,3[)](),(),(),(),([2121 == dndnbnanann .

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

r5

r4r2r1

r3
r6

c1 c2

c3d1

b
b,d

a

a

a

a

dd

d

b

b

abd2

a1

a2

Figure 5 Complex closed path for example 4

The system consists of three simple closed paths: 16211 rrrrc = , 24322 rrrrc = , and

2165323 rrrrrrc = . The 1),,(order 212 =∪ nccr . Clearly, the manufacturing system in Figure

5 is not a basic closed path. The system cannot be a chained closed path either since

321)(ccc ∩∪ is not a knot. According to Definition 15, the system in Figure 5 is a

complex closed path. The complex closed path can be decomposed into a chained closed

path, (i.e., 21 cc ∪ , and an auxiliary closed (i.e., 3c). Closed path 3c is an auxiliary closed

path since the intersection of 3c and the chained closed path 21 cc ∪ contain the order-one

knot 3r . The simple path 653 rrr is a bypass path that joins 1c and 2c together. Arc ba on

resource 3r is a bypass arc since it leaves 3r along the auxiliary closed path 3c .

We next define the evaluation state for a complex closed path.

 Definition 19: A complex closed path in a WRG G is in an evaluation state if its bypass

arcs are not committed.

Definition 20: An empty subgraph that is a complex closed path in a WRG G in state n is

in an evaluation state.

Definition 21: A WRG G is in an evaluation state if all closed paths in G are in an

evaluation state.

The system in Example 4 is in an evaluation state. This is because part 1a in resource 3r

is not committed to the bypass arc ba . The chained closed path 21 cc ∪ is in as evaluation

state per Definition 13. The space of the chained closed path 21 cc ∪ is zero. Clearly, the

system is dead. The next theorem proves this concept in general.

Theorem 3: Given a complex closed path pc that is in an evaluation state 0n , if any

chained closed path pcc ⊂* has 0)*,(0 =ncspace , then pc is dead.

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Proof: See reference [2].

Conclusion

Three types of closed paths were identified to prove sufficient conditions for a

manufacturing system to be dead. A special state called an evaluation state was

introduced. It was showed that if a basic, chained or complex closed path that is in an

evaluation state with space=0 then the system is dead. Unfortunately, determining if a

closed path is in an evaluation state is a problem. The problem is there is insufficient

information in the WRG to determine if a system is in an evaluation state. This is a topic

of future research.

References

[1] Deering, E. P. (2008), “A Simple Deadlock Avoidance Algorithm in Flexible

Manufacturing Systems,” International Journal of Modern Engineering, vol. 9, no 1,

pp. 19-26.

[2] Deering, E. P. (2000), Necessary and Sufficient Conditions for Deadlock in

Manufacturing Systems, PhD Dissertation, Ohio University.

[3] Banaszak, Z. and B. Krogh (1990), “Deadlock Avoidance in Flexible

Manufacturing Systems with Concurrently Competing Process Flows.” IEEE Trans.

on Robotics and Auto., vol. 6, no. 6, pp. 724–733.

[4] Barkaoui, K. and I.B. Abdallah. (1995), “A Deadlock Method for a Class of FMS,”

Proceedings of the 1995 IEEE Int. Conf. On Systems, Man and Cybernetics, pp.

4119–4124.

[5] Hsieh, F. and S. Chang (1994), “Dispatching-driven Deadlock Avoidance

Controller Synthesis for Flexible Manufacturing Systems,” IEEE Trans. Robotics

and Auto., vol. 10, no. 2, pp. 196–209.

[6] Viswanadham, N., Y. Narahari, and T. Johnson. (1990). “Deadlock Prevention and

Deadlock Avoidance in Flexible Manufacturing Systems Using Petri Net Models,”

IEEE Trans. on Robotics and Auto., vol. 6, no. 6, pp. 713–723.

[7] Zhou, M. and F. DiCesare (1992), “Parallel and Sequential Mutual Exclusion for

Petri Net Modeling of Manufacturing Systems with Shared Resources,” IEEE

Trans. on Robotics and Auto., vol. 7, no. 4, pp. 550–527.

[8] Zhou, M. (1996), “Generalizing Parallel and Sequential Mutual Exclusions for Petri

Net Synthesis of Manufacturing Systems,” IEEE Symposium on Emerging

Technologies and Factory Automation, vol. 1, pp. 49–55.

[9] Ezpeleta, J., J. Colom, and J. Martinez (1995), “A Petri Net Based Deadlock

Prevention Policy for Flexible Manufacturing Systems,” IEEE Trans. on Robotics

and Automation, vol. 11, no. 2, pp. 173–184.

[10] Cho, H., T.K. Kumaran, and R. Wysk (1995), “Graph-Theoretic Deadlock

Detection and Resolution for Flexible Manufacturing Systems,” IEEE Trans. on

Robotics and Auto., vol. 11, no. 3, pp. 550–527.

[11] Fanti, M., G. Maione, and B. Turchiano (1996), “Deadlock Detection and Recovery

in Flexible Production Systems with Multiple Capacity Resources,” Industrial

Proceedings of The 2011 IAJC-ASEE International Conference

ISBN 978-1-60643-379-9

Applications in Power Systems Computer Science and Telecommunications

Proceedings of the Mediterranean Electrotechnical Conference, vol. 1, pp. 237–241.

[12] Judd, R. P. and T. Faiz (1995), “Deadlock Detection and Avoidance for a Class of

Manufacturing Systems,” Proceedings of the 1995 American Control Conference,

pp. 3637–3641.

[13] Judd, R. P., P. Deering, and R. Lipset (1997), “Deadlock Detection in Simulation of

Manufacturing Systems,” Proceedings of the 1997 Summer Computer Simulation

Conference, pp. 317–322.

[14] Lipset, R., P. Deering, and R. P. Judd (1997), “Necessary and Sufficient Conditions

for Deadlock in Manufacturing Systems,” Proceedings of the 1997 American

Control Conference, vol. 2, pp. 1022–1026.

[15] Lipset, R., P. Deering, and R. P. Judd (1998), “A Stack-Based Algorithm for

Deadlock Avoidance in Flexible Manufacturing Systems,” Proceedings of the 1998

American Control Conference.

[16] Wysk R., N. Yang, and S. Joshi (1991), “Detection of Deadlocks in Flexible

Manufacturing Systems,” IEEE Transactions Robotics and Automation, vol. 7, no.

6, pp. 853–858.

[17] Wenle, Z., R. P. Judd, and P. Deering (2003), “Evaluating Order of Circuits for

Deadlock Avoidance in a Flexible Manufacturing System,” Proceedings of the 2003

American Control Conference, pp. 3679–3683.

[18] Fanti, M.P., B. Maione, S. Mascolo, and B. Turchiano (1995), “Control Polices

Conciliating Deadlock Avoidance and Flexibility in FMS Resource Allocation,”

IEEE Symposium on Emerging Technologies and Factory Automation, vol. 1, pp.

343–351.

[19] Wenle, Z., R. P. Judd, and P. Deering (2004), “Necessary and Sufficient Conditions

for Deadlocks In Flexible Manufacturing Systems Based On A Digraph Model,”

Asian Journal of Controls, vol. 6, no 2, pp. 217–228.

[20] Wenle, Z. and R. P. Judd (2007), “Evaluating Order Of Circuits For Deadlock

Avoidance in a Flexible Manufacturing System,” Asian Journal of Controls, vol. 9,

no. 2, pp. 111–120.

Biography

PAUL DEERING is currently an Assistant Professor in the Engineering Technology and

Management Department in the Russ College of Engineering and Technology at Ohio

University. He has worked in the area of Information Technology for more than 20 years

and has taught many engineering and computer science courses for the Russ College.

