
Abstract  
 

The modeling of multilink robots produces typical nonlin-

ear systems with uncertain disturbances and high-order ma-

trices. The authors present a method of applying a fractional

-order PID controller to such a nonlinear system and show 

the advantages of this fractional controller. In this study, the 

dynamic model of the system served as the foundation to 

derive the control law and objective function for the optimi-

zation design of the subjected fractional-order control sys-

tem. The frequency domain closed-loop transaction function 

of this fractional system was developed and is discussed 

here along with controllability, observability and robust 

satiability. The authors demonstrated the use of algorithms 

to design and optimize the fractional-order PID to the non-

linear motion control system. By conducting a series of nu-

merical computations, the authors showed that the fractional

-order PID controller could enlarge the stable region of a 

multilink robot system and, therefore, deliver superior con-

trol performance in terms of trajectory tracking. The results 

and procedures introduced here could be practically general-

ized to other similar systems. 

 

Introduction 
 

Multilink robots are widely used in the manufacturing 

industry, and the motion control issues of these robot sys-

tems have became popular research topics for decades since 

the first appearance of the robots in industry. Generally 

speaking, multilink robot systems typically are nonlinear 

and always involve disturbances. The fine control of indus-

trial robots usually requires complex control systems, care-

ful calibrations and optimizations. In practice, most of these 

multilink robots are controlled by PID controllers which 

have the merits or effectiveness, simplicity and feasibility. 

Although ordinary PID controllers can achieve satisfactory 

results in most common manufacturing missions, they still 

lack enough precision in the field and often require precise 

instrument control.  

 

The ordinary PID controller is designed to provide the 

restoring, corrective and counteractive forces to the con-

trolled system. In typical situations, the ordinary PID con-

troller can always effectively achieve the control objectives 

without obvious drawbacks. However, in modern industry, 

the demand for precise control is driving people to search 

for improvements. Fractional-order PID (FoPID) introduced 

here is a natural extension to ordinary PID controllers based 

on the fractional calculus theory. Since in fractional calculus 

the orders of integral and derivative are not limited to inte-

ger orders anymore, a new type of PID controller can be 

introduced by replacing the ordinary order integrators and 

differentiators with fractional-order ones. The main ad-

vantages of the FoPID controllers include an enlarged stable 

region, relatively feasible structure and raised control preci-

sion. 

 

As mentioned above, fractional calculus takes the order of 

integrals and derivatives as any real number. It has a history 

nearly as long as ordinary calculus, which considers only 

integer orders [1]. Recently, successful applications of this 

technology have been found in many fields, such as viscoe-

lasticity [2], [3], control theory [4], [5] and electro-

analytical chemistry [6], [7]. In control theory, the general 

conclusion about a fractional control system is that it could 

enlarge the stable region [8] and yield a performance at least 

as good as its integer counterpart. Another important ad-

vantage is that fractional integrals or derivatives are heredi-

tary functional while the ordinary ones are point functional. 

It is known that the hereditary function has a long memory 

characteristic [9], which means that at any time it would 

process a total memory of past states. This unique character-

istic serves as one of the important reasons for its better 

performance. For FoPID controllers, many scholars have 

made tremendous contributions in recent years [10], espe-

cially in the tuning rules [11], [12], approximation [13] and 

stability conditions [14]. These previous studies drove the 

foundation for the work done in this study. 

 

In this study, then, the authors applied FoPID controllers 

to a nonlinear multilink robot system and take uncertain 

disturbances into consideration. Furthermore, the fractional 

orders of the integrators and differentiators used here are 

considered as design variables rather than pre-defined pa-

rameters. The authors studied the stability conditions and 

optimization design method for the overall comprehensive 

performance of the FoPID controllers on the basis of the 

mathematical model of an Adept 550 robot [15]. Adept 550 

is widely used in the industry. It has four axes with three 

rotational joints and one translational joint. Its beauty lies in 

its small motion envelope, high speeds and payloads. These 
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features make the Adept 550 robot a feasible tool for fast 

and precise operations in production lines, such as subas-

sembly and assembly, packaging and even driving screws. 

The authors’ complete study of FoPID controllers using the  

Adept 550 robot shows that the fractional controller could 

achieve high precise control and bring feasible approaches 

to optimize the design of the FoPID in other applications. 

 

Dynamic Model of an Adept 550 

Robot  

Figure 1. Simplified Structure of Adept 550 Robot 

 

Table 1. D-H Parameters 

 

 

 (1) 

 

 

The simplified structure of an Adept 550 robot is shown 

in Figure 1. When applying Denavit-Hartenberg (D-H) co-

ordinates to Adept 550, one can see the special case of par-

allel  z axes. Its inner and outer links are assumed to be rigid 

bodies, whose motion determines the trajectory of this ro-

bot. Its trajectory is not affected by the gripper angle adjust-

ment during the rotation of the wrist. Without loss of gener-

ality, the wrist’s rotary angle is assumed to be zero, thus the 

study could focus on the performance of trajectory tracking. 

Assuming the notations shown in Figure 1, and using the D-

H parameters of the inner (i=1) and outer (i=2) links from 

Table 1, the following matrix describes the coordinate trans-

formation of rotation and translation: 

 

The subsequent transformation matrix from the base to the 

gripper can be derived as: 

 

 

(2) 

 

 

 

The gripper’s horizontal position (Px, Py) can be expressed 

as 

 

(3) 

 

 

where βi (i = 1,2) is the angular position of the motors, and  

θi (i = 1,2) is the angle about previous z from old x to new 

x . The relationships of them are described as β1 = θ1 , β2 = 

θ1 + θ2 . Thus, we have the motor’s angular positions (β1, 

β2), forward velocity v and backward velocity , 

and backward acceleration [15]: 

 

 

 

 

(4) 

 

 

 

where   
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(6) 

 

 

and where Ja is a Jacobian matrix 
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and where 
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(10) 

 

 

 

(11) 

 

 

Applying the Lagrange method, the dynamics of the Adept 

550 robot can be described [15] as: 

 

(12) 

 

where 

 

 

(13a) 

 

 

 

 

 

(13b) 

 

 

 

 

(13c) 

 

 

 

 

(13d) 

 

 

 

(13e) 

 

 

The damping coefficients are included in matrix C . 

 

Model of Fractional-order PID Controllers 
 

Based on Equation (12), it can be assumed that the motors 

driving the inner and outer links are of the same type. Dy-

namics of the two link for k = 1,2 is described as: 

 

 

 

(14) 

 

 

 

Since βk = rθm,k , τm,k = rτk , where r is the gear ratio, the two 

dynamic equations of robot link and its driving motor ex-

pressed in Equation (14) can be combined into a single 

equation: 

(15) 

 

Now, for a fractional-order PID controller, PI
λ
D
µ , one gets 

the five design parameters summarized in Table 2.  

 
Table 2. Design Parameters for the Controller 

The closed-loop control diagram is shown in Figure 2, while 

Equation (16) describes the transfer function of this closed-

loop system . The fractional derivative used in this study is 

defined as Caputo’s fractional derivative [16]. 

Figure 2. Closed-Loop Diagram of Fractional-Order , PI
λ
D
µ  

Controlled Robot Arm 
 

(16) 

 

 

In this study, the FoPID controllers of the two arms had 

the same fractional order, λ and µ, and different coefficients. 

Besides, both the fractional order of the integrator and the 

differentiator are bounded in the range of (0, 1) in this 

study. In Equation (16), the non-linear terms, dn , are non-

linear disturbances given as: 
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Apply Caputo’s fractional-order derivative to Equation (17), 

and given βK = rθm,K , the time domain system function 

could be represented by the following matrix. 

 

 

 

                                                                                   

(18) 

 

 

 

 

where 

 

(19a) 

 

 

(19b) 

 

 

 

(19c) 

 

 

 

(19d) 

 

 

(19e) 

 

 

 

(19f) 

 

In Equation (18), the differential order of β1 β2 is λ + 2, λ 

+ 1, λ + µ and 0. Since these orders are not equally spaced, it 

is not easy to directly re-write Equation (18) in a linear ma-

trix formation. Inspired by the work of Galkowski et al. 

[17], it was assumed that λ and µ are rational numbers, 

which could be expressed by a/b and c/d and in their rela-

tively prime formats, respectively. By noting that β = [β1 ; 

β2], Equation (18) could be written as: 

                                                                                

(20) 

 

In Equation (20), Mi and U make up a coefficient matrix 

with their corresponding terms in Equation (18). One more 

thing to mention here is that not all of these coefficients are 

constant, given the uncertain disturbance. Equation (20) 

actually will be shown later to be a time variant system. By 

inserting zero matrixes, it is equivalent to rewriting Equa-

tion (20) as shown follows: 

 

 

(21) 

 

 

 

where                                                                            . 

 

Based on Equation (21) one has an equally spaced fractional

-order system on every term and, therefore, the state space 

could be defined as: 

 

(22) 

 

The entire system, then, is: 

 

(23) 

 

where 

 

(24a) 

 

 

 

 
(24b) 

 

 

 

In Equations (24.a) and (24.b),  0[2ad + 4bd ─ 2,2] is a zero 

matrix whose dimension is [2ad + 4bd ─ 2,2] and I[2ad + 4bd ─ 

2,2ad + 4bd ─ 2] is the identity matrix having the dimension of 

[2ad + 4bd ─ 2,2ad + 4bd ─ 2]. Equation (23) is the state 

space representation of our system function. The system 

matrix A has the dimension of [2ad + 4bd,2ad + 4bd] and B 

has the dimension of [2ad + 4bd,2]. The stability study and 

the design of the fractional-order PID controller will focus 

on the matrix A. Although A could have a very high dimen-

sion with a different fractional order, the fact that matrix A 

is a sparse matrix makes the task easier in most cases. 

 

Controllable, Observable and Robust 

Stability of the System 
 

Since matrix A is in the controllable canonical form, and 

consequently one state could be transferred to another, the 

system is controllable and observable. The design focuses 

on the robust stability of this system. For a fractional-order 

system, the system would be guaranteed stable if all of the 

system matrix’s eigenvalues satisfy the following criteria 

[18]. 
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Therefore, in this study, the ratio of the stable region of 

the FoPID to the integer PID is 2─1/bd. One could raise b 

and d to get a larger stable region; however, raising them 

would cause a larger dimension of matrix A and involve 

more eigenvalues since the total number of eigenvalues is 

2ad+4bd. More eigenvalues would make it harder to guar-

antee that all of them are settled in the stable region. 

 

Moreover, since A is a bounded sparse matrix with inter-

val uncertainties, there should be an infinite number of ei-

genvalues to check to satisfy the stable region if one directly 

uses the method of Equation (25). In this case, boundaries 

of each eigenvalue [18], [19] should be checked and the 

stability of the system—based on the behaviors of all eigen-

value boundaries [20]—continually analyzed. Therefore, the 

boundaries of this system, matrix A, need to be checked. 

Based on Equations (18) and (19), the following inequality 

holds: 

(26) 

 

Thus, the determinant of matrix, M1 , satisfies the condition 

 

(27) 

 

The fact that the condition in Equation (27) always holds, 

implies that matrix M1 is always nonsingular and, conse-

quently, matrix A will never be singular if Ki1 ≠ 0, Ki2 ≠ 0. 

In this design, the authors kept this condition. Thus, one 

gets 

 

(28) 

 

 

In this robot control study, and are also bounded 

because of reality. Therefore, one should also find that ma-

trix A is bounded. Plugging in the parameters used in this 

study, one gets the following boundary functions for each 

variant term in A through numerical computation, where the 

boundaries are functions of the design parameters 

(KI1,KI2,KP1,KP2,KD1,KD2,λ,µ). 
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(29c) 

 

 

 

 

(29d) 

 

 

 

Now, the robust stability of this FoPID controlled system 

at different design parameters could be studied 

(KI1,KI2,KP1,KP2,KD1,KD2,λ,µ). And this feature actually pro-

vides a criterion for optimizing the design of the controllers. 

Next, though, the authors would like to show how the de-

sign parameters, which are the coefficients and the fraction-

al order of the two FoPID controllers, affect robust stability. 

Figure 3 shows this effect. Taking the upper left frame in 

Figure 3 as an example, the rectangles drawn by blue solid 

lines show the boundaries of each eigenvalue. Since there 

are uncertainties involved in this system, the eigenvalues are 

actually located in a range rather than single spots. And 

rectangles provide sufficient boundaries for these eigenval-

ues [19]. To ensure that the system is robustly stable, the 

eigenvalues’ boundaries are not allowed to cross the stable 

boundary, which essentially is represented by the angle ±2π/

bd in this study. For a better demonstration, the non-violated 

stable boundaries are plotted by cyan solid lines and those 

violated stable boundaries by red solid lines. 

Figure 3 clearly shows that changing the combination of the 

design variables can change the overall stability of the sys-

tem. During the design of the entire set of parameters, there 

could be unlimited permutations for the choices of design 

variable set (KI1,KI2,KP1,KP2,KD1,KD2,λ,µ). The authors 

would like to apply some optimization algorithm to achieve 

the comprehensive optimized design. Since the task of opti-

mization design involves the permutation of each parameter, 

the genetic algorithm is a natural choice for this mission. 

 

Optimization Design 
 

For this design, the system contains uncertainties and one 

could only obtain the ranges for each eigenvalue. As shown 

in Figure 3, the ranges are the rectangles bounded by the 

four corner eigenvalues. Drawing down these corner eigen-

values in a complex plane and noting their arguments by 

, one could then measure the dif-

ference between these arguments and the stable boundary. 

In this way, and combined with the fact that all eigenvalues 

are symmetrical to the real axis in the complex plan, a natu-

ral optimization objective is to minimize the difference of 

stable arguments, 2π/bd, to the absolute value of each 
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Therefore, the optimization function used in this research 

can be expressed as follows: 

 

 

(30) 

 

 

In Equation (30), ψij serves as the coefficient of penaliza-

tion. There could be many methods used to assign the val-

ues of ψij , and one could separate the complex plane into 

different segments according to various criteria. Here, the 

authors looked at the two-zone and three-zone stepwise pe-

nalization methods. Table 3 summarizes these two methods. 

 
Table 3. Value of Penalization Coefficient 

Before exploring the trajectory tracking performance, the 

trajectory planning method used in this study will be intro-

duced. First, let the robot arm move in both the x- and y-

directions. Next, set the original point at 500mm by 320mm 

and allow 1 second for the robot arm to move to position 

200mm by 600mm. Figure 4 demonstrates the trajectory 

plan. Table 4 summarizes the optimization results. 

 
Table 4. Optimization Results of Design Parameters 
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Figure 3. Effect of Changing Design Variables on Overall Stability  
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Simulation Results and Conclusions 
 

Figure 5 shows a plot of the simulation results about the 

trajectory tracking. This figure includes the results from the 

system optimized by both the two-zone and three-zone 

methods. And, as a comparison, the authors included the 

results of an ordinary PID controller [15]. As shown in Fig-

ure 5, the optimized FoPID controllers have tracked the 

trajectory plan successfully. In terms of tracking error, the 

fractional system achieved a higher precision when com-

pared with the ordinary PID system. Both the two-zone and 

three-zone methods provided satisfactory optimization re-

sults and, therefore, the optimization method studied here 

can be deemed effective. The tracking error at each sam-

pling point was also recorded and the average squared track-

ing error computed, as summarized in Table 5. From Table 

5, one can clearly see that the FoPID systems have raised 

the precision of tracking by one order of magnitude. 

 
Table 5. Comparisons in terms of Mean Squared Tracking 

Errors 

 

Evidenced by the simulation results, the FoPID controlled 

Adept550 robot system could achieve better results in terms 

of trajectory tracking. And the design methods introduced in 

this paper are effective for finding the optimized design of 

the fractional controllers. This method could be easily trans-

ferred into other applications related to fractional control 

and, consequently, bring valuable results to industrial prac-

tice.  

 

In summary, then, the following conclusions are offered: 

 

1. The fractional-order control of multilink robot sys-

tems always involves disturbance or other uncertain-

ties; therefore, studying the limits of each eigenvalue 

is a feasible method for evaluating the overall stabil-

ity. Furthermore, the boundary matrix could be help-

ful in finding the optimization design of the fractional

-order controllers.  

 

2. The stepwise penalized method could be used to opti-

mize the design of FoPID systems, which allows peo-

ple to move the system’s eigenvalues toward to the 

desired regions. The method proposed in this paper 

could be generalized to other applications in the de-

sign of fractional-order controllers. 

 

3. The optimized fractional system will take advantage 

of the enlarged stable region, while avoiding any 

negative effects brought by the increased number of 

eigenvalues. Simulation results show that the opti-

mized FoPID controlled Adept550 system could 

track the planned trajectory successfully and raise the 

Figure 4. Trajectory Plan 
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precision greatly during the tracking process. This 

characteristic would bring valuable results to the 

manufacturing industry.  
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