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IN THis ISSUE (P.5)
THERMOELECTRIC GENERATORS

Philip Weinsier, [IIME Manuscript Editor

At its core, a thermoelectric genera-
tor (TEG) is a device that converts
heat energy into electrical energy.
This is accomplished when there is a
temperature difference between two
different conductors. Common |
thermoelectric ~ materials  include
bismuth telluride (BiTe) for low
temperatures, lead telluride (PbTe) for
medium temperatures, and [
skutterudites (a cobalt arsenide miner-
al containing variable amounts of
nickel and iron substituting for
cobalt—CoAs;) for high temperatures.
TEGs, using waste heat, are generally
used for power generation, cooling
electronic devices, and powering
remote devices with radioisotopes or
solar heat. And while TEGs currently
face challenges such as low efficiency and high cost,
on-going and future research is likely to find new materials
and develop advanced systems to improve performance.
Thermoelectric materials that show the Seebeck effect are
capable of generating an electric voltage in the presence of a
temperature difference and are classified into two types:
n-type and p-type. N-type materials have extra electrons,
while p-type materials lack electrons that, when connected
in series with metal electrodes, form a thermocouple, which
is the basic unit of a thermoelectric generator.

A thermoelectric module, then, is made up of many such
thermocouples connected electrically in series and thermal-
ly in parallel. A thermoelectric module has two sides—a hot
side, to be exposed to the heat source, and a cold side, to be
exposed to a heat sink. The temperature difference created
across the two sides of the module causes current to flow in
the circuit. And, as with most any other power source, this
resulting current can be used to power an external load or
charge a battery.
Higher  voltages
and power outputs
depend on the
number of thermo-
couples, the
temperature differ-
ence, the Seebeck
coefficient, and the
electrical and
thermal resistances
of the materials,
while the efficien-

Nawnoscale thermoelectric generator on a chip.

cy of TEG is a function of the ratio of
electrical power output to heat input.
This efficiency is limited by the
Carnot efficiency, or the maximum
possible efficiency for any heat engine
between two temperatures. The actual
efficiency of a TEG, however, is much
lower than the Carnot efficiency due to
various losses including Joule heating,
thermal conduction, and thermal
radiation.

39 In 1821, Thomas Johann Seebeck
(A German physicist) published his
novel idea: the generation of an
electric current using the thermody-
namic properties of the involved
materials. This marked a new way to
understand thermoelectric phenomena
and their implications and paved the way for other research-
ers to develop other similar ideas. This Seebeck effect
would become the basis for thermocouples, TEGs, and oth-
er related technologies.

Heat source

Heat exchanger
(Hot side)
Interface material
(Thermal grease)

On an interesting
historical note, it was
William Thomson
(Lord Kelvin) who
began the study of
irreversible processes
out of equilibrium by
formally  analyzing £
the phenomenon of
thermoelectricity.
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W LIITTITITTL
 — - - = Electric insulator

(Ceramic)

Electrical conductor
(Copper)

Heat exchanger
(Cold side)

P
 —

[T

T

Heat sink

In the featured article in this issue of IJME (p.5), the
authors note that while TEGs are robustly built for energy
harvesting on planar surfaces and in non-vibratory environ-
ments, many waste-heat producing environments are locat-
ed in non-planar and vibratory areas. Such vibratory areas
introduce a challenge for the use of bismuth telluride, as it
is a brittle material typically used to make the TEG
elements (legs). The authors then respond to the dilemma of
how to use TEG devices in non-planar and vibratory
environments without experiencing premature structural
failures by developing a newly reconfigured composite
TEG leg that could provide opportunities to harvest energy
in these vibratory environments. The tradeoff would amount
to a slightly reduced overall power generation (6%)
compared to no access to the free waste energy in these
environments.

EDITOR’S NOTE (IN THIS ISSUE): THERMOELECTRIC GENERATORS


https://www.freepik.com/premium-ai-image/nanoscale-thermoelectric-generator-chip_266950205.htm

Ajay Aakula
Mohammed Abdallah
Paul Akangah

Ali Alavizadeh
Lawal Anka
Jahangir Ansari
Sanjay Bagali

Kevin Berisso
Sylvia Bhattacharya
Monique Bracken
Tamer Breakah
Michelle Brodke
Shaobiao Cai
Vishnu Chakravaram
Rajab Challoo

Isaac Chang
Shu-Hui (Susan) Chang
Rigoberto Chinchilla
Phil Cochrane
Emily Crawford
Z.T. Deng

Sujata Dutta
Marilyn Dyrud
Mehran Elahi
Ahmed Elsawy
Cindy English

Liew Fang

Ignatius Fomunung
Ahmed Gawad
Hamed Guendouz
Kevin Hall

Mamoon Hammad
Bernd Haupt
Youcef Himri
Delowar Hossain
Xiaobing Hou

Ying Huang
Christian Bock-Hyeng
Pete Hylton

John Trwin

Toqeer Israr

Alex Johnson

Rex Kanu

Reza Karim

Manish Kewalramani
Tae-Hoon Kim
Chris Kluse

Doug Koch

Resmi Krishnan
Zaki Kuruppalil
Shiyoung Lee
Soo-Yen (Samson) Lee
Chao Li

Jiliang Li

Zhaochao Li

Neil Littell

Dale Litwhiler

Ying Liu

Albert Lozano-Nieto
Mani Manivannan
G.H. Massiha
Thomas McDonald
David Melton

Kay Rand Morgan
Sam Mryyan

Jessica Murphy
Arun Nambiar
Rungun Nathan
Aurenice Oliveira
Troy Ollison

Editorial Review Board Members

Eastern Illinois University (IL)

State University of New York (NY)
North Carolina A&T State University (NC)
Purdue University Northwest (IN)
Zamfara AC Development (NIGERIA)
Virginia State University (VA)

Acharya Institute of Technology (INDIA)
Memphis University (TN)

Kennesaw State University (GA)
University of Arkansas Fort Smith (AR)
Ball State University (IN)

Bowling Green State University (OH)
Minnesota State University (MN)
Electrolux Group (TN)

Texas A&M University Kingsville (TX)
Illinois State University (IL)

Iowa State University (IA)

Eastern Illinois University (IL)

Indiana State University (IN)

Claflin University (SC)

Alabama A&M University (AL)

Target Corporation (MN)

Oregon Institute of Technology (OR)
Elizabeth City State University (NC)
Tennessee Technological University (TN)
Millersville University (PA)

Universiti Malaysia Perlis (MALAYSIA)
University of Tennessee Chattanooga (TN)
Zagazig University EGYPT)

Yahia Farés University (ALGERIA)
Western Illinois University (IL)

Abu Dhabi University (UAE)

Penn State University (PA)

Safety Engineer in Sonelgaz (ALGERIA)
City University of New York (NY)
Central Connecticut State University (CT)
North Dakota State University (ND)
North Carolina A&T University (NC)
Indiana University Purdue (IN)

Michigan Tech (MI)

Eastern Illinois University (IL)
Millersville University (PA)

Purdue Polytechnic (IN)

North Dakota State University (ND)

Abu Dhabi University (UAE)

Purdue University Northwest (IN)
Bowling Green State University (OH)
Southeast Missouri State University (MO)
Bowling Green State University (OH)
Ohio University (OH)

Penn State University Berks (PA)
Central Michigan University (MI)
Florida A&M University (FL)

Purdue University Northwest (IN)
Morehead State University (KY)

Ohio University (OH)

Penn State University (PA)

Savannah State University (GA)

Penn State University (PA)

ARUP Corporation

University of Louisiana (LA)

University of Southern Indiana (IN)
Eastern Illinois University (IL)
Mississippi State University (MS)
Excelsior College (NY)

Jackson State University (MS)

California State University Fresno (CA)
Penn State Berks (PA)

Michigan Tech (MI)

University of Central Missouri (MO)

Reynaldo Pablo
Basile Panoutsopoulos
Shahera Patel
Swagatika Patra
Thongchai Phairoh
Huyu Qu

Desire Rasolomampionona

Michael Reynolds
Nina Robson

Marla Rogers
Raghav Rout

Dale Rowe

Anca Sala

Alex Sergeyev
Mehdi Shabaninejad
Hiral Shah

Natalie Shah

Deepa Sharma
Mojtaba Shivaie
Musibau Shofoluwe
Jiahui Song

Harold Terano
Sanjay Tewari
Vassilios Tzouanas
Jeff Ulmer
Abraham Walton
Haoyu Wang
Jyhwen Wang
Boonsap Witchayangkoon
Shuju Wu

Baijian “Justin” Yang
Faruk Yildiz

Yugiu You
Pao-Chiang Yuan
Afshin Zahraee
Jinwen Zhu

Purdue Fort Wayne (IN)

Community College of Rhode Island (RI)
Sardar Patel University (INDIA)

NVIDIA Corporation (CA)

Virginia State University (VA)

Broadcom Corporation

Warsaw University of Tech (POLAND)
University of West Florida (FL)

California State University-Fullerton (CA)
C Spire

SMART Modular Technologies

Brigham Young University (UT)

Baker College (MI)

Michigan Technological University (MI)
Zagros Oil and Gas Company (IRAN)

St. Cloud State University (MN)

Florida Institute of Technology (FL)
Maharishi Markandeshwar Univ. (INDIA)
Shahrood University of Technology (IRAN)
North Carolina A&T State University (NC)
Wentworth Institute of Technology (MA)
Camarines Sur Polytechnic (PHILIPPINES)
Missouri University of Science &Techn (MO)
University of Houston Downtown (TX)
University of Central Missouri (MO)
University of South Florida Polytechnic (FL)
Central Connecticut State University (CT)
Texas A&M University (TX)

Thammasat University (THAILAND)
Central Connecticut State University (CT)
Purdue University (IN)

Sam Houston State University (TX)

Ohio University (OH)

Jackson State University (MS)

Purdue University Northwest (IN)

Missouri Western State University (MO)

INTERNATIONAL JOURNAL OF MODERN ENGINEERING | VOLUME 26, NUMBER 1, FALL/WINTER 2025



POWER GENERATION AND EFFICIENCY FOR A
FLEXIBLE THERMOELECTRIC STRUCTURE

John Mativo, University of Georgia; Paul Asunda, Purdue University

Abstract

Thermoelectric generators (TEG) are robustly built for
energy harvesting in planar surfaces and non-vibratory envi-
ronments. However, many waste-heat producing environ-
ments are located in non-planar and vibratory areas. The
non-planar and vibratory areas challenge the use of bismuth
telluride, a brittle material that is typically used to make the
TEG elements (legs). A dilemma exists of how to use the
TEG devices in non-planar and vibratory environments
without experiencing a structural premature failure. A
reconfiguration of the TEG’s legs to incorporate an element
of flexibility was used to determine its effects on power and
efficiency. Incorporating flexibility in the leg required the
removal of some base material from each leg and then either
leave it void or fill it with a polymer. In this study, the
authors explored three variant configurations of a pair of
TEG legs. Findings indicated a viability of reconfigured
TEG legs for use in vibratory environments at the cost of
reduction in power generation and efficiency.

Introduction

Thermoelectric generators (TEG) are designed to convert
waste heat into electricity. Waste heat is a byproduct of a
process that has expended energy. Prime examples of where
waste heat can be found include the transportation industry,
manufacturing, power plants, buildings, and animals. When
harvested, waste heat can significantly improve the efficien-
cy of the process. The challenge with TEGs used in conver-
sion of waste heat into electricity for temperatures up to
230°C is that they are made of bismuth telluride (Bi,Te3), a
brittle material that breaks easily in vibratory environments.
The TEG potential for the future is large. TEG devices are
light, reliable, have no moving parts, and can be used in
hostile and inaccessible environments (Baskaran & Raja-
sekar 2025; He, Schierning & Nielsch, 2018; Telkes, 1947).
The study of TEG power and efficiency is based on flexible
configurations (Mativo, Hallinan, George, Reich & Stein-
inger, 2021). In that study, the authors defined a unit cell as
two legs sandwiched between top and bottom covers, as
illustrated in Figure 1.

The authors of this current study largely explored how to
optimize a thermoelectric generator for a vibratory environ-
ment. Most of the work presented here deals with mechani-
cal loading on the TEG structure and how it could be
modified to better serve vibratory environments. To better
understand the effects of TEG structural modification on
power generation, the authors compared a baseline model
with a reconfigured model. LeBlanc observed three consid-

erations required for a TEG design: geometry, fill factor,
and leg size (LeBlanc, 2014). All three play a large role in
the tradeoffs of thermal conductivity and electrical resistivi-
ty. The unit cell model was based on the Marlow TG12-6
TEG (Marlow Industries, 2015). The S, is a positive leg
(p-type) that has fewer electrons than the S, negative leg
(n-type). The two legs are made of bismuth telluride and
one is doped to remove or add electrons.

Compression loading Qi

e 1

Shear load (fin)

Lour

Leg: Si(x.y) Leg: Sa(x.y)
Street (insulated)
Fixed —> — x

Qout Heat Sink

Heat Sink Qout

Figure 1. A general unit cell for a TEG subjected to mechanical
and thermal loadings (Mativo et al., 2021).

Figure 1 shows that compressive and shear mechanical
loading were applied while the bottom surface was consid-
ered fixed. This study explored TEG structural flexibility.
Further, a uniform thermal load (heat flux) was applied
while the bottom, a heat sink, was assumed to have zero
thermal resistance. The unit cell legs (S; and S,) were the
domains, where the Bi,Te; was placed to support both struc-
tural and thermal loads. Figure 2 shows the two domains,
where a reduction of BiyTe; was applied and left void or
filled with a polymer. The street between the legs was
considered perfectly insulated (Mativo et al., 2021).

kMY Compression loading Tt

Shear load (fin)

Leg: Si(xy) —— Ut
Void ——  Void
Street (insulated) Leg: Sa(x,y)
Fixed —> —>x

Figure 2. Exploring new structure (Mativo et al., 2021).

Method

In a study by Mativo et al. (2021), the authors discussed
in detail the flexibility of a TEG leg structure. In another
study by Mativo (2020), the author provided details of the

INTERNATIONAL JOURNAL OF MODERN ENGINEERING | VOLUME 26, NUMBER 1, FALL/WINTER 2025 5



three TEG configurations and their respective behavior,
when structural and thermal loading were applied. The tool
used to layout the design domain and create and study the
TEG unit cell was a finite element-based tool developed
within MATLAB (Mativo, 2020). The intent in this current
study was to determine the current produced and the accom-
panying efficiency of the TEGs. After a general discussion
of power generation in TEGs, the authors present three
additional parts: a) replication of a previous study to verify
the MATLAB tool used to conduct the rest of the experi-
ments; b) application of the verified tool to a Marlow
TG12-6 used as the baseline of the experiments; and,
c) a unit cell with legs that have a polymer filling the void
spaces.

Power Generation

Power generation within a TEG is controlled by the
Seebeck, Joule, and Thomson effects. The Seebeck effect
describes how temperature difference between two dissimi-
lar conductors produces electromotive force (emf) between
them. For this case, the p-type leg contained a positive
charge, while the n-type leg held a negative charge. The emf
was a catalyst for the thermally excited electrons to move,
resulting in current flow. To better illustrate the differences
in the legs, ALGOR was used to visually display the results
in color. Figure 3 shows how a heat source of 230°C was
applied on the left side and a heat sink of 50°C was applied
on the right. The figure further shows that, although the
temperature distribution along the legs was the same, a
maximum heat flux value of 349,894 J/m’s was generated
on the left n-type leg of Figure 4, while a minimum heat
flux value of 1679 J/m’s was found on the right side on the
p-type leg. This action is represented in Equation 1:

a=V /AT )

where, a is the Seebeck coefficient, V' is electromotive force
or voltage, and AT is difference between hot and cold

temperatures.

Figure 3. Temperature distribution in a unit cell.

Figure 4. Heat flux distribution in a unit cell.

Joule heating happens when current flows through a
material that offers resistance to flow. The amount of heat
produced is represented in Equation 2:

O, =I"R )

where, Q; is joule heating, / is current, and R is electrical
resistance.

The Thompson effect relates to the rate of generation of
heat resulting from the flow of current along an individual
conductor with a temperature difference (Olivares-Robles,
Badillo-Ruiz & Ruiz-Ortega, 2020; Ruiz-Ortega, Olivares-
Robles & Ruiz, 2018; Saqr & Musa, 2009; Rowe, 2006).
The Thomson effect is represented in Equation 3:

0, = BIAT 3)

where, f is the Thomson coefficient, Q, is the rate of
reversible heat absorption, 7 is the current flow, and AT is
temperature difference between the ends of the conductor.

The performance of the TEG is greatly influenced by the
figure of merit (Z), as shown in Equation 4:

7 — 0(20' (4)

where, a’o is the electrical power factor and £ is the thermal
conductivity.

Multiplying with temperature, Z becomes unitless and is
represented by ZT, a dimensionless figure of merit. A higher
ZT is associated with a higher TEG power generation.
In order to obtain a maximum figure of merit, the geometry
and material properties for the TEG should satisfy Equation
5 (Chen, Meng & Sun, 2012; Kanimba & Tian, 2016;
Rowe, 2006; Yang et al., 2021):

2 g2
AL _k Py 5)
2 12

An LP kp p n
where, 4,,1s the cross sectional area of the positive leg; 4, is
the cross sectional area of the negative leg; L, and L, are leg
lengths for the negative and positive legs, respectively;
k, and k,, are the thermal conductivity for the negative and
positive legs, respectively; and, p, and p,, are electrical resis-
tivity for the negative and positive legs, respectively.

Equation 6 is used to determine power:
P=0Q,-0,=N(aIAT-I'R) (6)

where, P is power, O, is the heat source, Q. is the heat sink,
and N is the number of legs.

The equation used to calculate the thermal power efficien-
cy of a TEG is shown in Equation 7:

P
_P )
(o)

where, 7 is efficiency.
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These equations and the Marlow TG12-6 leg geometry,
where the Bi,Te; material completely fills the TEG legs
(S; and S, domains), were used to create a MATLAB code
(tool) to study the power generation and efficiency of
various configurations, as noted earlier in this section.

Prior Study and Tool Verification

In their study of power generation and efficiency of
uniform, cross-sectional areas of TEG legs, Kanimba and
Tian (2016) observed that power as a function of current
behaved in a parabolic manner having an optimal power at a
specific current, as shown in Figure 5. A higher temperature
input resulted in a higher power. The line graphs represent
100°C increments from 200°C to 400°C from the bottom
graph to the top, respectively. The temperature on the heat
sink was maintained at 100°C.

Power vs. Current
T T T T I I

| —— bottom =200C, middle = 300C, top =400C |

Power (w)

L L L L L
2 4 10

Current (A) ‘

Figure 5. TEG output power as a function of electrical current.

Efficiency vs. Current
T T

T T T T

[ eottom =200, midate -sv0c,1on-av0c |

Efficiency (eff)

6 8
Current (A)

Figure 6. Efficiency as a function of current.

Figure 6 shows efficiency as a function of current for a
uniformed TEG leg cross-sectional area. The behavior
patterns of the efficiency curve were similar to the power
curves. The tool was then used to study the baseline unit
cell and the reconfigured composite models.

Baseline Model

The MATLAB tool was used to establish a baseline for
comparison of a TEG leg—with a uniform, cross-sectional
areca—with that of a variable, cross-sectional area. New
temperature conditions for this study were used with a high
starting from 110°C and rising to 230°C with increments of
60°C. These temperatures correspond to those of the
Marlow TG12-6, which was the TEG baseline model for
this study. The sink temperature for this experiment was set
at 50°C. The parabolic graph of Figure 7 shows the results
of the investigation of power as a function of current. The
graph also indicates lower values than previously described
in the Kanimba and Tian study (2016). The difference was
attributed to lower temperatures used.

Power vs. Current
T

12 T 1 T T

| —— bottom =110C, middle =170C, top=230C

Power (w)

) L 1 L L 1
2 4 3 8 10 12
Current (A)

Figure 7. Output power as a function of electrical current for
baseline TEG.

Investigating efficiency as a function of current also
resulted in the parabolic graph of Figure 8. This graph is
similar to the Kanimba and Tian study (2016). Overall,
these experiments ran at 36% of those found by Kanimba
and Tian. This was expected because of the difference in the
temperatures in both experiments.

o Efficiency vs. Current
05 1 T T

T
| —— bottom =110C, middle = 170C, top = 230C |

Efficiency (eff)

" current(n)

Figure 8. Efficiency as a function of current for baseline TEG leg.
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Reconfigured Composite Leg Solution

In an effort to understand the effects of voids in the TEG
element with respect to structural displacement behavior
and power generation, Mativo et al. (2021) studied volume
fraction of the base material from 100% and stopped at 40%
where structural instability occurred. Table 1 presents the
structural design parameters.

Table 1. Structural design parameters (Mativo, 2020).

TEG, tradeoffs between thermal conductivity and electrical
resistivity were considered (LeBlanc, 2014). Filling the
voids transformed the leg into a reconfigured composite
TEG leg and removed the thermal flow restriction that
would have required higher temperatures to enable convec-
tion and radiation, respectively, to expand the heat path.

Table 2. Displacement, power, and shape of an integrated TEG for
the vibratory environment (Mativo et al., 2021).

Design parameter Quantity

60 units in the x direction

Design domain — —
20 units in the y direction

20 units in the x direction

Fixed void region — ——
16 units in the y direction

Leg height 16 mm

Leg cross-sectional area 400 mm
Bismuth telluride density 7.8587 g cm™
Bismuth telluride Young’s modulus 8.1 -50 GPa
]S'j;;zr;l;ttﬁl telluride ultimate tensile 74 GPa
Bismuth telluride density 7.37 g/em’
Bismuth telluride melting point 585°C

Bismuth telluride Seebeck

. 0.000215, -0.000215 v K'!
coefficient, oy, oy

Bismuth telluride thermal

\f/olu_me Displz?)cement Power0 generation Shape

raction (%) at 230°C (W/mK)
100 5.04 1.0499 ._.
o0 | sss 09725 u
80 6.36 0.8937 u
70 7.84 0.8115 m_m
60 10.31 0.7264 “ H
50 12.90 0.6374 H
40 14.20 0.5313 il IE

conductivity, ky, k, 1.47 W K
Temperature—heat source 110°C < T <230°C
Temperature—heat sink 50°C

Poisson’s ratio 0.23

Table 2 depicts various volume fractions that illustrate
reconfigured models. The reconfigured TEG legs in this
study occupied approximately 70% of the total baseline
area. This percentage maintained the integrity of the struc-
ture as thermal load was applied. Beyond this percentage,
the legs became unstable and were unable to hold the
applied mechanical loading. The reconfigured design
depicts the top of each leg with void regions and less mate-
rial creating connectivity to the top cover which allowed
flexibility induced by shear loading. While the design
increased TEG flexibility, it also introduced barriers to heat
paths caused by the voids. Figures 9 and 10 show how the
authors overcame this barrier by using a conducting poly-
mer, PEDOT:PSS, without additional thermal restrictions,
because of the similar thermal conductivity of the two mate-
rials (Faghani, 2010; Zhang, Sun, Katz, Fang & Opila,
2010; Song et al., 2013; Liu, Wang, Li, Coates, Segalman &
Cahill, 2015). When selecting material properties for the

Figure 9. Topology of an optimal TEG unit cell indicating where
PEDOT:PSS was applied.

Figure 10. Reconfigured composite TEG unit cell.

As a polymer, PEDOT:PSS does not interfere with the
flexibility of the reconfigured TEG leg. It was assumed that
the interface between the Be,Ti; and PEDOT:PSS would
have no effect on the calculation of power and efficiency of
the reconfigured leg. Figure 10 shows the interface. The
new bismuth telluride and PEDOT:PSS reconfigured
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composite TEG legs of Figure 10 provided both flexibility
and an enhanced heat transfer path for the temperatures used
in this study. Various heat source temperatures (e.g., 230°C,
170°C, and 110°C) were applied across the heat plate at
different times, and a heat sink of 50°C was set. The recon-
figured composite TEG leg model was subjected to the
temperature gradients at equal intervals. Figure 11 shows
power as a function of current behaving in a parabolic
manner. It follows that a higher temperature input resulted
in a higher power. The line graphs represent 60°C incre-
ments from 110-230°C. The temperature at the heat sink
was maintained at 50°C. Following the baseline graph,
Figure 12 shows a higher efficiency.

Power vs. Current
1 T T T

T

09 ‘ bottom = 110C, middle = 170C,top = 230C
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Figure 11. Output power as a function of electrical current for a
TEG reconfigured composite leg.

Efficiency vs. Current
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Figure 12. Efficiency as a function of current for a reconfigured
composite TEG leg.

The power output generated by the reconfigured compo-
site leg was slightly below (94%) the baseline. Table 3
shows an overall power generation comparison between the

baseline and the reconfigured composite models. Table 4
shows that the reconfigured composite leg had a 3%
increase in efficiency.

Table 3. Maximum power generation for the two models.

Dot | maetne i | Sl
230°C 1.0499 0.9844
170°C 0.4667 0.4375
110°C 0.1163 0.1094

Table 4. Maximum efficiency for the two models.

Dot | puney | S
230°C 4.85 4.99
170°C 3.31 3.41
110°C 1.69 1.74

The power decrease and efficiency increase shown in
Tables 3 and 4 were influenced by the change in the compo-
sition of the TEG leg with bismuth telluride at 70%, while
holding PEDOT:PSS at 30%. In studying the effects of
power and electrical resistivity of the reconfigured compo-
site, it was determined that power generated from higher
temperature was more impacted than from lower tempera-
tures. Figure 13 shows how this can be caused by the higher
difference in temperature gradient.

Power vs. Resistivity of TEG reconfigured composite leg

[——bottom = 110C, middle = 170C,top = 230C |
1
08 1
z
T 06 1
B
o
Q
o4r T ST T T 1
02 1
o ‘ ‘ ‘ .
1.65 17 1.75 1.8 1.85 1.9

Reconfigured resistivity, (chm-m)

Figure 13. Power decreases in the reconfigured composite TEG
leg.

Interestingly, Figure 14 indicates that this study of effi-
ciency and resistivity of a reconfigured composite leg had
an increase in efficiency across all input temperatures, with
all temperatures assuming the same proportional increase.
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Figure 14. Increase in efficiency for the reconfigured composite
TEG leg.

Discussion

Three models were examined in this study. The first
model was developed to verify the MATLAB tool for accu-
racy of the studies to follow. The second experiment studied
the baseline model. Results reflected what the Marlow
TG12-6 data sheet contained. All models withstood the
compression loads specified for the baseline model. The
baseline model failed when shear load was applied to it. It
was rigid, yet generated the most power per unit cell. The
reconfigured composite model generated power at 94% of
the baseline model and withstood half of the applied shear
load when compared to the baseline model (Mativo, 2020).
It should be noted that all experiments in this study were
simulations. It is believed that scholarly environments with
physical facilities that can build and test the TEG could do
so and verify these findings.

The findings from this study suggest that a reconfigured
composite TEG leg with a uniform cross-sectional area can
safely operate in a vibratory environment. Reconfigured
composite TEG legs indicates that both flexibility and
thermal conductivity can be achieved by careful structural
design and filler material selection. The authors sought to
minimize the difference between Bi,Te; and the conducting
polymer to fill void regions in the reconfigured design, and
PEDOT:PSS was the closest choice. The small difference in
the two materials resulted in slightly less power and higher
efficiency, when compared to the reconfigured void model.
The result was influenced by the polymer path, as opposed
to no path (void). The Seebeck effect and thermal conduc-
tivity significantly influenced the final outcomes.

Conclusions

The authors attempted to determine the effects of a recon-
figured leg on power generation and efficiency. Using the

original rectangular legs as a baseline for the study, the
authors found that, even though both leg models occupied
the same amount of space, the reconfigured leg used about
30% less bismuth telluride. The reconfigured composite
TEG leg incorporated PEDOT:PSS to fill the void regions
and its power and efficiency results were close to the base-
line while adding flexibility, which was the impetus for the
original study. It is worth noting that scalability was not
considered for this experiment. The assumption was that the
mechanical and electrical aspects of the reconfigured TEG
model would yield an overall gain of flexibility with mini-
mum power generation loss.

The new reconfigured composite TEG leg is beneficial, as
it can provide opportunities to harvest energy in non-planar
and vibratory environments. A tradeoff of slightly reduced
overall power generation (6%) compared to no access to
free waste energy in vibratory environments is worth
consideration. Many waste heat-emitting sources such as
engines, boilers, bridges, and vehicles are vibratory in
nature and can use the harvested energy to further their
missions or run auxiliary systems. Finally, an increase in
efficiency is welcome.
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UTILIZING MACHINE LEARNING MULTI-OUTPUT
REGRESSION METHODS TO PREDICT TURNING
MOVEMENTS AT INTERSECTIONS

Somayeh Nazari Enjedani, Boise State University; Mandar Khanal, Boise State University

Abstract

Traffic signal timing design at intersections requires data
on the turning movements (TMs) of vehicles that travel
through the intersections. Turning movements at traffic
intersections refer to the directional choices that drivers of
the vehicles make—left turns, through movements, right
turns, and U-turns—as they navigate the intersection. Tradi-
tional methods of TM data collection are costly, time-
consuming, and do not deliver real-time data. Alternative
techniques such as video image processing enable the near-
real-time collection of approach volumes and turning move-
ments. However, these methods require expensive, special-
ized equipment at the intersection. As a result, manual
counting has remained the predominant method for collect-
ing TM data at intersections.

In this current study, the authors developed a robust
method for collecting TM data. The TM counts, approach
volume, intersection type, and lane configuration of 400
intersections around Ada County, Idaho, USA, were
analyzed to develop an accurate and reliable turning-
movement estimation model. A total of 2400 hours of TM
counts were used. Three different machine learning multi-
output regression methods were applied to analyze the
relationship between the approach volumes and the corre-
sponding turning movements, intersection type, and lane
configuration. The results indicated that the developed
model had a remarkable capability for accurately forecast-
ing TMs.

Introduction

In order to undertake traffic operational analysis and
design studies such as intersection design and signal timing
design, transportation engineers and planners need accurate
turning-movement counts at intersections (Noyce, Bill,
Chitturi & Santiago-Chaparro, 2019). It is not costly or
complicated to collect approach volumes using existing
vehicle detection infrastructure. Loop detectors, microwave
detectors, and video-imaging detectors are all examples of
stationary sensors that have long been employed to count
approach volumes (Vigos & Papageorgiou, 2010). These
devices are capable of measuring approach volumes, but
they are unable to measure TMs. TMs are the categorization
of an approach traffic stream into left, right, and through
streams that pass through the intersection (Karapetrovic &
Martin, 2021). Numerous researchers have made efforts to
suggest novel ways to calculate TMs from approach

volumes, but none has been found to be effective enough for
use in the U.S. Many of the proposed methods require
special equipment that is expensive to install or has a
limited scope of use. For example, they may not work when
there is a shared lane. Currently, manual counting remains
the most common approach for collecting TM data, even
though there are several drawbacks to it. There are several
issues that arise while collecting TMs through manual
counts. Manual counting is a tedious and time-consuming
method representing snapshots in time; as such, it is unable
to provide traffic data in real-time or on a continuous basis,
which is necessary for gaining insight into how traffic
patterns change over time (Ghods & Fu, 2014). Replacing
manual traffic counting with superior techniques can
provide more accurate, efficient, and comprehensive data on
traffic flow, which can help city planners and traffic engi-
neers make better decisions about traffic management and
infrastructure improvements.

The estimation of future traffic confronts transportation
engineers and planners with an additional challenge.
Turning movements are typically approximated using the
origin-destination (O-D) matrix, when traffic agencies fore-
cast future traffic for existing or planned traffic networks.
The O-D matrix thereafter undergoes iterative operations to
achieve equilibrium in the turning movements (Project Traf-
fic Forecasting Handbook, 2014). While this methodology
is frequently used and acknowledged as a conventional
procedure, constructing the origin-destination matrix
requires comprehensive surveys and is contingent upon
varying land-use assumptions. Consequently, it is essential
to revise the O-D matrix in response to any changes in the
adjacent land use. Furthermore, in instances where the traf-
fic network is of limited scale, such as in the scenario of an
isolated intersection, the practicality of using an O-D matrix
is questionable. In light of the aforementioned limitations, it
is essential to explore other approaches for calculating TMs.

This study departs from the conventional methodology
that relies on a predefined set of assumptions and iterative
adjustments to attain a balance between inbound and
outbound traffic. Instead, a machine learning (ML)
approach was adopted that focused on understanding the
intricate relationships between approach volumes, turning
movements, and various traffic and geometric attributes of
intersections. These insights were then utilized to develop
predictive models. ML methods, a subset of artificial intelli-
gence, empower computers to autonomously learn and
make predictions or decisions without explicit task-specific
programming. They discern patterns within the data and
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subsequently employ these patterns to make informed deci-
sions. Furthermore, ML methods possess the capability to
extend predictions to unseen data, based on patterns gleaned
from existing data sources. In this current study, the authors
took advantage of ML methods to solve the problem of TM
counts at intersections.

This research entailed the training of ML techniques on
manual count data to meticulously investigate the relation-
ship between approach volumes and the corresponding
turning movements, as well as two other key features of
intersections. A number of earlier studies also attempted to
find the relationship between turning movements and
approach volumes with the aid of ML approaches. In this
current study, however, the authors aimed to enhance previ-
ous research by including more crucial intersection features
in the predictive variables of the model. These additive
predictive variables were descriptive variables, as opposed
to approach volumes that are numerical variables. Using a
combination of numerical and descriptive variables as
predictive variables helps to capture a broader range of rela-
tionships in the data. The two descriptive data items applied
in this study gave more information about the lane configu-
ration of approaches and the type of intersection.

For this study, manual count information and geographic
data from around 400 intersections in Ada County, Idaho,
were collected and encompassed 1242 manual count data
sheets. Additionally, a detailed database on lane configura-
tion for each approach at every intersection and intersection
type was generated. The results from applying ML models
to the final data frame revealed that the proposed approach
has the potential to serve as a robust platform for the utiliza-
tion of the available manual count of approach volume data
to estimate TMs at intersections. It can, then, contribute
significantly to intersection and signal timing design for
intersections and can either fill data gaps in current situa-
tions or make predictions for future intersections where data
are scarce or nonexistent.

Literature Review: Materials and Methods

Researchers have long endeavored to find an alternative
technique to replace manual counts. They attempted to
calculate TM data by utilizing the origin-destination (O-D)
matrix, but this strategy proved to be imprecise and unsta-
ble. O-D matrices are often used in transportation planning
as a means of aggregating data to show the overall number
of trips between certain zones or places. The provided infor-
mation lacks specificity on the movement patterns of vehi-
cles inside designated areas, especially within intersections.
To solve the problem, these methods consider some unreal-
istic assumptions that make the results inaccurate. Besides,
these methods are not able to give real-time TM data (Nihan
& Davis, 1989; Pratelli, Sordi & Farina, 2021). Several
researchers have tried to develop mathematical algorithms
that can use data obtained by detectors to determine the
TMs of vehicles based on approach volumes. These

methods, however, have always been severely constrained.
For example, some of them were inapplicable to intersec-
tions with shared lanes or those that did not have a simple
geometry (Hauer, Pagitsas & Shin, 1981; Maher, 1984;
Mahmoud, Abdel-Aty, Cai & Yuan., 2021; Noyce, Chittori,
Santiago-Chaparro & Bill, n.d.; Virkler & Kumar, 1998).

A number of other researchers attempted to determine
TMs by analyzing the data obtained from pre-existing video
detection systems installed at signalized intersections
(Shirazi & Morris, 2016; Yi & Zhang, 2017; Shirazi & Mor-
ris, 2014; Bélisle, Saunier, Bilodeau & Le Digabel, 2017).

Yet others proposed methodologies for intersections
equipped with radar-based, vehicle-detection systems
(Santiago-Chaparro, Chitturi, Bill & Noyce, 2016).

Although some of these methods were successful, one
primary concern associated with these methodologies was
the limited versatility of video detection devices or radar-
based sensors, resulting in a limited number of potential
uses of these systems. Furthermore, all of these techniques
incurred significant costs, due to the need to deploy specific
equipment at the intersections. The advent of connected
vehicles (CVs) opened up several opportunities for improv-
ing the operation of traffic signals. It encouraged some
researchers to use CV data to aid in estimating TMs. What
prevents these methodologies from becoming practical is
the low penetration rate of CV data. The assumed penetra-
tion rate in these studies was much higher than the real
penetration rate (Saldivar-Carranza, Li & Bullock, 2021;
Saldivar-Carranza, 2021). Still other researchers attempted
to address this problem, but CV data were still not free at
the time, and organizations were required to pay for it
(Zheng & Liu, 2017; Nazari Enjedani & Khanal, 2023).

Alternatively, a number of scientists have attempted to
model TM counts at intersections using machine learning
methods. In one study, the authors proposed a method for
estimation of TMs based on approach volumes using an
artificial neural network (ANN). This method relies on
understanding the underlying relationships between the
approach volumes and the TMs, and then using these rela-
tionships to make predictions (Ghanim & Shaaban, 2019).
In another attempt of applying ML methods to solve the TM
problem, machine learning-based regression models, includ-
ing Random Forest Regressor (RFR), multi-output regressor
(MOR), and an artificial neural network (ANN) model,
were developed and trained to analyze the relationship
between approach volumes and corresponding turning
movements (Shaaban, Hamdi, Ghanim & Shaban, 2022).
What distinguishes these models is their singular focus on
the correlation between approach volume and turning move-
ments (TMs). Remarkably, they do not consider the geomet-
ric details or any other distinctive intersection features in
their computations. However, it is important to acknowledge
that TM is influenced by factors beyond approach volumes.

In this current study, the authors endeavored to pioneer a
more comprehensive approach by crafting a multi-output
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TM regression ML model. The innovative model described
in this paper delves into the intricate web of relationships
between approach volumes, intersection types, lane configu-
rations, and the corresponding turning movements. The goal
was to provide a holistic understanding of how these multi-
faceted factors collectively influence vehicular movements
at intersections.

ML-Based, Multi-Target Regression
Models for Predicting Turning Movements

The purpose of this research project was to create and
assess ML-based, multi-target regression models for esti-
mating TMs at signalized intersections. When there is a
scarcity of traffic data, or TM counts, the benefits of such
models become readily apparent. In particular, when only
approach volumes (either actual or forecast) are provided,
the proposed models would create dependable and effective
TMs. The multi-target regression models convey the
relationship between the approach volumes, intersection
classification, lane configuration, and the corresponding
turning movements. After developing the turning movement
models, predicting turning movement volumes from
approach volumes becomes possible and practicable. When
working with planning data or newly planned intersections,
the use of such models becomes even more valuable.

Figure 1 depicts a typical four-legged intersection. There
are three potential TMs for each approach: right, through,
and left. U-turns are added to left-turns. The goal of this
current research project was to estimate a total of 12 poten-
tial TMs for a regular four-approach intersection. The
authors considered a turn from approach i to approach j, as
T};. Furthermore, there were four inbound volumes denoted
as In; and four outbound volumes denoted as Out;; their
values were obtained from detector data using Equations 1
and 2. As the equations show, there were eight constraints
for a four-legged intersection.

In, = ZT,-,- (
7

Out, =Y T, (=123 4i=1234i%j) ()

i=1,2,3,4,j=1,23,4;j#i) )

It should be noted that only seven of these equations were
independent, since the eighth could be expressed as a func-
tion of the first seven. This characterization would then be
used to choose the independent variables for the model.
With 12 TMs (Tj) and only seven equations, it is clear that
there were many possible solutions, and additional infor-
mation had to be provided in order to obtain a unique set of
estimates for 7. In this study, this issue was handled by
treating the problem as a multi-target regression problem. In
a single-target variable regression problem, there is one
input (or feature) vector and one corresponding target varia-

ble needs to be predicted. In a multi-target regression prob-
lem, there are multiple target variables that must be predict-
ed simultaneously. The target variables here are the counts
of left, through, and right turns (7} in Figure 1) for each
observation, which is each approach of an intersection for a
specific hour; this means that there was more than one target
variable for each observation in the dataset. Since the goal
was to predict multiple numerical or continuous target varia-
bles simultaneously, which were traffic counts, the problem
was a multi-output regression problem.

E

I3 {Veh/hr)

out3 [v»h"hr}

52 ki‘

T3y

P

outz (veh/hi) |

~ =
T ; in4 (veh/hr)
Ty [
‘ n2 lvehjhr} —h Taa
|ﬂutd (vehy/hr)

;\IE

‘Out [Veh/hr)
]

In1 (Vnh,"hl

§

Figure 1. Graphical illustration of TMs at a four-legged signalized
intersection.

As mentioned previously, one-hour traffic counts on an
approach to each intersection were considered an observa-
tion in this model. Each observation had three target varia-
bles, which were three TMs of an approach. For example, in
Figure 1, which depicts a four-legged intersection, for
approach 1, these target variables were Ty, T3, and Tq.
Each observation also needed a number of predictive varia-
bles to make the model work. The predictive variables
included all approach volumes at an intersection, plus some
other functional and geometrical properties of the intersec-
tion. The inbound and outbound traffic volumes on all
approaches at each intersection made up eight columns of
predictive variable data. These eight predictive variables for
approach 1 in Figure 1 were Inl, In2, In3, In4, Outl, Out2,
Out3, and Out4. A clockwise scheme was used while filling
up the data table. Inl and Outl were the inbound and
outbound volumes of a given approach. In2 and Out2 were
then the inbound and outbound volumes of the approach on
the left side of the subject approach. In3 and Out3 were the
inbound and outbound volumes of the approach in front of
the subject approach. And, finally, In4 and Out4 were the
inbound and outbound volumes on the right side of the
subject approach. Two additional data items were added that
were not numerical variables, such as those in the first
group, but were descriptive variables.
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Using a combination of numerical and descriptive varia-
bles as predictive variables helped to capture different
aspects of the problem and improve the predictive power of
the model. It further allowed for the capture of a broader
range of information and relationships in the data, leading to
more accurate and meaningful predictions. The two data
items chosen to provide more information to the model were
the lane configurations of each approach and the type of
intersection. Regarding lane configuration, through a
comprehensive analysis, the number of exclusive left-turn
lanes was chosen as the lane configuration property of each
approach. There could be zero, one, or two exclusive left
turns. The “intersection type” was defined as the class of the
approach with the highest functional class. There were five
distinct classes of approaches in the dataset: local, collector,
minor arterial, primary arterial, and expressway. For exam-
ple, if an intersection included approaches classified as
collector, minor arterial, and principal arterial, this intersec-
tion would be classified as principal arterial. All observa-
tions at this intersection would then have “principal arterial”
under the column “intersection type” in the data table.

In summary, a dataset was created with ten predictor vari-
ables and three output variables, which were TMs, for each
approach. The final step was modeling. Due to the charac-
teristics of the data, this would be considered a multi-output
regression problem. The problem was resolved through the
implementation of several ML regression models. In this
study, to address this issue, Random Forest Regressor
(RFR), XGBoost Regressor and Extra Trees Regressor were
implemented.

Data Collection and Preparation

The data utilized to construct the models in this study
consisted of 1242 TM manual counts obtained from inter-
sections in Ada County, Idaho, from 2017 to 2022. The Ada
County Highway District (ACHD) collects manual count
data over time and saves it in its database for future use. The
manual count data were saved as PetraPro_Datafiles, which
were exported into Excel format for the purpose of this
study. Table 1 presents the annual number of manual counts
performed by ACHD in Ada County during the analysis
period of this study.

Table 1. Annual number of manual TM counts in Ada County.

Table 2 shows an illustration of a manual count data
Excel sheet obtained from ACHD. In addition to columns
labeled Left, Thru, and Right, which represent three
standard TMs at an approach, there is also a Peds column
representing pedestrian movements for each approach with
all values zero in Table 2. This is because ACHD does not
routinely collect pedestrian data unless a special request is
made for them. Based on the requests from designers or
planners, survey personnel were deployed to the intersection
to record passing vehicles and the turns they made. It can be
said that the most common application of manual count data
is signal timing design. The TM counts were collected for
three peak periods: morning, noon, and evening, which are
typically used for traffic operations analysis. Not all the
intersections in the database have manual counts for all
three distinct peak hours; certain intersections have counts
for just one or two peak periods.

The available database pertains to around 400 intersec-
tions, which include intersections with three legs, four legs,
and more than four legs. There were only a few intersec-
tions with more than four legs but were excluded to simplify
the model. To apply ML models to these data, the data in
these 1242 Excel files needed to be organized into one data
frame. This final data frame was utilized for subsequent
data analysis and modeling purposes. Table 3, containing
9936 rows of data, shows a sample of the final dataset. The
first 14 columns of this data frame were built by stacking
the manual count data sheets. It is apparent from Table 3
that, for each hour of traffic counting at each approach to
each intersection, there is a row of data in the final data
frame. Considering the first row of this table, the figures for
the Left, Thru, and Right columns come from simply
summing up one hour of left turn, through, and right turn
manual count data in Table 2. Inl through In4 as well as
Outl through Out4 were calculated according to Equations
1 and 2. These were in-bound and out-bound approach
volumes at each intersection.

Each Excel sheet of the manual count of a four-legged
intersection can contribute to building up eight rows in the
final data frame. Manual counts are normally done for two
hours around peak hours in the morning, noon, or evening.
The aim here was to make the dataset for hourly volumes.
Accordingly, it was possible to generate two rows of obser-
vations for each approach; having four approaches in a four-
legged intersection yielded eight observations from each

Year Number of Counts Excel sheet. This procedure was also applied to three-legged

intersections; the only difference was that a leg with zero

2017 367 volume would be added to each three-legged intersection.

2018 294 It should be noted that real-time approach volumes are also

often available, because detectors are constantly collecting

2019 167 them. Regarding the column Intersection Type, first the

2020 161 street classification of approaches to intersections was

requested from ACHD. Table 4 shows a sample of the data

2021 >0 frame obtained from ACHD, which has 392 rows; each row

2022 203 represents an intersection and contains the classification of
Total 1220 the approaches to that intersection.
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Table 2. Example of a manual count sheet.

A B C D E F G H

| J K L M N 0 P Q

File Name: S\Traffic Count Data\Tum Counts\2022\Chateau & Locust Grove PM.ppd

1
2 Start Date: 10/11/2022
3 Start Time: 4:00:00 PM
4 Site Code: 00000000
5 Comment 1- Operator- D White
6 Comment 2: Video NEC
7 Comment 3:
8 Comment 4:

Locust Grove from Ustick Chateau from Lochness Locust Grove from Fainview Chateau from Jericho
9 From Morth From East From South From West
10 Start Time let | Thru | Right | Peds left | Thru | Right | Peds let | Thru | Right | Peds left | Thru | Right | Peds
1 4:00:00 PM 0 58 2 0 3 2 8 0 5 80 3 0 8 2 1 0
12 4:05:00 PM 0 66 2 0 5 4 6 0 8 78 4 0 7 2 1 0
13 4:10:00 PM 0 64 1 0 5 1 0 0 3 9 1 0 9 2 6 0
14 4:15:00 PM 0 57 0 0 4 0 3 0 4 80 8 0 3 1 4 0
15 4:20:00 PM 2 3 3 0 7 0 2 0 3 95 4 0 3 0 7 0
16 4-25-00 PM 1 69 2 0 4 0 1 0 G 81 6 0 2 0 & 0
17 4:30:00 PM 2 56 3 0 3 0 0 0 3 79 5 0 3 2 7 0
18 4:35:00 PM 2 67 2 0 14 0 3 0 7 83 8 0 4 0 6 0
19 4-40-00 PM 2 51 2 0 3 0 ? 0 9 100 4 0 3 0 3 0
20 4:45:00 PM 1 78 3 0 5 0 4 0 8 68 6 0 1 1 2 0
21 4:50:00 PM 0 52 4 0 5 0 ] 0 6 79 10 0 3 1 ] 0
22 4:55:00 PM 3 56 4 0 2 1 4 0 5 L]l 10 0 2 0 4 0
23 5:00:00 PM 0 54 4 0 7 0 2 0 10 72 5 0 3 2 5 0
24 5:05:00 PM 1 58 4 0 g 0 1 0 T 78 6 0 3 3 5 0
25 5:10:00 PM 0 83 3 0 3 0 3 0 5 39 4 0 6 2 6 0
26 5:15:00 PM 1 74 1 0 1 1 0 0 3 96 5 0 3 1 4 0
27 5:20:00 PM 1 79 4 0 3 1 2 0 4 115 3 0 3 0 2 0
28 5:25:00 PM 0 61 1 0 3 0 2 0 15 72 5 0 3 1 3 0
29 5-30-00 PM 1 69 2 0 3 0 4 0 5 101 5 0 4 0 1 0
30 5:35:00 PM 1 73 1 0 6 0 3 0 T 38 1 0 6 1 6 0
N 5:40:00 PM 1 a7 1 0 3 0 0 0 7 89 4 0 4 1 3 0
32 5:45:00 PM 1 61 4 0 3 0 1 0 6 89 3 0 2 0 3 0
33 5:50:00 PM 0 69 2 0 1 0 4 0 5 90 4 0 6 1 4 0
34 5:55:00 PM 3 48 5 0 3 0 0 0 4 81 2 0 1 0 4 0

The approach with the highest functional class was select-
ed as the intersection type and that was used to fill the
column Intersection Type in Table 3 for each approach. For
lane configuration, the aim was to collect the number of
lanes and their functionality for each approach in the analy-
sis. As no database for lane configuration data from ACHD
or other transportation authorities in Idaho could be found,
Google Maps was used to collect these data manually. Table
5 shows a sample of the collected lane configuration data
frame. This data frame has around 1600 rows. Lane config-
uration data provide the number of lanes of each type in
each approach. Exclusive left shared left and through,
through, shared left, through and right, shared through and
right, exclusive right, and shared left and right encompass
the types of lane configurations. After investigating these
data and to limit the number of independent variables, the
decision was made to apply only the number of exclusive
left lanes as the lane configuration characteristic.

The number of exclusive left lanes was picked, because
there was more variation among intersections in this lane
type compared to other lane types, making it more informa-
tive for the model. The number of exclusive left turn lanes
was found to be zero, one, or two. Accordingly, the column,
lane configuration, in Table 3 was populated with the num-
ber of exclusive left lanes for each approach. Figure 2
shows a correlation matrix that was developed for the input
data attributes and the output variables.

In Figure 2, the rows and columns labeled “in,” “in-left,”
“in-opp,” and “in-right” correspond to columns Inl, In2,
In3, and In4 in Table 3, respectively. Similarly, the rows and
columns labeled “out,” “out-left,” “out-opp,” and
“out-right” correspond to columns Outl, Out2, Out3, and
Out4 in Table 3, respectively. Multiple interesting relation-
ships can be seen in Figure 2 that could have a powerful
impact on regression results. For example, the output Thru
is correlated positively with the inputs In and out-opp. After
preparing the dataset, the next step was modeling the data
with the help of machine learning methods to find the
underlying relationship between TMs with approach
volumes, intersection type, and lane configuration.

Multi-Output Regression Models

The prepared dataset represents a multi-output regression
problem, since it has multiple target variables. This model
has three continuous outputs, which are the three TM
counts. Several machine learning models can be used for
modeling multi-output regression datasets. Among them,
RFR, XGB Regressor, and Extra Trees Regressor were
selected for use in this current study. These multi-output
regression models were applied to predict the TM counts at
signalized intersections. Figure 3 summarizes the procedure.
These three different ML techniques for multi-output regres-
sion were applied to the dataset under two different scenari-
os, and their outcomes were compared and assessed.
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Table 3. A sample of a final database.

Intersection Approach Left | Thru |Right| Inl | In2 | In3 | In4 [ Outl | Out2 [ Out3 | Out4 Int Lane
Type | Configuration
Chateau & Locust Grove from Ustick *
Locust Grove PM | from North 13 732 | 28 773 | 109 | 1150 | 131 | 1094 | 96 | 867 | 106 M 1
Chateau & Chateau from Lochness *
Locust Grove PM | from Fast 63 8 38 109 | 1150 | 131 | 773 96 867 | 106 | 1094 | M 0
Chateau & Locust Grove from Fairview *
Locust Grove PM | from South 70 [ 1008 | 72 | 1150 | 131 | 773 | 109 | 867 | 106 | 1094 | 96 M 1
Chateau & Chateau from Jericho *
Locust Grove PM | from West 48 11 72 131 | 773 | 109 [ 1150 | 106 | 1094 | 96 867 M 0
*Minor Arterial
Table 4. A sample of an approach classification data frame.
Name of Intersection Approach 1 Approach 2 Approach 3
16th & Hays Minor Arterial Minor Arterial
16th & Idaho Minor Arterial Collector
16th & Washington Minor Arterial Collector
26th, 27th & State Minor Arterial Collector Principal Arterial
27th & Main Collector Principal Arterial
28th & Heron Collector Local
28th, 29th & State Collector Local Principal Arterial
31st, State & Whitewater Park Local Principal Arterial Minor Arterial
33rd & State Local Principal Arterial
36th, Chinden & Orchard Collector Principal Arterial Principal Arterial
Table 5. A sample of a lane configuration data frame.
Name of Name of Exclusive Left + Thro . Exclusive .
Intersection Approach Left Left +Thro Thro + Right Thro + Right Right Left + Right
Chateau & Locust Grove from
Locust Grove Ustick from North ! 0 0 0 B 0
Chateau & Chateau from
Locust Grove Lochness from East 0 0 0 ! 0 0
Chateau & Locust Grove from 1 0 0 0 0 0
Locust Grove Fairview from South
Chateau & Chateau from
Locust Grove Jericho from West 0 0 0 ! 0 0
Fairview & Locust Grove from 1 0 1 0 0 0
Locust Grove Ustick from North
Locust Grove Locust Grove from 1 0 1 0 1 0
& McMillan Ustick from South
Locust Grove Locust Grove from 1 0 1 0 0 0
& Pine Fairview from North
Locust Grove Locust Grove from 1 0 1 0 0 0
& Ustick Fairview from South
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Figure 2. Visualization of the correlation matrix between input and output variables.

In Scenario 1, all three target variables and the eight
predictive variables were used in their original form, which
was traffic counts per hour. There were no data transfor-
mations in this scenario. Scenario 2 tried to transform all
three target variables and those eight predictive variables
that were approach volumes into ratios. In both scenarios,
the two remaining predictive variables, Intersection Type
and Lane Configuration, were the same and did not undergo
any data transformation. The columns Left, Thru, and Right
in Table 3 can be replaced with the proportion of the left
turn, through, or right turn counts relative to the whole
approach volume. The columns Inl to In4 in Table 3 can be
replaced with the share of each approach relative to the total
entering traffic to the intersection. The same logic was
applied to transform the content of columns Outl to Out4
from traffic counts to ratios.

Figure 3 shows that, after the dataset was assembled, the
data cleaning procedure was applied to the data. In this
study, the data cleaning procedure involved preprocessing
the data by removing outliers. This step was crucial,
because the quality of the data directly impacted the perfor-
mance and reliability of the models. It is common to start by
identifying outliers in the predictive variables, because they
can directly affect the performance of the model. However,
depending on the nature of the problem, the analyst may
also want to examine outliers in the target variables, espe-
cially if they represent unusual events (Han, Kamber & Pei,
n.d.). The specific context and objectives of the analysis or
modeling task should ultimately serve as a guide for the
decision. Here, outliers were examined only in the predic-
tive variables. The Z-score method, which is a statistical
method to find outliers, was chosen to apply to the dataset.
This method calculates the Z-score for each data point and

Step 1: Assembling
Dataset

Step 2: Data Cleaning

Step 3: Test & Train
Splitting

04

Step 4: Bootstrapping

-02

Step 5: Model Building

-00

Step 6:
Predicting & Evaluating

Figure 3. Prediction process.

identifies those with Z-scores above a certain threshold.
Overall, 12 intersections had outliers, and they were deleted
from the final database before modeling.

In Figure 3, Step 3 is about forming the training and test
datasets. Splitting data into training and test datasets is a
fundamental practice in machine learning for evaluating the
performance of a model. The purpose of this split is to
assess how well the model can generalize to new, unseen
data. In other words, a subset of the data is set aside before
starting the analysis, and this serves as new, unseen data in
the evaluation process. Test-train split aids in model evalua-
tion, preventing overfitting, parameter tuning, assessing
generalization, and avoiding data leakage. By training the
model on the training set and then evaluating its perfor-
mance on another independent portion that is the test
dataset, it is possible to simulate how the model will
perform in the real world when it encounters new, unseen
examples (Mueller & Guido, 2016). In this study, the dataset
was divided into 20% and 80% for test and training purpos-
es, respectively. It indicates that the model was developed
with 80% of the data and then evaluated for performance on
20% percent of the unseen data.

The following step in Figure 3 is the bootstrapping proce-
dure. It involves repeatedly sampling the original dataset
with replacement. The purpose of bootstrapping is to create
multiple resampled datasets from the original training data,
each of which can be used to train a different instance of the
model. Bootstrapping is typically performed on the training
data when working with machine learning models. The pri-
mary reason for bootstrapping on the training data is to
introduce diversity and reduce overfitting in the model. By
repeatedly sampling with replacement from the training data
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to create different training subsets, variations would be
generated in the training process. This helps the model learn
different aspects of the data and become more robust,
improving its generalization to unseen data. Bootstrapping
is typically not performed on the entire dataset. The test data
should remain independent of the training process and
represent unseen examples. Bootstrapping on the test data
would introduce bias and invalidate the assessment of
model performance on new, unseen data. That is why the
bootstrapping step occurs after the training-test split
(Alpaydin, 2020). The next step is to apply the modeling
procedure on the training dataset. As mentioned earlier,
three different ML techniques for multi-output regression,
including Random Forest Regressor (RFR), XGB Regres-
sor, and Extra Trees Regressor, were applied to the dataset.
The programming language Python was used to implement,
train, and evaluate the models.

Random Forest Regressor (RFR)

An RFR is a machine learning model that falls under the
category of ensemble learning and is used for regression
tasks. It is an extension of the Random Forest algorithm,
which was originally designed for classification but can also
be applied to regression problems (Vanderplas, 2016).
Random Forest starts by creating multiple subsets of the
original dataset through a process called bootstrapping (with
replacement). This means that, for each subset, some data
points will be repeated, while others may be left out. These
subsets are used to train individual decision trees. At each
node of a decision tree, Random Forest randomly selects a
subset of features from the entire feature set. Earlier, differ-
ent features of this study were discussed, including 10
predictive variables that were collected in the dataset. This
feature selection process introduces diversity among the
trees and helps prevent overfitting. Each subset of the data
is used to train a decision tree independently. These trees are
typically shallow; they are not allowed to grow very deep.
This restriction helps maintain the diversity among the trees
and reduces the risk of overfitting.

In the case of regression (predicting continuous values),
the final prediction is obtained by averaging the predictions
of all the individual decision trees. The individual decision
trees, which have been trained on different subsets of the
data with different features, are combined into an ensemble.
This ensemble approach improves the model’s performance
and reduces the variance compared to a single decision tree.
RFR provides an estimate of its performance without the
need for a separate test set known as Out-of-Bag (OOB)
Error Estimation. During the bootstrapping process, some
data points are not included in the training subset for each
tree. These “out-of-bag” data points can be used to estimate
the model’s accuracy without cross-validation or a separate
test set (Segal, 2003). For the purposes of this study, the
RandomForestRegressor from the sklearn.ensemble module
and Multioutput Regressor from the sklearn.multioutput
module of the Python library were utilized.

Below is a snippet demonstrating how these libraries were
applied to the data frame in this study. X train and X test
are data frames that contain the training and testing data,
respectively. The variables y pred train and y pred test
represent the turning movements predicted by the model for
the training and testing data.

regr_multirf=MultiOutputRegressor
(RandomForestRegressor
(n_estimators=nl,max_depth=max_depth,
random_state=n2))

regr_multirf.fit(X train, Y train)
y_pred_train = regr_multirf-predict(X _train)
y_pred_test = regr_multirf.predict(X_test)

Prior to fitting the Random Forest algorithm on the
dataset, the maximum tree depth needs to be determined.
Maximum depth in a Random Forest algorithm is a crucial
hyperparameter that can significantly impact the perfor-
mance and behavior of the model. It controls the complexity
of individual decision trees within the ensemble. It acts as a
trade-off between bias and variance in the model. Deeper
trees (higher maximum depth) reduce bias but increase
variance. Shallower trees (lower maximum depth) reduce
variance but may introduce bias. Balancing these trade-offs
is crucial for finding a model that generalizes well to new
data. Figure 4 shows Mean Squared Error (MSE) versus
maximum depth for the RFR on the designed dataset. It
seems a maximum depth of 10 would be a good choice in
this case, since max depths less than that have a large MSE,
and max depths more than that do not help in improving the
MSE and only require more computational resources. After
deciding on the maximum tree depth, an RFR model was
fitted to the dataset.

Random Forest Regression MSE vs. max_depth
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Figure 4. MSE versus maximum depth for Random Forest
Regressor.

XGB Regressor

XGBoost (Extreme Gradient Boosting) is a powerful
ensemble machine learning algorithm known for its high
performance in regression and classification tasks. XGBoost
is also an ensemble method that combines multiple decision
trees to make predictions. Decision trees are the base learn-
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ers used in XGBoost. XGBoost uses a gradient-boosting
framework. It builds an ensemble of decision trees sequen-
tially, with each tree aiming to correct the errors of the
previous ones. It does this by minimizing a loss function,
typically a mean squared error (MSE) loss for regression.

When XGBoost assigns weights to data points, it gives
more importance to data points that previous trees incorrect-
ly predicted. This way, it focuses on the most challenging
examples, allowing the model to progressively improve its
predictions. XGBoost includes L1 (Lasso) and L2 (Ridge)
regularization terms to control the complexity of individual
trees and prevent overfitting. These regularization terms
encourage simplicity and sparsity in the tree structures.
XGBoost employs tree pruning to remove branches from
the decision trees that do not significantly improve the
model’s performance. Pruning helps create smaller, more
interpretable trees and improves the model’s generalization.
The learning rate (also called the shrinkage factor) is a
hyperparameter that controls the step size in the gradient
descent process. It helps determine the contribution of each
tree to the final prediction. XGBoost can provide a measure
of feature importance, indicating which features have the
most influence on the model’s predictions. This can be valu-
able for feature selection and understanding the data.
XGBoost is designed for efficiency and can take advantage
of parallel and distributed computing. It is capable of
handling large datasets and high-dimensional feature spaces.
XGBoost can handle missing values in the data by learning
the best imputation strategy during training.

XGBoost supports early stopping, allowing for the moni-
toring of the model’s performance on a validation dataset
and stop training once the performance starts to degrade.
Combining the predictions of all the individual trees yields
the final prediction in XGBoost. In regression tasks, this is
typically done by averaging the predictions of the trees
(Santhanam, Uzir, Raman & Banerjee, 2016). Prior to fitting
XGBoost Regressor best values for number of estimators,
maximum depth, gamma and learning rate should be deter-
mined. Learning rate determines the step size and gamma is
a regularization term to control the complexity of the trees.
Grid search was applied on the designed dataset to find the
optimized values for these parameters. The XGBoost
Regressor was then fitted to the dataset. In this study, the
XGBRegressor from the xgboost library, GridSearchCV and
KFold from sklearn.model selection, and MultiOutpu-
tRegressor from sklearn.multioutput of the Python library
were employed. Below is a snippet demonstrating how
XGBoost was applied to the data frame in this study.

XGB_multirf= MultiOutputRegressor(XGBRegressor
(estima-
tor__gamma=0.01,estimator _learning rate=0.1,estimator
__max_depth=30, estimator _n_estimators=500, ran-
dom_state=2021)) XGB_multirf.fit(X train, Y train)

v pred_train = XGB_multirf.predict(X_train)

v pred_test = XGB_multirf.predict(X test)

ExtraTrees Regressor

The ExtraTrees Regressor (Extremely Randomized Trees
Regressor) is an ensemble machine learning algorithm that
uses decision trees to make predictions. However, it has
some key differences in its underlying procedure compared
to traditional Random Forest. One of the primary differ-
ences between ExtraTrees and Random Forest is the way
they select features for splitting at each node in the decision
trees. In Random Forest, a random subset of features is
considered for each node, while in ExtraTrees, all features
are considered for each node. This makes ExtraTrees even
more random in its feature selection.

Similar to Random Forest, ExtraTrees also uses bootstrap-
ping to create multiple subsets of the training data. Each
subset is used to train an individual decision tree. Individual
decision trees are trained on these bootstrapped subsets of
data, with the primary goal of reducing the variance in the
model. The trees are constructed using a random subset of
features for each split. In addition to random feature selec-
tion, ExtraTrees introduces another level of randomness by
selecting the split thresholds at each node in a fully random
manner. This differs from Random Forest, which selects
thresholds based on a specific criterion such as “Gini impu-
rity” or “mean squared error.” Gini impurity is a measure
used in decision tree algorithms to evaluate the quality of
splits. It helps the algorithm determine the optimal features
and thresholds for splitting the data to create a decision tree
that best separates the classes in the dataset.

In the case of regression tasks, the final prediction is typi-
cally obtained by averaging the predictions from all the
individual decision trees. The ensemble of trees provides a
robust and accurate prediction by reducing the impact of
individual noisy or overfit trees. Like Random Forest,
ExtraTrees can handle missing values in the data by consid-
ering alternative strategies during the splitting process
(Geurts, Ernst & Wehenkel, 2006). The ExtraTrees Regres-
sor was fitted to the dataset as the third method of predic-
tion. In this study, the ExtraTreesRegressor from the
sklearn.ensemble module of the Python library was utilized.
Below is a snippet demonstrating how this regressor was
applied to the data frame in this study.

extra_trees=ExtraTreesRegressor(n_estimators=nl,
max_depth=n2)

extra_trees.fit(X train,Y train)

y_pred_train = extra_trees.predict(X_train)
y_pred_test = extra_trees.predict(X_test)

Evaluation

In this study, a dataset including three target variables—
TMs and a number of predictive variables—was assembled.
Subsequently, the dataset was utilized to train multi-target
regression models. In order to assess the performance, the
observed and predicted turning movements were compared
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by computing multiple metrics for each model. The authors
used the R? score, the mean squared error (MSE), the root
mean squared error (RMSE), and the mean absolute
percentage error (MAPE) defined in Equations 3-6 to assess
the various models developed in this study.

2
Z (yforecast - yactual )

R =1- )
Z()_} - yactual )2
2
MSE — z (yforecast - yactual ) (4)
N
RMSE = i/z (yforecasz = Vactual )2 (5)
N
MAPE =13 SR )| ©
N 1 (yllclual)

The authors also applied the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) for
model selection and comparison during the model-building
and evaluation process. AIC is a statistical measure used for
model selection and comparison. It balances the goodness of
fit of a statistical model to the data with the complexity of
the model. AIC quantifies how well a model explains the
data, while penalizing models with a higher number of
parameters. Lower AIC values indicate models that fit the
data well with fewer parameters, making it a valuable tool
for choosing the most appropriate model from among a set
of candidate models (Forster & Sober, 2011). Equation 7
shows the formulation for AIC:

AIC(M,)=-2log L(M,)+2k @)

where, L(M;) is the likelihood corresponding to the model
M, and where k is the number of parameters in the model.

BIC is a statistical criterion used for model selection and
comparison. Similar to AIC, BIC balances the goodness of
fit of a statistical model to the data with the complexity of
the model. BIC incorporates a Bayesian perspective by
applying a stronger penalty for models with more parame-
ters compared to AIC. It aims to find the model that best
explains the data, while favoring simpler models. In practi-
cal terms, lower BIC values indicate models that provide a
better trade-off between goodness of fit and model complex-
ity, making it a useful tool for selecting the most appropriate
model among a set of candidate models (Jordan, Kleinberg
& Scholkopf, 2006). Equation 8 shows the formulation for
BIC:

BIC =-2*logL(M,)+kxlog(n) (8)

where, L(M,) is the likelihood corresponding to the model
M, k is the number of parameters in the model, and 7 is the
sample size (the number of data points).

To find the best combination of predictive variables for
building the final model, six different combinations of
predictive variables were initially considered, with RFR
applied to each.

e The first combination had six predictive variables,
including four inbound volumes (columns Inl
through In4 in Table 3), intersection type, and lane
configuration.

e The second combination had nine predictive varia-
bles, including four inbound volumes (columns Inl
through In4 in Table 3) and three outbound volumes
(columns Outl through Out3 in Table 3), intersection
type, and lane configuration.

e The third combination had all ten predictive varia-
bles, including four inbound volumes (columns Inl
through In4 in Table3) and four outbound volumes
(columns Outl through Out4 in Table3), intersection
type, and lane configuration.

e The fourth combination had seven predictive varia-
bles, including four inbound volumes (columns Inl
through In4 in Table 3) and three outbound volumes
(columns Outl through Out3 in Table 3). It did not
include intersection type or lane configuration.

e The fifth combination had eight predictive variables,
including four inbound volumes (columns Inl
through In4 in Table 3) and three outbound volumes
(columns Outl through Out3 in Table 3) and lane
configuration.

e The sixth combination had eight predictive variables,
including four inbound volumes (columns Inl
through In4 in Table3), three outbound volumes
(columns Outl through Out3 in Table3), and intersec-
tion type.

Results

Table 6 shows the Rz, MSE, RMSE, MAPE, AIC, and
BIC results from applying RFR on these six different
combinations to predict TMs. These figures come from
predictions on the training dataset. It can be seen that R* for
all combinations was around 99%, but reliance on the
results from training data is not advisable, and the results
from test data had to be evaluated. Table 7 shows the R?
MSE, RMSE, MAPE, AIC, and BIC results coming from
applying RFR on the six different combinations to predict
TMs using the test dataset. From Table 7, it is evident that
the first combination had the lowest R% and, its AIC and
BIC were comparatively high, so it was set aside. Now,
there were five remaining combinations that had R? values
that were similar, ranging from 91.50% to 93.40%, which
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Table 6. Comparison of different predictive variable combinations on the training dataset.

Combination R? MSE RMSE MAPE AIC BIC

FIRST 99.98% 10 2.86 0.23 191,182 191,238
SECOND 99.96% 15 3.60 0.20 221,935 222,019
THIRD 99.97% 12 3.56 0.18 206,166 206,259
FOURTH 99.96% 15 3.56 0.19 223,195 223,260
FIFTH 99.96% 13 3.00 0.21 213,524 213,599
SIXTH 99.98% 9 2.66 0.15 183,802 183,877

Table 7. Comparison of different predictive variable combinations on the test dataset.

Combination R’ MSE RMSE MAPE AIC BIC

FIRST 80.98% 4217 64.36 88.64 691,465 691,521
SECOND 91.50% 1571 39.43 43.33 600,716 600,800
THIRD 93.40% 1462 37.93 4438 603,746 603,839
FOURTH 91.99% 1803 42.05 51.49 621,119 621.184
FIFTH 92.29% 2105 45.39 42.75 633,938 634,013
SIXTH 92.77% 1446 37.73 44.63 602,803 634,013

made it hard to decide. However, the primary distinction lay
in the fact that the second combination exhibited lower
values of AIC and BIC—around 600,716 and 600,800,
respectively—on the test dataset, in comparison to the other
four combinations. Hence, the second combination was
chosen as the model to proceed with for further analyses.

As mentioned previously, the analysis was intended to be
conducted under two different scenarios. In Scenario 1, all
variables were used in their original form without any trans-
formation. In Scenario 2, variables were transformed into
ratios. The goal was to see how converting traffic volumes
of each approach to proportions of whole traffic at that
intersection would affect the functionality of the model. The
process of converting approach traffic volumes to traffic
ratios involved the internal relationship between traffic
volumes of different approaches at each intersection and the
interdependence between TMs of each approach in the
model. In these two scenarios, the second predictive varia-
ble combination described earlier was used. Combination
two, described above, constituted Scenario 1; in Scenario 2,
the traffic volumes were converted into ratios. In other
words, the target variables, three TMs, were converted to
the proportion of each turning movement from the total
inbound traffic of that approach. Inbound volumes were
converted to the proportion of inbound traffic for each
approach from the total inbound traffic to the intersection.
Outbound volumes were also converted to ratios of
outbound traffic for each approach to the total outbound
traffic at that intersection. Table 8 represents an overview of
the target variables and predictive variables involved in
Scenario 2.

To assess the performance of several multi-output
machine learning models on the database, three different

ML models, including RFR, XGBoost Regressor, and
ExtraTrees Regressor, were applied to the two scenarios.
Table 9 represents the outcomes obtained by applying three
multi-output machine learning models to two defined
scenarios to predict TMs. The figures in Table 9 were
derived from predictions on the test dataset. Table 9 shows
that Scenario 2 had lower R” values for all three ML tech-
niques compared to Scenario 1. Specifically, Scenario 2 had
R? values of 81.35% for RFR, 82.40% for XGBoost Regres-
sor, and 77.96% for ExtraTrees Regressor, whereas Scenar-
io 1 had R®values of 92.50%, 93.99%, and 88.51% for the
relevant ML approaches. Converting traffic counts to rates
may involve connections between traffic volumes of differ-
ent approaches at an intersection in the model. However, the
investigation demonstrated that this conversion does not
improve the accuracy of the model. Hence, the focus was
placed on Scenario 1, while Scenario 2 was disregarded.

Another important result that can be extracted from Table
9 is that the XGBoost Regressor outperformed the RFR and
Extra Trees Regressor, due to higher values of R” and lower
values of MSE, RMSE, and MAPE. The R? for the
XGBoost Regressor was 93.99%, with values of 91.50% for
the RFR and 88.51% for the ExtraTrees Regressor. On the
other hand, XGBoost Regressor MSE was 1307, while the
values for RFR and ExtraTrees Regressor were 1571 and
1997, respectively. Both RMSE and MAPE also followed
the same trend. Based on this research, it can be inferred
that the most effective model for predicting TMs based on
manual counts is the model built on applying the XGBoost
Regressor to Scenario 1. Scenario 1 had nine predictive var-
iables, including four inbound volumes (columns Inl
through In4 in Table3) and three outbound volumes
(columns Outl through Out3 in Table3), intersection type,
and lane configuration.
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Table 8. An overview of scenario 2.

Intersection Approach Left Thru | Right Inl In2 In3 In4 Outl Out2 Out3 Int Lane
PP (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Type | Config
Chateau & L (G f
Locust Grove U°°.“i from North 168 | 9470 | 3.62 | 3574 | 504 | 53.17 | 6.06 | 50.58 | 4.44 | 4008 | M 1
PM stick from Nort
Chateau & Chateau fi
Locust Grove | /oot 127 57.80 | 7.34 | 34.86 | 5.04 | 53.17 | 6.06 | 3574 | 444 | 4008 | 490 | "M 0
PM ochness from East
Chateau & Locust Grove from *
Locust Grove | s Hve ooy | 6:09 | 87.65 | 626 | 53.17 | 6.06 | 3574 | 5.04 | 40.08 | 490 | 5058 M 1
PM airview from Sout
Chateau & Chateau from *
Locust Grove Jerich uf Wi 36.64 8.40 54.96 6.06 35.74 5.04 53.17 4.90 50.58 4.44 M 0
PM ericho from West
"Minor Arterial
Table 9. Comparison models and scenarios according to R%, MSE, RMSE, and MAPE.
Scenariol Scenario2 Scenariol Scenario2 Scenariol Scenario2 Scenariol Scenario2
Model (o) (%) (%) %)
R? MSE RMSE MAPE
Random Forest Regressor 91.50 81.35 1571 1.04 39 10.19 43 37
XGBoost Regressor 93.99 82.40 1307 0.98 36 9.89 29 40
ExtraTrees Regressor 88.51 77.96 1997 1.20 45 10.94 88 53

With the ML model represented in this study, engineers
can accurately estimate the TMs of any three- or four-
legged intersection by using only traffic counts from the
designated peak hour, the lane configuration of the desired
approach, and the type of intersection.

Guidance to Practitioners

In this study, a model to estimate TMs for three- and four-
legged intersections was developed. The model was coded
in the Python programming language. With this model, it
was possible to estimate the TMs of any desired approach
using three pieces of information. First was the traffic
volume of all approaches at that intersection; second was
the type of intersection; and last was the approach lane
configuration data. The model developed in this study took
these data from each approach as input and provided the
user with an estimated TM for the desired approach.

Discussion

In this study, the authors introduced an ML model to
predict TMs at signalized intersections. This model was
based on TM data from 1242 traffic manual counts conduct-
ed at intersections in Ada County, Idaho. Multi-output
regression ML models were applied to provide a reliable
estimate of TMs at signalized intersections using a combina-

tion of numeric and descriptive variables, including
approach volumes, intersection type, and lane configuration
data. Three ML-based regression models, including Random
Forest Regressor, XGBoost Regressor, and ExtraTrees
Regressor, were trained to investigate the relationship
between approach volumes and the corresponding turning
movements. In order to assess the performance of the
model, a number of evaluation metrics were computed,
including the R?, MSE, RMSE, and MAPE. The outcomes
of the tests demonstrated that the XGBoost Regressor
predicted turning movements more accurately with an R*of
93.99%. These results demonstrated that the examined
methods yielded a dependable and efficient model for esti-
mating TMs. Considering that currently the most common
method for obtaining TMs is still manual counting, the
suggested approach can be functional in situations where
conducting a manual count is impracticable, due to cost or
manpower issues. Additionally, it is advantageous for plan-
ning new intersections when no historical data are available.

The value of this research is highlighted either when
compared to the earlier studies in this area or methods used
in practice. This is the first study that attempted to find a
relationship between TMs and approach volumes that
involved some descriptive features of intersection in the ML
model to improve the predictive power of the model by
capturing different aspects of it. Besides, most of the current
methods for predicting TMs are based on assumed initial
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TMs, which undergo an iterative process of fine-tuning and
equilibrium, or a comprehensive procedure for modeling
transportation planning data. The findings of this study offer
traffic engineers and transportation planners a simple and
user-friendly methodology for estimating TMs based on
approach volumes, lane configuration, and intersection type.

It should be noted that, due to data constraints, the authors
only considered peak-hour volumes. However, peak-hour
volumes are frequently utilized for operational analysis,
optimization, and design at signalized intersections as well
as for conducting other transportation research, such as traf-
fic impact studies. Future work can involve broadening the
scope of this research to cover other times of day besides
peak hours. Another recommendation is to evaluate the
model using the data obtained from a new source of manual
data. In theory, this method can be used both in real-time
and offline. By taking approach volumes and providing
turning movements, it could offer real-time turning move-
ments if real-time traffic volumes are available. However,
applying this method in the real world and integrating it
with traffic signal controllers requires further investigation,
which could be an extension of this study. Yet another way
of extending this study is to develop models for
non-signalized intersections and roundabouts.
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AUGMENTED REALITY IN FOOT PALPATION:
ENHANCING ACCURACY AND TRAINING MEDIAL
CUNEIFORM BONE LLOCALIZATION

Michael U. Dakeev, Sam Houston State University; Suleiman Obeidat, Sam Houston State University;
Fatih Demiroz, Sam Houston State University; Vicente Lombardo, Sam Houston State University

Abstract

Palpation, a fundamental technique in medical examina-
tion, relies heavily on the practitioner’s tactile skills and
anatomical knowledge. In this paper, the authors present an
innovative approach for enhancing palpation training and
practice using augmented reality (AR) technology, specifi-
cally focusing on foot examination. The development of
expertise in palpation techniques typically requires exten-
sive practice and patient interaction, which can be time-
consuming and may not always provide consistent learning
experiences for students. To address these challenges, the
authors developed an augmented reality application
designed to assist in foot palpation training. The aim of the
proposed AR application was to provide real-time guidance
by visually overlaying palpation zones on a scanned image
of the patient’s foot, thereby supporting the learning process
for new professionals and students.

In this study, the authors compared the accuracy of locat-
ing the medial cuneiform bone using traditional methods
versus the proposed AR app. Results from a paired-samples
t-test (n = 30) demonstrated a statistically significant
improvement in accuracy when using the AR app
(M =4.55 cm, SD = 0.53) compared to traditional methods
(M =9.28 cm, SD = 3.24, p < 0.001). The mean improve-
ment of 4.73 cm (95% CI: 3.52 to 5.94) highlights the
potential of AR technology for enhancing anatomical educa-
tion and improving clinical skills. These findings suggest
that AR-assisted palpation training could significantly
enhance the learning experience, potentially leading to
improved diagnostic accuracy and procedural outcomes in
clinical settings.

Introduction

The acquisition of proficient palpation skills is a critical
component of medical education, particularly in areas such
as podiatry and osteopathic. However, traditional teaching
methods often struggle to bridge the gap between theoretical
knowledge and practical application, especially when deal-
ing with complex anatomical regions like the foot. Palpation
is a critical skill in medical diagnosis and treatment, requir-
ing direct physical contact between the healthcare profes-
sional and the patient (Canton et al., 2024). The accuracy
and effectiveness of palpation depends largely on the practi-
tioner’s ability to locate and interpret anatomical structures
through touch. However, developing this expertise is a time-

consuming process that demands extensive practice and
patient interaction. The challenges associated with acquiring
proficiency in palpation techniques have long been recog-
nized in medical education. Traditional teaching methods
often struggle to bridge the gap between theoretical
knowledge and practical application, particularly in com-
plex anatomical regions such as the foot (Muangpoon,
Haghighi Osgouei, Escobar-Castillejos, Kontovounisios &
Bello, 2020). This gap can lead to inconsistencies in diagno-
sis and treatment, especially among novice practitioners and
students. To address these challenges, this research team
developed an augmented reality application designed to
assist in foot palpation. This technology aimed to provide
real-time guidance by visually overlaying palpation zones
on a scanned image of the patient’s foot, thereby supporting
the learning process for new professionals and students. By
integrating AR into palpation training, the authors sought to
accelerate the development of muscle memory and improve
the accuracy of anatomical localization.

Literature

The importance of palpation in medical practice has been
well-documented across various specialties. Studies have
shown that accurate palpation skills are crucial for diagnos-
ing musculoskeletal disorders, identifying vascular issues,
and assessing soft-tissue abnormalities. However, research
also highlights the significant variability in palpation accu-
racy among practitioners, emphasizing the need for
improved training methods. Recent advancements in medi-
cal education have seen an increased interest in technology-
enhanced learning. Virtual reality (VR) and augmented real-
ity (AR) have emerged as promising tools for medical train-
ing, offering immersive and interactive experiences that
complement traditional teaching methods (Solutions, 2023;
Tene, Vique Lopez, Valverde Aguirre, Orna Puente &
Vacacela Gomez, 2024).

Several studies have explored the use of AR in anatomy
education, demonstrating improved spatial understanding
and knowledge retention among students (Dhar, Rocks,
Samarasinghe, Stephenson & Smith, n.d.; Suarez-Rivas,
n.d.). In the context of palpation training, haptic feedback
systems have been developed to simulate tissue properties
and provide a more realistic learning experience. However,
these systems often lack the ability to adapt to individual
patient anatomies and real-world variations (Sharma,
Doherty & Dong, 2017). AR technology offers a unique
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solution by overlaying digital information onto the physical
world, allowing for personalized guidance in real-time
(Dakeev, Pecen, Yildiz & Luong, 2021; MGH Institute,
2024). While AR applications have been successfully
implemented in various medical procedures, such as surgery
and needle placement, their potential in palpation training
remains largely unexplored (MGH Institute, 2024; Tokug &
Varol, 2023). This gap in the literature presents an oppor-
tunity to investigate the effectiveness of AR in enhancing
palpation skills, particularly in complex anatomical regions
like the foot (Condino et al., 2016).

Methodology

In this study, the authors employed a mixed-methods ap-
proach to develop and evaluate an AR application for foot
palpation training. The methodology consisted of three main
phases: application development, user testing, and perfor-
mance evaluation. The AR application was developed using
Unity Game Engine, which allows for real-time scanning
and overlaying the patient’s foot (Dakeev & Yildiz, 2022).
Figure 1 shows how the application incorporates an overlaid
image of foot structures, including bones, muscles, liga-
ments, and key palpation points.

Figure 1. Overlaid image of a foot with bone structures on a Tablet
camera.

A sample of 30 participants, including medical students,
physiotherapy students, and novice practitioners, as well as
randomly selected students (regardless of their background)
were recruited for the user testing phase. Researchers asked
the participants to locate medial cuneiform bone on the foot.
Figure 2 shows how, after marking the pointed zone, the AR
application was used to show the correct zone. The
researchers measured the distance between the marked loca-
tion that the participant showed and the AR application’s
located zone. Data collection methods included pre- and
post-training assessments of palpation accuracy, surveys to
evaluate user experience and perceived effectiveness, and
observational analysis of the palpation technique. Partici-
pants were assessed on their ability to accurately locate

medial cuneiform, apply appropriate pressure during palpa-
tion, and feel the applied pressure. Using SPSS statistical
analysis package, the researchers conducted a paired-sample
t-test to compare the performance of the control and experi-
mental groups. This methodology aimed to provide a
comprehensive evaluation of the AR application’s effective-
ness in enhancing foot palpation skills among novice practi-
tioners and students.

The participants were asked to indicate the palpation zone
on their feet using their fingers after which the AR system
identified and recorded the corresponding location. The
measured difference between the participant-indicated zone
and the AR-identified zone served as the primary metric.
However, due to individual physiological variations, no
standardized mean value exists for the palpation zone. In
clinical practice, physicians typically rely on experience and
anatomical knowledge to estimate this location, as it varies
from patient to patient. Consequently, a traditional measure-
ment mean could not be established in this study. The
authors further sought to gain insights into both the practical
benefits and the user experience of integrating AR technolo-
gy into palpation training.

Figure 2. Locating palpation zone with the AR application.

AUGMENTED REALITY IN FOOT PALPATION: ENHANCING ACCURACY AND TRAINING MEDIAL 27

CUNEIFORM BONE LOCALIZATION



Data Analysis

A paired-samples t-test was conducted to compare the
accuracy of locating the medial cuneiform bone using tradi-
tional methods and an AR app. Tables 1 and 2 provide the
descriptive statistics for the paired-sample correlations,
which revealed that there was a weak negative correlation
between the traditional method (M = 9.28, SD = 3.24) and
the AR app method (M = 4.55, SD = 0.53), r = —0.047,
p = 0.805 (two-tailed). This correlation was not statistically
significant, indicating that performance on one method did
not reliably predict performance on the other.

Table 1. Paired-sample descriptive statistics to locate the palpation
zone.

Mean N ‘ S_td.. Std. error
eviation mean
Pair 1 .
Traditional 9.266 30 3.172 0.579
AR_APP 4.533 30 0.524 0.095

Table 2. Paired-sample correlations between traditional location
versus AR application.

Significance
. One- Two-
N Correlation sided p sided p
Pair1 | Traditional
& 30 -0.047 0.403 0.805
AR_APP

Table 3 shows the paired-samples t-test, which revealed a
statistically significant difference between the traditional
palpation method and the AR-assisted method,
t(29) = 8.003, p < 0.001 (two-tailed). The mean deviation
was 4.73 cm (95% CI: 3.52 to 5.94), with the traditional
method showing greater inaccuracy (M = 9.28 cm)
compared to the AR-guided approach (M = 4.55 cm). These
values represent the average deviation across all partici-
pants, not individual measurements. The marked reduction
in deviation from 9.3 cm to 4.5 cm suggests that the AR tool
significantly improved the accuracy of locating the palpa-
tion zone. Given the absence of a standardized anatomical
landmark for this procedure, healthcare professionals typi-
cally rely on their clinical experience and subjective judg-

ment to identify the correct location. As a result, there is
inherent variability in technique and accuracy across practi-
tioners. In this study, the authors aimed to provide a more
standardized reference for novice learners by using AR
technology to reduce reliance on years of experience and to
guide students toward more accurate palpation with reduced
error margins.

These outcomes provide strong evidence for the effective-
ness of the AR app in improving the accuracy of locating
the medial cuneiform bone compared to traditional methods.
The significant decrease in mean distance from 9.28 cm
(traditional method) to 4.55 cm (AR app method) represents
a substantial improvement in precision. The lack of signifi-
cant correlation between the two methods suggests that the
participants’ performance with the traditional method did
not predict their performance with the AR app. This inde-
pendence between the two approaches highlights the poten-
tial of the AR app to provide consistent benefits across
various skill levels. The large t-statistic (8.003) and the
small p-value (< 0.001) indicate that the observed difference
between the two methods is highly unlikely to have
occurred by chance. The 95% confidence interval of the
difference (3.52 to 5.94 cm) does not include zero, further
supporting the conclusion that the AR app method consist-
ently outperformed the traditional method. These findings
have important implications for medical education and clini-
cal practice. The AR app demonstrated an advantage in
improving the accuracy of anatomical localization, which
could lead to enhanced diagnostic and procedural skills.
Future research should explore the long-term retention of
these skills and the transferability of AR-assisted learning to
other anatomical structures and medical procedures.

Conclusions

In this study, the authors investigated the effectiveness of
an augmented reality app compared to traditional methods
in accurately locating the medial cuneiform bone. A paired-
samples t-test showed that the AR application
(M =4.55 cm, SD = 0.53) demonstrated significantly higher
accuracy in locating the medial cuneiform bone for palpa-
tion compared to the traditional method (M = 9.28 cm,
SD = 3.24) for randomly selected untrained students with
different backgrounds. There was a statistically significant
difference between the two methods (p < 0.001), with a
mean improvement of 4.73 cm (95% CI: 3.52 to 5.94) when

Table 3. Paired-sample t-test.

95% Confidence Sienificance
interval of the difference g
Mean 4 S'td.. Std. error Lower Upper ¢ df One-sided | Two-sided
eviation mean p p
Pair 1 T/:‘}éi‘goﬁgl 473333 3.23966 0.59148 3.52362 5.94304 | 8.003 | 29 <0.001 <0.001
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using the AR app. Furthermore, the correlation between
performances on the two methods was weak and non-
significant (r = —0.047, p = 0.805), suggesting that the AR
app’s benefits were consistent across participants regardless
of their performance with the traditional method. The
researchers believe this study provides compelling evidence
for the superiority of the AR app over traditional methods in
improving the accuracy of locating the medial cuneiform
bone. The significant reduction in localization error demon-
strated the potential of AR technology to enhance anatomi-
cal education and clinical skills.

These findings have important implications for medical
training, potentially leading to improved diagnostic accura-
cy and procedural outcomes in clinical settings. Future
research should focus on the long-term retention of skills
acquired through AR-assisted learning, its applicability to
other anatomical structures, and its integration into broader
medical education curricula. Additionally, investigating the
impact of AR-enhanced anatomical learning on clinical
performance and patient outcomes would further establish
the value of this technology in healthcare education and
practice.
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