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At its core, a thermoelectric genera-
tor (TEG) is a device that converts 
heat energy into electrical energy. 
This is accomplished when there is a 
temperature difference between two 
different conductors. Common      
thermoelectric materials include    
bismuth telluride (BiTe) for low    
temperatures, lead telluride (PbTe) for 
medium temperatures, and 
skutterudites (a cobalt arsenide miner-
al containing variable amounts of 
nickel and iron substituting for      
cobalt—CoAs3) for high temperatures. 
TEGs, using waste heat, are generally 
used for power generation, cooling 
electronic devices, and powering   
remote devices with radioisotopes or 
solar heat. And while TEGs currently 
face challenges such as low efficiency and high cost,         
on-going and future research is likely to find new materials 
and develop advanced systems to improve performance. 
Thermoelectric materials that show the Seebeck effect are 
capable of generating an electric voltage in the presence of a 
temperature difference and are classified into two types:     
n-type and p-type. N-type materials have extra electrons, 
while p-type materials lack electrons that, when connected 
in series with metal electrodes, form a thermocouple, which 
is the basic unit of a thermoelectric generator. 
 

A thermoelectric module, then, is made up of many such 
thermocouples connected electrically in series and thermal-
ly in parallel. A thermoelectric module has two sides—a hot 
side, to be exposed to the heat source, and a cold side, to be 
exposed to a heat sink. The temperature difference created 
across the two sides of the module causes current to flow in 
the circuit. And, as with most any other power source, this 
resulting current can be used to power an external load or 

charge a battery. 
Higher voltages 
and power outputs 
depend on the 
number of thermo-
couples, the     
temperature differ-
ence, the Seebeck 
coefficient, and the 
electrical and   
thermal resistances 
of the materials, 
while the efficien-

cy of TEG is a function of the ratio of 
electrical power output to heat input. 
This efficiency is limited by the     
Carnot efficiency, or the maximum 
possible efficiency for any heat engine 
between two temperatures. The actual 
efficiency of a TEG, however, is much 
lower than the Carnot efficiency due to    
various losses including Joule heating, 
thermal conduction, and thermal    
radiation.  
 
In 1821, Thomas Johann Seebeck     
(A German physicist) published his 
novel idea: the generation of an     
electric current using the thermody-
namic properties of the involved    
materials. This marked a new way to 

understand thermoelectric phenomena 
and their implications and paved the way for other research-
ers to develop other similar ideas. This Seebeck effect 
would become the basis for thermocouples, TEGs, and oth-
er related technologies.  

 
On an interesting 

historical note, it was 
William Thomson 
(Lord Kelvin) who 
began the study of 
irreversible processes 
out of equilibrium by 
formally analyzing 
the phenomenon of 
thermoelectricity. 
 

In the featured article in this issue of IJME (p.5), the   
authors note that while TEGs are robustly built for energy 
harvesting on planar surfaces and in non-vibratory environ-
ments, many waste-heat producing environments are locat-
ed in non-planar and vibratory areas. Such vibratory areas 
introduce a challenge for the use of bismuth telluride, as it 
is a brittle material typically used to make the TEG        
elements (legs). The authors then respond to the dilemma of 
how to use TEG devices in non-planar and vibratory      
environments without experiencing premature structural 
failures by developing a newly reconfigured composite 
TEG leg that could provide opportunities to harvest energy 
in these vibratory environments. The tradeoff would amount 
to a slightly reduced overall power generation (6%)       
compared to no access to the free waste energy in these  
environments.  

In This Issue (p.5) 
Thermoelectric Generators 

Philip Weinsier, IJME Manuscript Editor 
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Nanoscale thermoelectric generator on a chip.  

https://www.freepik.com/premium-ai-image/nanoscale-thermoelectric-generator-chip_266950205.htm


Editorial Review Board Members 

——————————————————————————————————————————————–———— 

Eastern Illinois University (IL) 
State University of New York (NY) 
North Carolina A&T State University (NC) 
Purdue University Northwest (IN) 
Zamfara AC Development (NIGERIA) 
Virginia State University (VA) 
Acharya Institute of Technology (INDIA) 
Memphis University (TN) 
Kennesaw State University (GA) 
University of Arkansas Fort Smith (AR) 
Ball State University (IN) 
Bowling Green State University (OH) 
Minnesota State University (MN) 
Electrolux Group (TN) 
Texas A&M University Kingsville (TX) 
Illinois State University (IL) 
Iowa State University (IA) 
Eastern Illinois University (IL) 
Indiana State University (IN) 
Claflin University (SC) 
Alabama A&M University (AL) 
Target Corporation (MN) 
Oregon Institute of Technology (OR) 
Elizabeth City State University (NC) 
Tennessee Technological University (TN) 
Millersville University (PA) 
Universiti Malaysia Perlis (MALAYSIA) 
University of Tennessee Chattanooga (TN) 
Zagazig University EGYPT) 
Yahia Farès University (ALGERIA) 
Western Illinois University (IL) 
Abu Dhabi University (UAE) 
Penn State University (PA) 
Safety Engineer in Sonelgaz (ALGERIA) 
City University of New York (NY) 
Central Connecticut State University (CT) 
North Dakota State University (ND) 
North Carolina A&T University (NC) 
Indiana University Purdue (IN) 
Michigan Tech (MI) 
Eastern Illinois University (IL) 
Millersville University (PA) 
Purdue Polytechnic (IN) 
North Dakota State University (ND) 
Abu Dhabi University (UAE) 
Purdue University Northwest (IN) 
Bowling Green State University (OH) 
Southeast Missouri State University (MO) 
Bowling Green State University (OH) 
Ohio University (OH) 
Penn State University Berks (PA) 
Central Michigan University (MI) 
Florida A&M University (FL) 
Purdue University Northwest (IN) 
Morehead State University (KY) 
Ohio University (OH) 
Penn State University (PA) 
Savannah State University (GA) 
Penn State University (PA) 
ARUP Corporation 
University of Louisiana (LA) 
University of Southern Indiana (IN) 
Eastern Illinois University (IL) 
Mississippi State University (MS) 
Excelsior College (NY) 
Jackson State University (MS) 
California State University Fresno (CA) 
Penn State Berks (PA) 
Michigan Tech (MI) 
University of Central Missouri (MO) 

Ajay Aakula 
Mohammed Abdallah 
Paul Akangah 
Ali Alavizadeh 
Lawal Anka 
Jahangir Ansari 
Sanjay Bagali 
Kevin Berisso 
Sylvia Bhattacharya 
Monique Bracken 
Tamer Breakah 
Michelle Brodke 
Shaobiao Cai 
Vishnu Chakravaram 
Rajab Challoo 
Isaac Chang 
Shu-Hui (Susan) Chang 
Rigoberto Chinchilla 
Phil Cochrane 
Emily Crawford 
Z.T. Deng 
Sujata Dutta 
Marilyn Dyrud 
Mehran Elahi 
Ahmed Elsawy 
Cindy English 
Liew Fang 
Ignatius Fomunung 
Ahmed Gawad 
Hamed Guendouz 
Kevin Hall 
Mamoon Hammad 
Bernd Haupt 
Youcef Himri 
Delowar Hossain 
Xiaobing Hou 
Ying Huang 
Christian Bock-Hyeng 
Pete Hylton 
John Irwin 
Toqeer Israr 
Alex Johnson 
Rex Kanu 
Reza Karim 
Manish Kewalramani 
Tae-Hoon Kim 
Chris Kluse 
Doug Koch 
Resmi Krishnan 
Zaki Kuruppalil 
Shiyoung Lee 
Soo-Yen  (Samson) Lee 
Chao Li 
Jiliang Li 
Zhaochao Li 
Neil Littell 
Dale Litwhiler 
Ying Liu 
Albert Lozano-Nieto 
Mani Manivannan 
G.H. Massiha 
Thomas McDonald 
David Melton 
Kay Rand Morgan 
Sam Mryyan 
Jessica Murphy 
Arun Nambiar 
Rungun Nathan 
Aurenice Oliveira 
Troy Ollison 

Purdue Fort Wayne (IN) 
Community College of Rhode Island (RI) 
Sardar Patel University (INDIA) 
NVIDIA Corporation (CA) 
Virginia State University (VA) 
Broadcom Corporation 
Warsaw University of Tech (POLAND) 
University of West Florida (FL) 
California State University-Fullerton (CA) 
C Spire 
SMART Modular Technologies 
Brigham Young University (UT) 
Baker College (MI) 
Michigan Technological University (MI) 
Zagros Oil and Gas Company (IRAN) 
St. Cloud State University (MN) 
Florida Institute of Technology (FL) 
Maharishi Markandeshwar Univ. (INDIA) 
Shahrood University of Technology (IRAN) 
North Carolina A&T State University (NC) 
Wentworth Institute of Technology (MA) 
Camarines Sur Polytechnic (PHILIPPINES) 
Missouri University of Science &Techn (MO) 
University of Houston Downtown (TX) 
University of Central Missouri (MO) 
University of South Florida Polytechnic (FL) 
Central Connecticut State University (CT) 
Texas A&M University (TX) 
Thammasat University (THAILAND) 
Central Connecticut State University (CT) 
Purdue University (IN) 
Sam Houston State University (TX) 
Ohio University (OH) 
Jackson State University (MS) 
Purdue University Northwest (IN) 
Missouri Western State University (MO) 

Reynaldo Pablo 
Basile Panoutsopoulos 
Shahera Patel 
Swagatika Patra 
Thongchai Phairoh 
Huyu Qu 
Desire Rasolomampionona 
Michael Reynolds 
Nina Robson 
Marla Rogers 
Raghav Rout 
Dale Rowe 
Anca Sala 
Alex Sergeyev 
Mehdi Shabaninejad 
Hiral Shah 
Natalie Shah 
Deepa Sharma 
Mojtaba Shivaie 
Musibau Shofoluwe 
Jiahui Song 
Harold Terano 
Sanjay Tewari 
Vassilios Tzouanas 
Jeff Ulmer 
Abraham Walton 
Haoyu Wang 
Jyhwen Wang 
Boonsap Witchayangkoon 
Shuju Wu 
Baijian “Justin” Yang 
Faruk Yildiz 
Yuqiu You 
Pao-Chiang Yuan 
Afshin Zahraee 
Jinwen Zhu 

——————————————————————————————————————————————–———— 
4                                         International Journal of Modern Engineering | Volume 26, Number 1, Fall/Winter 2025 



Abstract 
 

Thermoelectric generators (TEG) are robustly built for 
energy harvesting in planar surfaces and non-vibratory envi-
ronments. However, many waste-heat producing environ-
ments are located in non-planar and vibratory areas. The 
non-planar and vibratory areas challenge the use of bismuth 
telluride, a brittle material that is typically used to make the 
TEG elements (legs). A dilemma exists of how to use the 
TEG devices in non-planar and vibratory environments 
without experiencing a structural premature failure. A    
reconfiguration of the TEG’s legs to incorporate an element 
of flexibility was used to determine its effects on power and 
efficiency. Incorporating flexibility in the leg required the 
removal of some base material from each leg and then either 
leave it void or fill it with a polymer. In this study, the   
authors explored three variant configurations of a pair of 
TEG legs. Findings indicated a viability of reconfigured 
TEG legs for use in vibratory environments at the cost of 
reduction in power generation and efficiency. 
 

Introduction 
 

Thermoelectric generators (TEG) are designed to convert 
waste heat into electricity. Waste heat is a byproduct of a 
process that has expended energy. Prime examples of where 
waste heat can be found include the transportation industry, 
manufacturing, power plants, buildings, and animals. When 
harvested, waste heat can significantly improve the efficien-
cy of the process. The challenge with TEGs used in conver-
sion of waste heat into electricity for temperatures up to 
230oC is that they are made of bismuth telluride (Bi2Te3), a 
brittle material that breaks easily in vibratory environments. 
The TEG potential for the future is large. TEG devices are 
light, reliable, have no moving parts, and can be used in 
hostile and inaccessible environments (Baskaran & Raja-
sekar 2025; He, Schierning & Nielsch, 2018; Telkes, 1947). 
The study of TEG power and efficiency is based on flexible 
configurations (Mativo, Hallinan, George, Reich & Stein-
inger, 2021). In that study, the authors defined a unit cell as 
two legs sandwiched between top and bottom covers, as 
illustrated in Figure 1. 
 

The authors of this current study largely explored how to 
optimize a thermoelectric generator for a vibratory environ-
ment. Most of the work presented here deals with mechani-
cal loading on the TEG structure and how it could be    
modified to better serve vibratory environments. To better 
understand the effects of TEG structural modification on 
power generation, the authors compared a baseline model 
with a reconfigured model. LeBlanc observed three consid-

erations required for a TEG design: geometry, fill factor, 
and leg size (LeBlanc, 2014). All three play a large role in 
the tradeoffs of thermal conductivity and electrical resistivi-
ty. The unit cell model was based on the Marlow TG12-6 
TEG (Marlow Industries, 2015). The S1 is a positive leg     
(p-type) that has fewer electrons than the S2 negative leg    
(n-type). The two legs are made of bismuth telluride and 
one is doped to remove or add electrons. 

Figure 1. A general unit cell for a TEG subjected to mechanical 
and thermal loadings (Mativo et al., 2021). 

 
Figure 1 shows that compressive and shear mechanical 

loading were applied while the bottom surface was consid-
ered fixed. This study explored TEG structural flexibility. 
Further, a uniform thermal load (heat flux) was applied 
while the bottom, a heat sink, was assumed to have zero 
thermal resistance. The unit cell legs (S1 and S2) were the 
domains, where the Bi2Te3 was placed to support both struc-
tural and thermal loads. Figure 2 shows the two domains, 
where a reduction of Bi2Te3 was applied and left void or 
filled with a polymer. The street between the legs was    
considered perfectly insulated (Mativo et al., 2021). 

Figure 2. Exploring new structure (Mativo et al., 2021). 

 

Method 
 

In a study by Mativo et al. (2021), the authors discussed 
in detail the flexibility of a TEG leg structure. In another 
study by Mativo (2020), the author provided details of the 

Power Generation and Efficiency for a 
Flexible Thermoelectric Structure 

——————————————————————————————————————————————–———– 
John Mativo, University of Georgia; Paul Asunda, Purdue University 
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three TEG configurations and their respective behavior, 
when structural and thermal loading were applied. The tool 
used to layout the design domain and create and study the 
TEG unit cell was a finite element-based tool developed 
within MATLAB (Mativo, 2020). The intent in this current 
study was to determine the current produced and the accom-
panying efficiency of the TEGs. After a general discussion 
of power generation in TEGs, the authors present three  
additional parts: a) replication of a previous study to verify 
the MATLAB tool used to conduct the rest of the experi-
ments; b) application of the verified tool to a Marlow   
TG12-6 used as the baseline of the experiments; and,         
c) a unit cell with legs that have a polymer filling the void 
spaces. 
 

Power Generation  
 

Power generation within a TEG is controlled by the    
Seebeck, Joule, and Thomson effects. The Seebeck effect 
describes how temperature difference between two dissimi-
lar conductors produces electromotive force (emf) between 
them. For this case, the p-type leg contained a positive 
charge, while the n-type leg held a negative charge. The emf 
was a catalyst for the thermally excited electrons to move, 
resulting in current flow. To better illustrate the differences 
in the legs, ALGOR was used to visually display the results 
in color. Figure 3 shows how a heat source of 230oC was 
applied on the left side and a heat sink of 50oC was applied 
on the right. The figure further shows that, although the 
temperature distribution along the legs was the same, a 
maximum heat flux value of 349,894 J/m2s was generated 
on the left n-type leg of Figure 4, while a minimum heat 
flux value of 1679 J/m2s was found on the right side on the 
p-type leg. This action is represented in Equation 1: 
 

(1) 
 
where, α is the Seebeck coefficient, V is electromotive force 
or voltage, and ΔT is difference between hot and cold     
temperatures. 

Figure 3. Temperature distribution in a unit cell. 

Figure 4. Heat flux distribution in a unit cell. 

 
Joule heating happens when current flows through a   

material that offers resistance to flow. The amount of heat 
produced is represented in Equation 2: 

(2) 
 
where, Qj is joule heating, I is current, and R is electrical 
resistance. 
 

The Thompson effect relates to the rate of generation of 
heat resulting from the flow of current along an individual 
conductor with a temperature difference (Olivares-Robles, 
Badillo-Ruiz & Ruiz-Ortega, 2020; Ruiz-Ortega, Olivares-
Robles & Ruiz, 2018; Saqr & Musa, 2009; Rowe, 2006). 
The Thomson effect is represented in Equation 3: 
 

(3) 
 
where, β is the Thomson coefficient, Qt is the rate of      
reversible heat absorption, I is the current flow, and ΔT is 
temperature difference between the ends of the conductor.  
 

The performance of the TEG is greatly influenced by the 
figure of merit (Z), as shown in Equation 4: 
 

(4) 
 
 
where, α2σ is the electrical power factor and k is the thermal 
conductivity. 
 

Multiplying with temperature, Z becomes unitless and is 
represented by ZT, a dimensionless figure of merit. A higher 
ZT is associated with a higher TEG power generation.        
In order to obtain a maximum figure of merit, the geometry 
and material properties for the TEG should satisfy Equation 
5 (Chen, Meng & Sun, 2012; Kanimba & Tian, 2016; 
Rowe, 2006; Yang et al., 2021): 
 

(5) 
 
 
where, Ap is the cross sectional area of the positive leg; An is 
the cross sectional area of the negative leg; Ln and Lp are leg 
lengths for the negative and positive legs, respectively;       
kn and kp, are the thermal conductivity for the negative and 
positive legs, respectively; and, ρn and ρp are electrical resis-
tivity for the negative and positive legs, respectively. 
 
Equation 6 is used to determine power: 
 

(6) 
 
where, P is power, Qh is the heat source, Qc is the heat sink, 
and N is the number of legs. 
 

The equation used to calculate the thermal power efficien-
cy of a TEG is shown in Equation 7: 
 

(7) 
 
where, η is efficiency. 
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These equations and the Marlow TG12-6 leg geometry, 
where the Bi2Te3 material completely fills the TEG legs   
(S1 and S2 domains), were used to create a MATLAB code 
(tool) to study the power generation and efficiency of     
various configurations, as noted earlier in this section. 
 

Prior Study and Tool Verification 
 

In their study of power generation and efficiency of    
uniform, cross-sectional areas of TEG legs, Kanimba and 
Tian (2016) observed that power as a function of current 
behaved in a parabolic manner having an optimal power at a 
specific current, as shown in Figure 5. A higher temperature 
input resulted in a higher power. The line graphs represent 
100oC increments from 200oC to 400oC from the bottom 
graph to the top, respectively. The temperature on the heat 
sink was maintained at 100oC. 

Figure 5. TEG output power as a function of electrical current. 

Figure 6. Efficiency as a function of current. 

 
Figure 6 shows efficiency as a function of current for a 

uniformed TEG leg cross-sectional area. The behavior   
patterns of the efficiency curve were similar to the power 
curves. The tool was then used to study the baseline unit 
cell and the reconfigured composite models. 

Baseline Model 
 

The MATLAB tool was used to establish a baseline for 
comparison of a TEG leg—with a uniform, cross-sectional 
area—with that of a variable, cross-sectional area. New 
temperature conditions for this study were used with a high 
starting from 110oC and rising to 230oC with increments of 
60oC. These temperatures correspond to those of the      
Marlow TG12-6, which was the TEG baseline model for 
this study. The sink temperature for this experiment was set 
at 50oC. The parabolic graph of Figure 7 shows the results 
of the investigation of power as a function of current. The 
graph also indicates lower values than previously described 
in the Kanimba and Tian study (2016). The difference was 
attributed to lower temperatures used. 

Figure 7. Output power as a function of electrical current for 
baseline TEG. 

 
Investigating efficiency as a function of current also   

resulted in the parabolic graph of Figure 8. This graph is 
similar to the Kanimba and Tian study (2016). Overall, 
these experiments ran at 36% of  those found by Kanimba 
and Tian. This was expected because of the difference in the 
temperatures in both experiments. 

Figure 8. Efficiency as a function of current for baseline TEG leg. 

——————————————————————————————————————————————————– 
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Reconfigured Composite Leg Solution 
 

In an effort to understand the effects of voids in the TEG 
element with respect to structural displacement behavior 
and power generation, Mativo et al. (2021) studied volume 
fraction of the base material from 100% and stopped at 40% 
where structural instability occurred. Table 1 presents the 
structural design parameters. 
 
Table 1. Structural design parameters (Mativo, 2020). 

Table 2 depicts various volume fractions that illustrate 
reconfigured models. The reconfigured TEG legs in this 
study occupied approximately 70% of the total baseline 
area. This percentage maintained the integrity of the struc-
ture as thermal load was applied. Beyond this percentage, 
the legs became unstable and were unable to hold the     
applied mechanical loading. The reconfigured design     
depicts the top of each leg with void regions and less mate-
rial creating connectivity to the top cover which allowed 
flexibility induced by shear loading. While the design    
increased TEG flexibility, it also introduced barriers to heat 
paths caused by the voids. Figures 9 and 10 show how the 
authors overcame this barrier by using a conducting poly-
mer, PEDOT:PSS, without additional thermal restrictions, 
because of the similar thermal conductivity of the two mate-
rials (Faghani, 2010; Zhang, Sun, Katz, Fang & Opila, 
2010; Song et al., 2013; Liu, Wang, Li, Coates, Segalman & 
Cahill, 2015). When selecting material properties for the 

TEG, tradeoffs between thermal conductivity and electrical 
resistivity were considered (LeBlanc, 2014). Filling the 
voids transformed the leg into a reconfigured composite 
TEG leg and removed the thermal flow restriction that 
would have required higher temperatures to enable convec-
tion and radiation, respectively, to expand the heat path. 
 
Table 2. Displacement, power, and shape of an integrated TEG for 
the vibratory environment (Mativo et al., 2021). 

Figure 9. Topology of an optimal TEG unit cell indicating where 
PEDOT:PSS was applied. 

Figure 10. Reconfigured composite TEG unit cell. 

 
As a polymer, PEDOT:PSS does not interfere with the 

flexibility of the reconfigured TEG leg. It was assumed that 
the interface between the Be2Ti3 and PEDOT:PSS would 
have no effect on the calculation of power and efficiency of 
the reconfigured leg. Figure 10 shows the interface. The 
new bismuth telluride and PEDOT:PSS reconfigured     

Design parameter Quantity 

Design domain  
60 units in the x direction 

20 units in the y direction 

Fixed void region  
20 units in the x direction 

16 units in the y direction 

Leg height 16 mm 

Leg cross-sectional area 400 mm 

Bismuth telluride density 7.8587 g cm-3 

Bismuth telluride Young’s modulus 8.1 – 50 GPa 

Bismuth telluride ultimate tensile 
strength 

7.4 GPa 

Bismuth telluride density 7.37 g/cm3  

Bismuth telluride melting point 585oC 

Bismuth telluride Seebeck 
coefficient, αp, αn 

0.000215, -0.000215 v K-1 

Bismuth telluride thermal 
conductivity, kp, kn 

1.47 Wm-1 K-1 

Temperature—heat source 110oC < T ≤ 230oC 

Temperature—heat sink 50oC 

Poisson’s ratio 0.23 

Volume 
fraction 

Displacement 
(%) 

Power generation 
at 230oC (W/mK) 

Shape 

100 5.04 1.0499  

90 5.55 0.9725  

80 6.36 0.8937  

70 7.84 0.8115  

60 10.31 0.7264  

50 12.90 0.6374  

40 14.20 0.5313  



——————————————————————————————————————————————–———— 

composite TEG legs of Figure 10 provided both flexibility 
and an enhanced heat transfer path for the temperatures used 
in this study. Various heat source temperatures (e.g., 230oC, 
170oC, and 110oC) were applied across the heat plate at  
different times, and a heat sink of 50oC was set. The recon-
figured composite TEG leg model was subjected to the  
temperature gradients at equal intervals. Figure 11 shows 
power as a function of current behaving in a parabolic   
manner. It follows that a higher temperature input resulted 
in a higher power. The line graphs represent 60oC incre-
ments from 110-230oC. The temperature at the heat sink 
was maintained at 50oC. Following the baseline graph,   
Figure 12 shows a higher efficiency. 

Figure 11. Output power as a function of electrical current for a 
TEG reconfigured composite leg. 

Figure 12. Efficiency as a function of current for a reconfigured 
composite TEG leg. 

 
The power output generated by the reconfigured compo-

site leg was slightly below (94%) the baseline. Table 3 
shows an overall power generation comparison between the 

baseline and the reconfigured composite models. Table 4 
shows that the reconfigured composite leg had a 3%       
increase in efficiency. 
 
Table 3. Maximum power generation for the two models. 

 
Table 4. Maximum efficiency for the two models. 

 
The power decrease and efficiency increase shown in 

Tables 3 and 4 were influenced by the change in the compo-
sition of the TEG leg with bismuth telluride at 70%, while 
holding PEDOT:PSS at 30%. In studying the effects of 
power and electrical resistivity of the reconfigured compo-
site, it was determined that power generated from higher 
temperature was more impacted than from lower tempera-
tures. Figure 13 shows how this can be caused by the higher 
difference in temperature gradient. 

Figure 13. Power decreases in the reconfigured composite TEG 
leg. 

 
Interestingly, Figure 14 indicates that this study of effi-

ciency and resistivity of a reconfigured composite leg had 
an increase in efficiency across all input temperatures, with 
all temperatures assuming the same proportional increase. 

Experiment/  
Temperature 

Baseline (W/mK) 
Reconfigured -

Composite (W/mK) 

230oC  1.0499 0.9844 

170oC  0.4667 0.4375 

110oC  0.1163 0.1094 

Experiment/  
Temperature 

Baseline (%) 
Reconfigured -
Composite (%) 

230oC  4.85 4.99 

170oC  3.31 3.41 

110oC  1.69 1.74 

——————————————————————————————————————————————————– 
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Figure 14. Increase in efficiency for the reconfigured composite 
TEG leg. 

 

Discussion 
 

Three models were examined in this study. The first  
model was developed to verify the MATLAB tool for accu-
racy of the studies to follow. The second experiment studied 
the baseline model. Results reflected what the Marlow 
TG12-6 data sheet contained. All models withstood the 
compression loads specified for the baseline model. The 
baseline model failed when shear load was applied to it. It 
was rigid, yet generated the most power per unit cell. The 
reconfigured composite model generated power at 94% of 
the baseline model and withstood half of the applied shear 
load when compared to the baseline model (Mativo, 2020). 
It should be noted that all experiments in this study were 
simulations. It is believed that scholarly environments with 
physical facilities that can build and test the TEG could do 
so and verify these findings. 
 

The findings from this study suggest that a reconfigured 
composite TEG leg with a uniform cross-sectional area can 
safely operate in a vibratory environment. Reconfigured 
composite TEG legs indicates that both flexibility and   
thermal conductivity can be achieved by careful structural 
design and filler material selection. The authors sought to 
minimize the difference between Bi2Te3 and the conducting 
polymer to fill void regions in the reconfigured design, and 
PEDOT:PSS was the closest choice. The small difference in 
the two materials resulted in slightly less power and higher 
efficiency, when compared to the reconfigured void model. 
The result was influenced by the polymer path, as opposed 
to no path (void). The Seebeck effect and thermal conduc-
tivity significantly influenced the final outcomes. 
 

Conclusions 
 

The authors attempted to determine the effects of a recon-
figured leg on power generation and efficiency. Using the 

original rectangular legs as a baseline for the study, the  
authors found that, even though both leg models occupied 
the same amount of space, the reconfigured leg used about 
30% less bismuth telluride. The reconfigured composite 
TEG leg incorporated PEDOT:PSS to fill the void regions 
and its power and efficiency results were close to the base-
line while adding flexibility, which was the impetus for the 
original study. It is worth noting that scalability was not 
considered for this experiment. The assumption was that the 
mechanical and electrical aspects of the reconfigured TEG 
model would yield an overall gain of flexibility with mini-
mum power generation loss. 
 

The new reconfigured composite TEG leg is beneficial, as 
it can provide opportunities to harvest energy in non-planar 
and vibratory environments. A tradeoff of slightly reduced 
overall power generation (6%) compared to no access to 
free waste energy in vibratory environments is worth      
consideration. Many waste heat-emitting sources such as 
engines, boilers, bridges, and vehicles are vibratory in    
nature and can use the harvested energy to further their  
missions or run auxiliary systems. Finally, an increase in 
efficiency is welcome. 
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Abstract  
 

Traffic signal timing design at intersections requires data 
on the turning movements (TMs) of vehicles that travel 
through the intersections. Turning movements at traffic  
intersections refer to the directional choices that drivers of 
the vehicles make—left turns, through movements, right 
turns, and U-turns—as they navigate the intersection. Tradi-
tional methods of TM data collection are costly, time-
consuming, and do not deliver real-time data. Alternative 
techniques such as video image processing enable the near-
real-time collection of approach volumes and turning move-
ments. However, these methods require expensive, special-
ized equipment at the intersection. As a result, manual 
counting has remained the predominant method for collect-
ing TM data at intersections.  
 

In this current study, the authors developed a robust  
method for collecting TM data. The TM counts, approach 
volume, intersection type, and lane configuration of 400 
intersections around Ada County, Idaho, USA, were       
analyzed to develop an accurate and reliable turning-
movement estimation model. A total of 2400 hours of TM 
counts were used. Three different machine learning multi-
output regression methods were applied to analyze the   
relationship between the approach volumes and the corre-
sponding turning movements, intersection type, and lane 
configuration. The results indicated that the developed  
model had a remarkable capability for accurately forecast-
ing TMs. 
 

Introduction 
 

In order to undertake traffic operational analysis and   
design studies such as intersection design and signal timing 
design, transportation engineers and planners need accurate 
turning-movement counts at intersections (Noyce, Bill, 
Chitturi & Santiago-Chaparro, 2019). It is not costly or 
complicated to collect approach volumes using existing 
vehicle detection infrastructure. Loop detectors, microwave 
detectors, and video-imaging detectors are all examples of 
stationary sensors that have long been employed to count 
approach volumes (Vigos & Papageorgiou, 2010). These 
devices are capable of measuring approach volumes, but 
they are unable to measure TMs. TMs are the categorization 
of an approach traffic stream into left, right, and through 
streams that pass through the intersection (Karapetrovic & 
Martin, 2021). Numerous researchers have made efforts to 
suggest novel ways to calculate TMs from approach       

volumes, but none has been found to be effective enough for 
use in the U.S. Many of the proposed methods require    
special equipment that is expensive to install or has a     
limited scope of use. For example, they may not work when 
there is a shared lane. Currently, manual counting remains 
the most common approach for collecting TM data, even 
though there are several drawbacks to it. There are several 
issues that arise while collecting TMs through manual 
counts. Manual counting is a tedious and time-consuming 
method representing snapshots in time; as such, it is unable 
to provide traffic data in real-time or on a continuous basis, 
which is necessary for gaining insight into how traffic    
patterns change over time (Ghods & Fu, 2014). Replacing 
manual traffic counting with superior techniques can      
provide more accurate, efficient, and comprehensive data on 
traffic flow, which can help city planners and traffic engi-
neers make better decisions about traffic management and 
infrastructure improvements. 

 
The estimation of future traffic confronts transportation 

engineers and planners with an additional challenge.     
Turning movements are typically approximated using the 
origin-destination (O-D) matrix, when traffic agencies fore-
cast future traffic for existing or planned traffic networks. 
The O-D matrix thereafter undergoes iterative operations to 
achieve equilibrium in the turning movements (Project Traf-
fic Forecasting Handbook, 2014). While this methodology 
is frequently used and acknowledged as a conventional  
procedure, constructing the origin-destination matrix      
requires comprehensive surveys and is contingent upon  
varying land-use assumptions. Consequently, it is essential 
to revise the O-D matrix in response to any changes in the 
adjacent land use. Furthermore, in instances where the traf-
fic network is of limited scale, such as in the scenario of an 
isolated intersection, the practicality of using an O-D matrix 
is questionable. In light of the aforementioned limitations, it 
is essential to explore other approaches for calculating TMs. 

 
This study departs from the conventional methodology 

that relies on a predefined set of assumptions and iterative 
adjustments to attain a balance between inbound and      
outbound traffic. Instead, a machine learning (ML)         
approach was adopted that focused on understanding the 
intricate relationships between approach volumes, turning 
movements, and various traffic and geometric attributes of 
intersections. These insights were then utilized to develop 
predictive models. ML methods, a subset of artificial intelli-
gence, empower computers to autonomously learn and 
make predictions or decisions without explicit task-specific 
programming. They discern patterns within the data and 
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subsequently employ these patterns to make informed deci-
sions. Furthermore, ML methods possess the capability to 
extend predictions to unseen data, based on patterns gleaned 
from existing data sources. In this current study, the authors 
took advantage of ML methods to solve the problem of TM 
counts at intersections. 

 
This research entailed the training of ML techniques on 

manual count data to meticulously investigate the relation-
ship between approach volumes and the corresponding  
turning movements, as well as two other key features of 
intersections. A number of earlier studies also attempted to 
find the relationship between turning movements and     
approach volumes with the aid of ML approaches. In this 
current study, however, the authors aimed to enhance previ-
ous research by including more crucial intersection features 
in the predictive variables of the model. These additive   
predictive variables were descriptive variables, as opposed 
to approach volumes that are numerical variables. Using a 
combination of numerical and descriptive variables as    
predictive variables helps to capture a broader range of rela-
tionships in the data. The two descriptive data items applied 
in this study gave more information about the lane configu-
ration of approaches and the type of intersection. 

 
For this study, manual count information and geographic 

data from around 400 intersections in Ada County, Idaho, 
were collected and encompassed 1242 manual count data 
sheets. Additionally, a detailed database on lane configura-
tion for each approach at every intersection and intersection 
type was generated. The results from applying ML models 
to the final data frame revealed that the proposed approach 
has the potential to serve as a robust platform for the utiliza-
tion of the available manual count of approach volume data 
to estimate TMs at intersections. It can, then, contribute 
significantly to intersection and signal timing design for 
intersections and can either fill data gaps in current situa-
tions or make predictions for future intersections where data 
are scarce or nonexistent. 

 

Literature Review:  Materials and Methods  
 

Researchers have long endeavored to find an alternative 
technique to replace manual counts. They attempted to   
calculate TM data by utilizing the origin-destination (O-D) 
matrix, but this strategy proved to be imprecise and unsta-
ble. O-D matrices are often used in transportation planning 
as a means of aggregating data to show the overall number 
of trips between certain zones or places. The provided infor-
mation lacks specificity on the movement patterns of vehi-
cles inside designated areas, especially within intersections. 
To solve the problem, these methods consider some unreal-
istic assumptions that make the results inaccurate. Besides, 
these methods are not able to give real-time TM data (Nihan 
& Davis, 1989; Pratelli, Sordi & Farina, 2021). Several  
researchers have tried to develop mathematical algorithms 
that can use data obtained by detectors to determine the 
TMs of vehicles based on approach volumes. These     

methods, however, have always been severely constrained. 
For example, some of them were inapplicable to intersec-
tions with shared lanes or those that did not have a simple 
geometry (Hauer, Pagitsas & Shin, 1981; Maher, 1984; 
Mahmoud, Abdel-Aty, Cai & Yuan., 2021; Noyce, Chittori, 
Santiago-Chaparro & Bill, n.d.; Virkler & Kumar, 1998).  
 

A number of other researchers attempted to determine 
TMs by analyzing the data obtained from pre-existing video 
detection systems installed at signalized intersections 
(Shirazi & Morris, 2016; Yi & Zhang, 2017; Shirazi & Mor-
ris, 2014; Bélisle, Saunier, Bilodeau & Le Digabel, 2017). 
Yet others proposed methodologies for intersections 
equipped with radar-based, vehicle-detection systems 
(Santiago-Chaparro, Chitturi, Bill & Noyce, 2016).         
Although some of these methods were successful, one    
primary concern associated with these methodologies was 
the limited versatility of video detection devices or radar-
based sensors, resulting in a limited number of potential 
uses of these systems. Furthermore, all of these techniques 
incurred significant costs, due to the need to deploy specific 
equipment at the intersections. The advent of connected 
vehicles (CVs) opened up several opportunities for improv-
ing the operation of traffic signals. It encouraged some   
researchers to use CV data to aid in estimating TMs. What 
prevents these methodologies from becoming practical is 
the low penetration rate of CV data. The assumed penetra-
tion rate in these studies was much higher than the real   
penetration rate (Saldivar-Carranza, Li & Bullock, 2021; 
Saldivar-Carranza, 2021). Still other researchers attempted 
to address this problem, but CV data were still not free at 
the time, and organizations were required to pay for it 
(Zheng & Liu, 2017; Nazari Enjedani & Khanal, 2023). 

 
Alternatively, a number of scientists have attempted to 

model TM counts at intersections using machine learning 
methods. In one study, the authors proposed a method for 
estimation of TMs based on approach volumes using an 
artificial neural network (ANN). This method relies on   
understanding the underlying relationships between the  
approach volumes and the TMs, and then using these rela-
tionships to make predictions (Ghanim & Shaaban, 2019). 
In another attempt of applying ML methods to solve the TM 
problem, machine learning-based regression models, includ-
ing Random Forest Regressor (RFR), multi-output regressor 
(MOR), and an artificial neural network (ANN) model, 
were developed and trained to analyze the relationship   
between approach volumes and corresponding turning 
movements (Shaaban, Hamdi, Ghanim & Shaban, 2022). 
What distinguishes these models is their singular focus on 
the correlation between approach volume and turning move-
ments (TMs). Remarkably, they do not consider the geomet-
ric details or any other distinctive intersection features in 
their computations. However, it is important to acknowledge 
that TM is influenced by factors beyond approach volumes. 

 
In this current study, the authors endeavored to pioneer a 

more comprehensive approach by crafting a multi-output 
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TM regression ML model. The innovative model described 
in this paper delves into the intricate web of relationships 
between approach volumes, intersection types, lane configu-
rations, and the corresponding turning movements. The goal 
was to provide a holistic understanding of how these multi-
faceted factors collectively influence vehicular movements 
at intersections. 
 

ML-Based, Multi-Target Regression  
Models for Predicting Turning Movements 
 

The purpose of this research project was to create and 
assess ML-based, multi-target regression models for esti-
mating TMs at signalized intersections. When there is a 
scarcity of traffic data, or TM counts, the benefits of such 
models become readily apparent. In particular, when only 
approach volumes (either actual or forecast) are provided, 
the proposed models would create dependable and effective 
TMs. The multi-target regression models convey the      
relationship between the approach volumes, intersection 
classification, lane configuration, and the corresponding 
turning movements. After developing the turning movement 
models, predicting turning movement volumes from       
approach volumes becomes possible and practicable. When 
working with planning data or newly planned intersections, 
the use of such models becomes even more valuable. 

 
Figure 1 depicts a typical four-legged intersection. There 

are three potential TMs for each approach: right, through, 
and left. U-turns are added to left-turns. The goal of this 
current research project was to estimate a total of 12 poten-
tial TMs for a regular four-approach intersection. The     
authors considered a turn from approach i to approach j, as 
Tij. Furthermore, there were four inbound volumes denoted 
as Ini and four outbound volumes denoted as Outj; their  
values were obtained from detector data using Equations 1 
and 2. As the equations show, there were eight constraints 
for a four-legged intersection. 
 
 

(1) 
 
 

(2) 
 
 

It should be noted that only seven of these equations were 
independent, since the eighth could be expressed as a func-
tion of the first seven. This characterization would then be 
used to choose the independent variables for the model. 
With 12 TMs (Tij) and only seven equations, it is clear that 
there were many possible solutions, and additional infor-
mation had to be provided in order to obtain a unique set of 
estimates for Tij. In this study, this issue was handled by 
treating the problem as a multi-target regression problem. In 
a single-target variable regression problem, there is one  
input (or feature) vector and one corresponding target varia-

ble needs to be predicted. In a multi-target regression prob-
lem, there are multiple target variables that must be predict-
ed simultaneously. The target variables here are the counts 
of left, through, and right turns (Tij in Figure 1) for each 
observation, which is each approach of an intersection for a 
specific hour; this means that there was more than one target 
variable for each observation in the dataset. Since the goal 
was to predict multiple numerical or continuous target varia-
bles simultaneously, which were traffic counts, the problem 
was a multi-output regression problem. 

Figure 1. Graphical illustration of TMs at a four-legged signalized 
intersection. 

 
As mentioned previously, one-hour traffic counts on an 

approach to each intersection were considered an observa-
tion in this model. Each observation had three target varia-
bles, which were three TMs of an approach. For example, in 
Figure 1, which depicts a four-legged intersection, for    
approach 1, these target variables were T12, T13, and T14. 
Each observation also needed a number of predictive varia-
bles to make the model work. The predictive variables   
included all approach volumes at an intersection, plus some 
other functional and geometrical properties of the intersec-
tion. The inbound and outbound traffic volumes on all    
approaches at each intersection made up eight columns of 
predictive variable data. These eight predictive variables for 
approach 1 in Figure 1 were In1, In2, In3, In4, Out1, Out2, 
Out3, and Out4. A clockwise scheme was used while filling 
up the data table. In1 and Out1 were the inbound and     
outbound volumes of a given approach. In2 and Out2 were 
then the inbound and outbound volumes of the approach on 
the left side of the subject approach. In3 and Out3 were the 
inbound and outbound volumes of the approach in front of 
the subject approach. And, finally, In4 and Out4 were the 
inbound and outbound volumes on the right side of the   
subject approach. Two additional data items were added that 
were not numerical variables, such as those in the first 
group, but were descriptive variables.  

( )1,2,3,4; 1,2,3,4;i ij

j

In T i j j i= = = 

( )1,2,3,4; 1,2,3,4;j ij

i

Out T j i i j= = = 
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Using a combination of numerical and descriptive varia-
bles as predictive variables helped to capture different    
aspects of the problem and improve the predictive power of 
the model. It further allowed for the capture of a broader 
range of information and relationships in the data, leading to 
more accurate and meaningful predictions. The two data 
items chosen to provide more information to the model were 
the lane configurations of each approach and the type of 
intersection. Regarding lane configuration, through a     
comprehensive analysis, the number of exclusive left-turn 
lanes was chosen as the lane configuration property of each 
approach. There could be zero, one, or two exclusive left 
turns. The “intersection type” was defined as the class of the 
approach with the highest functional class. There were five 
distinct classes of approaches in the dataset: local, collector, 
minor arterial, primary arterial, and expressway. For exam-
ple, if an intersection included approaches classified as  
collector, minor arterial, and principal arterial, this intersec-
tion would be classified as principal arterial. All observa-
tions at this intersection would then have “principal arterial” 
under the column “intersection type” in the data table. 

 
In summary, a dataset was created with ten predictor vari-

ables and three output variables, which were TMs, for each 
approach. The final step was modeling. Due to the charac-
teristics of the data, this would be considered a multi-output 
regression problem. The problem was resolved through the 
implementation of several ML regression models. In this 
study, to address this issue, Random Forest Regressor 
(RFR), XGBoost Regressor and Extra Trees Regressor were 
implemented. 

 

Data Collection and Preparation 
 

The data utilized to construct the models in this study 
consisted of 1242 TM manual counts obtained from inter-
sections in Ada County, Idaho, from 2017 to 2022. The Ada 
County Highway District (ACHD) collects manual count 
data over time and saves it in its database for future use. The 
manual count data were saved as PetraPro_Datafiles, which 
were exported into Excel format for the purpose of this 
study. Table 1 presents the annual number of manual counts 
performed by ACHD in Ada County during the analysis 
period of this study. 

 
Table 1. Annual number of manual TM counts in Ada County. 

Table 2 shows an illustration of a manual count data   
Excel sheet obtained from ACHD. In addition to columns 
labeled Left, Thru, and Right, which represent three     
standard TMs at an approach, there is also a Peds column 
representing pedestrian movements for each approach with 
all values zero in Table 2. This is because ACHD does not 
routinely collect pedestrian data unless a special request is 
made for them. Based on the requests from designers or 
planners, survey personnel were deployed to the intersection 
to record passing vehicles and the turns they made. It can be 
said that the most common application of manual count data 
is signal timing design. The TM counts were collected for 
three peak periods: morning, noon, and evening, which are 
typically used for traffic operations analysis. Not all the 
intersections in the database have manual counts for all 
three distinct peak hours; certain intersections have counts 
for just one or two peak periods. 
 

The available database pertains to around 400 intersec-
tions, which include intersections with three legs, four legs, 
and more than four legs. There were only a few intersec-
tions with more than four legs but were excluded to simplify 
the model. To apply ML models to these data, the data in 
these 1242 Excel files needed to be organized into one data 
frame. This final data frame was utilized for subsequent 
data analysis and modeling purposes. Table 3, containing 
9936 rows of data, shows a sample of the final dataset. The 
first 14 columns of this data frame were built by stacking 
the manual count data sheets. It is apparent from Table 3 
that, for each hour of traffic counting at each approach to 
each intersection, there is a row of data in the final data 
frame. Considering the first row of this table, the figures for 
the Left, Thru, and Right columns come from simply     
summing up one hour of left turn, through, and right turn 
manual count data in Table 2. In1 through In4 as well as 
Out1 through Out4 were calculated according to Equations 
1 and 2. These were in-bound and out-bound approach   
volumes at each intersection. 

 
Each Excel sheet of the manual count of a four-legged 

intersection can contribute to building up eight rows in the 
final data frame. Manual counts are normally done for two 
hours around peak hours in the morning, noon, or evening. 
The aim here was to make the dataset for hourly volumes. 
Accordingly, it was possible to generate two rows of obser-
vations for each approach; having four approaches in a four-
legged intersection yielded eight observations from each 
Excel sheet. This procedure was also applied to three-legged 
intersections; the only difference was that a leg with zero 
volume would be added to each three-legged intersection.   
It should be noted that real-time approach volumes are also 
often available, because detectors are constantly collecting 
them. Regarding the column Intersection Type, first the 
street classification of approaches to intersections was    
requested from ACHD. Table 4 shows a sample of the data 
frame obtained from ACHD, which has 392 rows; each row 
represents an intersection and contains the classification of 
the approaches to that intersection.  

Year Number of Counts 

2017 367 

2018 294 

2019 167 

2020 161 

2021 50 

2022 203 

Total 1242 
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The approach with the highest functional class was select-
ed as the intersection type and that was used to fill the    
column Intersection Type in Table 3 for each approach. For 
lane configuration, the aim was to collect the number of 
lanes and their functionality for each approach in the analy-
sis. As no database for lane configuration data from ACHD 
or other transportation authorities in Idaho could be found, 
Google Maps was used to collect these data manually. Table 
5 shows a sample of the collected lane configuration data 
frame. This data frame has around 1600 rows. Lane config-
uration data provide the number of lanes of each type in 
each approach. Exclusive left shared left and through, 
through, shared left, through and right, shared through and 
right, exclusive right, and shared left and right encompass 
the types of lane configurations. After investigating these 
data and to limit the number of independent variables, the 
decision was made to apply only the number of exclusive 
left lanes as the lane configuration characteristic.  
 

The number of exclusive left lanes was picked, because 
there was more variation among intersections in this lane 
type compared to other lane types, making it more informa-
tive for the model. The number of exclusive left turn lanes 
was found to be zero, one, or two. Accordingly, the column, 
lane configuration, in Table 3 was populated with the num-
ber of exclusive left lanes for each approach. Figure 2 
shows a correlation matrix that was developed for the input 
data attributes and the output variables.  

In Figure 2, the rows and columns labeled “in,” “in-left,” 
“in-opp,” and “in-right” correspond to columns In1, In2, 
In3, and In4 in Table 3, respectively. Similarly, the rows and 
columns labeled “out,” “out-left,” “out-opp,” and            
“out-right” correspond to columns Out1, Out2, Out3, and 
Out4 in Table 3, respectively. Multiple interesting relation-
ships can be seen in Figure 2 that could have a powerful 
impact on regression results. For example, the output Thru 
is correlated positively with the inputs In and out-opp. After 
preparing the dataset, the next step was modeling the data 
with the help of machine learning methods to find the    
underlying relationship between TMs with approach       
volumes, intersection type, and lane configuration. 

 

Multi-Output Regression Models 
 

The prepared dataset represents a multi-output regression 
problem, since it has multiple target variables. This model 
has three continuous outputs, which are the three TM 
counts. Several machine learning models can be used for 
modeling multi-output regression datasets. Among them, 
RFR, XGB Regressor, and Extra Trees Regressor were   
selected for use in this current study. These multi-output 
regression models were applied to predict the TM counts at 
signalized intersections. Figure 3 summarizes the procedure. 
These three different ML techniques for multi-output regres-
sion were applied to the dataset under two different scenari-
os, and their outcomes were compared and assessed. 

Table 2. Example of a manual count sheet. 
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Name of Intersection  Approach 1  Approach 2 Approach 3 

16th & Hays Minor Arterial Minor Arterial   

16th & Idaho Minor Arterial Collector   

16th & Washington Minor Arterial Collector   

26th, 27th & State Minor Arterial Collector Principal Arterial 

27th & Main Collector Principal Arterial   

28th & Heron Collector Local   

28th, 29th & State Collector Local Principal Arterial 

31st, State & Whitewater Park Local Principal Arterial Minor Arterial 

33rd & State Local Principal Arterial   

36th, Chinden & Orchard Collector Principal Arterial Principal Arterial 

Table 4. A sample of an approach classification data frame. 

Name of 
Intersection 

Name of 
Approach 

Exclusive 
Left 

Left +Thro  Thro  
Left + Thro 

+ Right 
Thro + Right 

Exclusive 
Right 

Left + Right 

Chateau & 
Locust Grove 

Locust Grove from 
Ustick from North 

1 0 0 0 1 0 0 

Chateau & 
Locust Grove 

Chateau from 
Lochness from East 

0 0 0 1 0 0 0 

Chateau & 
Locust Grove 

Locust Grove from 
Fairview from South 

1 0 0 0 1 0 0 

Chateau & 
Locust Grove 

Chateau from 
Jericho from West 

0 0 0 1 0 0 0 

Fairview & 
Locust Grove 

Locust Grove from 
Ustick from North 

1 0 1 0 1 0 0 

Locust Grove 
& McMillan 

Locust Grove from 
Ustick from South 

1 0 1 0 0 1 0 

Locust Grove 
& Pine 

Locust Grove from 
Fairview from North 

1 0 1 0 1 0 0 

Locust Grove 
& Ustick 

Locust Grove from 
Fairview from South 

1 0 1 0 1 0 0 

Table 5. A sample of a lane configuration data frame. 

Table 3. A sample of a final database. 

Intersection Approach Left Thru Right In1 In2 In3 In4 Out1 Out2 Out3 Out4 
Int 

Type 
Lane 

Configuration 

Chateau &  
Locust Grove PM 

Locust Grove from Ustick 
from North 

13 732 28 773 109 1150 131 1094 96 867 106 *M 1 

Chateau & 
Locust Grove PM 

Chateau from Lochness 
from East 

63 8 38 109 1150 131 773 96 867 106 1094 *M 0 

Chateau & 
Locust Grove PM 

Locust Grove from Fairview 
from South 

70 1008 72 1150 131 773 109 867 106 1094 96 *M 1 

Chateau & 
Locust Grove PM 

Chateau from Jericho 
from West 

48 11 72 131 773 109 1150 106 1094 96 867 *M 0 

*Minor Arterial 
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In Scenario 1, all three target variables and the eight   
predictive variables were used in their original form, which 
was traffic counts per hour. There were no data transfor-
mations in this scenario. Scenario 2 tried to transform all 
three target variables and those eight predictive variables 
that were approach volumes into ratios. In both scenarios, 
the two remaining predictive variables, Intersection Type 
and Lane Configuration, were the same and did not undergo 
any data transformation. The columns Left, Thru, and Right 
in Table 3 can be replaced with the proportion of the left 
turn, through, or right turn counts relative to the whole   
approach volume. The columns In1 to In4 in Table 3 can be 
replaced with the share of each approach relative to the total 
entering traffic to the intersection. The same logic was   
applied to transform the content of columns Out1 to Out4 
from traffic counts to ratios. 

 
Figure 3 shows that, after the dataset was assembled, the 

data cleaning procedure was applied to the data. In this 
study, the data cleaning procedure involved preprocessing 
the data by removing outliers. This step was crucial,       
because the quality of the data directly impacted the perfor-
mance and reliability of the models. It is common to start by 
identifying outliers in the predictive variables, because they 
can directly affect the performance of the model. However, 
depending on the nature of the problem, the analyst may 
also want to examine outliers in the target variables, espe-
cially if they represent unusual events (Han, Kamber & Pei, 
n.d.). The specific context and objectives of the analysis or 
modeling task should ultimately serve as a guide for the 
decision. Here, outliers were examined only in the predic-
tive variables. The Z-score method, which is a statistical 
method to find outliers, was chosen to apply to the dataset. 
This method calculates the Z-score for each data point and 

identifies those with Z-scores above a certain threshold. 
Overall, 12 intersections had outliers, and they were deleted 
from the final database before modeling. 

 
In Figure 3, Step 3 is about forming the training and test 

datasets. Splitting data into training and test datasets is a 
fundamental practice in machine learning for evaluating the 
performance of a model. The purpose of this split is to   
assess how well the model can generalize to new, unseen 
data. In other words, a subset of the data is set aside before 
starting the analysis, and this serves as new, unseen data in 
the evaluation process. Test-train split aids in model evalua-
tion, preventing overfitting, parameter tuning, assessing 
generalization, and avoiding data leakage. By training the 
model on the training set and then evaluating its perfor-
mance on another independent portion that is the test      
dataset, it is possible to simulate how the model will       
perform in the real world when it encounters new, unseen 
examples (Mueller & Guido, 2016). In this study, the dataset 
was divided into 20% and 80% for test and training purpos-
es, respectively. It indicates that the model was developed 
with 80% of the data and then evaluated for performance on 
20% percent of the unseen data. 

 
The following step in Figure 3 is the bootstrapping proce-

dure. It involves repeatedly sampling the original dataset 
with replacement. The purpose of bootstrapping is to create 
multiple resampled datasets from the original training data, 
each of which can be used to train a different instance of the 
model. Bootstrapping is typically performed on the training 
data when working with machine learning models. The pri-
mary reason for bootstrapping on the training data is to  
introduce diversity and reduce overfitting in the model. By 
repeatedly sampling with replacement from the training data 

Figure 2. Visualization of the correlation matrix between input and output variables. Figure 3. Prediction process. 
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to create different training subsets, variations would be  
generated in the training process. This helps the model learn 
different aspects of the data and become more robust,     
improving its generalization to unseen data. Bootstrapping 
is typically not performed on the entire dataset. The test data 
should remain independent of the training process and    
represent unseen examples. Bootstrapping on the test data 
would introduce bias and invalidate the assessment of   
model performance on new, unseen data. That is why the 
bootstrapping step occurs after the training-test split 
(Alpaydin, 2020). The next step is to apply the modeling 
procedure on the training dataset. As mentioned earlier, 
three different ML techniques for multi-output regression, 
including Random Forest Regressor (RFR), XGB Regres-
sor, and Extra Trees Regressor, were applied to the dataset. 
The programming language Python was used to implement, 
train, and evaluate the models. 

 

Random Forest Regressor (RFR) 

 
An RFR is a machine learning model that falls under the 

category of ensemble learning and is used for regression 
tasks. It is an extension of the Random Forest algorithm, 
which was originally designed for classification but can also 
be applied to regression problems (Vanderplas, 2016).   
Random Forest starts by creating multiple subsets of the 
original dataset through a process called bootstrapping (with 
replacement). This means that, for each subset, some data 
points will be repeated, while others may be left out. These 
subsets are used to train individual decision trees. At each 
node of a decision tree, Random Forest randomly selects a 
subset of features from the entire feature set. Earlier, differ-
ent features of this study were discussed, including 10    
predictive variables that were collected in the dataset. This 
feature selection process introduces diversity among the 
trees and helps prevent overfitting. Each subset of the data 
is used to train a decision tree independently. These trees are 
typically shallow; they are not allowed to grow very deep. 
This restriction helps maintain the diversity among the trees 
and reduces the risk of overfitting.  
 

In the case of regression (predicting continuous values), 
the final prediction is obtained by averaging the predictions 
of all the individual decision trees. The individual decision 
trees, which have been trained on different subsets of the 
data with different features, are combined into an ensemble. 
This ensemble approach improves the model’s performance 
and reduces the variance compared to a single decision tree. 
RFR provides an estimate of its performance without the 
need for a separate test set known as Out-of-Bag (OOB) 
Error Estimation. During the bootstrapping process, some 
data points are not included in the training subset for each 
tree. These “out-of-bag” data points can be used to estimate 
the model’s accuracy without cross-validation or a separate 
test set (Segal, 2003). For the purposes of this study, the 
RandomForestRegressor from the sklearn.ensemble module 
and Multioutput Regressor from the sklearn.multioutput 
module of the Python library were utilized. 

Below is a snippet demonstrating how these libraries were 
applied to the data frame in this study. X_train and X_test 
are data frames that contain the training and testing data, 
respectively. The variables y_pred_train and y_pred_test 
represent the turning movements predicted by the model for 
the training and testing data. 

 
regr_multirf=MultiOutputRegressor
(RandomForestRegressor
(n_estimators=n1,max_depth=max_depth,  
random_state=n2)) 
regr_multirf.fit(X_train, Y_train) 
y_pred_train = regr_multirf.predict(X_train) 
y_pred_test = regr_multirf.predict(X_test) 

 
Prior to fitting the Random Forest algorithm on the     

dataset, the maximum tree depth needs to be determined. 
Maximum depth in a Random Forest algorithm is a crucial 
hyperparameter that can significantly impact the perfor-
mance and behavior of the model. It controls the complexity 
of individual decision trees within the ensemble. It acts as a 
trade-off between bias and variance in the model. Deeper 
trees (higher maximum depth) reduce bias but increase   
variance. Shallower trees (lower maximum depth) reduce 
variance but may introduce bias. Balancing these trade-offs 
is crucial for finding a model that generalizes well to new 
data. Figure 4 shows Mean Squared Error (MSE) versus 
maximum depth for the RFR on the designed dataset. It 
seems a maximum depth of 10 would be a good choice in 
this case, since max depths less than that have a large MSE, 
and max depths more than that do not help in improving the 
MSE and only require more computational resources. After 
deciding on the maximum tree depth, an RFR model was 
fitted to the dataset. 

Figure 4. MSE versus maximum depth for Random Forest 
Regressor. 

 

XGB Regressor 
 

XGBoost (Extreme Gradient Boosting) is a powerful  
ensemble machine learning algorithm known for its high 
performance in regression and classification tasks. XGBoost 
is also an ensemble method that combines multiple decision 
trees to make predictions. Decision trees are the base learn-
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ers used in XGBoost. XGBoost uses a gradient-boosting 
framework. It builds an ensemble of decision trees sequen-
tially, with each tree aiming to correct the errors of the   
previous ones. It does this by minimizing a loss function, 
typically a mean squared error (MSE) loss for regression.  

 
When XGBoost assigns weights to data points, it gives 

more importance to data points that previous trees incorrect-
ly predicted. This way, it focuses on the most challenging 
examples, allowing the model to progressively improve its 
predictions. XGBoost includes L1 (Lasso) and L2 (Ridge) 
regularization terms to control the complexity of individual 
trees and prevent overfitting. These regularization terms 
encourage simplicity and sparsity in the tree structures. 
XGBoost employs tree pruning to remove branches from 
the decision trees that do not significantly improve the  
model’s performance. Pruning helps create smaller, more 
interpretable trees and improves the model’s generalization. 
The learning rate (also called the shrinkage factor) is a   
hyperparameter that controls the step size in the gradient 
descent process. It helps determine the contribution of each 
tree to the final prediction. XGBoost can provide a measure 
of feature importance, indicating which features have the 
most influence on the model’s predictions. This can be valu-
able for feature selection and understanding the data. 
XGBoost is designed for efficiency and can take advantage 
of parallel and distributed computing. It is capable of     
handling large datasets and high-dimensional feature spaces. 
XGBoost can handle missing values in the data by learning 
the best imputation strategy during training. 
 

XGBoost supports early stopping, allowing for the moni-
toring of the model’s performance on a validation dataset 
and stop training once the performance starts to degrade. 
Combining the predictions of all the individual trees yields 
the final prediction in XGBoost. In regression tasks, this is 
typically done by averaging the predictions of the trees 
(Santhanam, Uzir, Raman & Banerjee, 2016). Prior to fitting 
XGBoost Regressor best values for number of estimators, 
maximum depth, gamma and learning rate should be deter-
mined. Learning rate determines the step size and gamma is 
a regularization term to control the complexity of the trees. 
Grid search was applied on the designed dataset to find the 
optimized values for these parameters. The XGBoost     
Regressor was then fitted to the dataset. In this study, the 
XGBRegressor from the xgboost library, GridSearchCV and 
KFold from sklearn.model_selection, and MultiOutpu-
tRegressor from sklearn.multioutput of the Python library 
were employed. Below is a snippet demonstrating how 
XGBoost was applied to the data frame in this study. 

 
XGB_multirf= MultiOutputRegressor(XGBRegressor
(estima-
tor__gamma=0.01,estimator__learning_rate=0.1,estimator
__max_depth=30, estimator__n_estimators=500, ran-
dom_state=2021)) XGB_multirf.fit(X_train, Y_train) 
y_pred_train = XGB_multirf.predict(X_train) 
y_pred_test = XGB_multirf.predict(X_test) 

ExtraTrees Regressor 
 

The ExtraTrees Regressor (Extremely Randomized Trees 
Regressor) is an ensemble machine learning algorithm that 
uses decision trees to make predictions. However, it has 
some key differences in its underlying procedure compared 
to traditional Random Forest. One of the primary differ-
ences between ExtraTrees and Random Forest is the way 
they select features for splitting at each node in the decision 
trees. In Random Forest, a random subset of features is  
considered for each node, while in ExtraTrees, all features 
are considered for each node. This makes ExtraTrees even 
more random in its feature selection. 

 
Similar to Random Forest, ExtraTrees also uses bootstrap-

ping to create multiple subsets of the training data. Each 
subset is used to train an individual decision tree. Individual 
decision trees are trained on these bootstrapped subsets of 
data, with the primary goal of reducing the variance in the 
model. The trees are constructed using a random subset of 
features for each split. In addition to random feature selec-
tion, ExtraTrees introduces another level of randomness by 
selecting the split thresholds at each node in a fully random 
manner. This differs from Random Forest, which selects 
thresholds based on a specific criterion such as “Gini impu-
rity” or “mean squared error.” Gini impurity is a measure 
used in decision tree algorithms to evaluate the quality of 
splits. It helps the algorithm determine the optimal features 
and thresholds for splitting the data to create a decision tree 
that best separates the classes in the dataset. 

 
In the case of regression tasks, the final prediction is typi-

cally obtained by averaging the predictions from all the  
individual decision trees. The ensemble of trees provides a 
robust and accurate prediction by reducing the impact of 
individual noisy or overfit trees. Like Random Forest,    
ExtraTrees can handle missing values in the data by consid-
ering alternative strategies during the splitting process 
(Geurts, Ernst & Wehenkel, 2006). The ExtraTrees Regres-
sor was fitted to the dataset as the third method of predic-
tion. In this study, the ExtraTreesRegressor from the 
sklearn.ensemble module of the Python library was utilized. 
Below is a snippet demonstrating how this regressor was 
applied to the data frame in this study. 
 
extra_trees=ExtraTreesRegressor(n_estimators=n1, 
max_depth=n2)  
extra_trees.fit(X_train,Y_train)  
y_pred_train = extra_trees.predict(X_train)  
y_pred_test = extra_trees.predict(X_test) 
 

Evaluation 
 

 In this study, a dataset including three target variables—
TMs and a number of predictive variables—was assembled. 
Subsequently, the dataset was utilized to train multi-target 
regression models. In order to assess the performance, the 
observed and predicted turning movements were compared 
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by computing multiple metrics for each model. The authors 
used the R2 score, the mean squared error (MSE), the root 
mean squared error (RMSE), and the mean absolute       
percentage error (MAPE) defined in Equations 3-6 to assess 
the various models developed in this study. 
 
 

(3) 
 
 
 
 

(4) 
 
 
 

(5) 
 
 
 
 

(6) 
 
 
 

The authors also applied the Akaike Information Criterion 
(AIC) and the Bayesian Information Criterion (BIC) for 
model selection and comparison during the model-building 
and evaluation process. AIC is a statistical measure used for 
model selection and comparison. It balances the goodness of 
fit of a statistical model to the data with the complexity of 
the model. AIC quantifies how well a model explains the 
data, while penalizing models with a higher number of   
parameters. Lower AIC values indicate models that fit the 
data well with fewer parameters, making it a valuable tool 
for choosing the most appropriate model from among a set 
of candidate models (Forster & Sober, 2011). Equation 7 
shows the formulation for AIC: 
 

    (7) 
 

where, L(Mk) is the likelihood corresponding to the model 
Mk and where k is the number of parameters in the model. 
 

BIC is a statistical criterion used for model selection and 
comparison. Similar to AIC, BIC balances the goodness of 
fit of a statistical model to the data with the complexity of 
the model. BIC incorporates a Bayesian perspective by  
applying a stronger penalty for models with more parame-
ters compared to AIC. It aims to find the model that best 
explains the data, while favoring simpler models. In practi-
cal terms, lower BIC values indicate models that provide a 
better trade-off between goodness of fit and model complex-
ity, making it a useful tool for selecting the most appropriate 
model among a set of candidate models (Jordan, Kleinberg 
& Schölkopf, 2006). Equation 8 shows the formulation for 
BIC: 
 

  (8) 
 

where, L(Mk) is the likelihood corresponding to the model 
Mk, k is the number of parameters in the model, and n is the 
sample size (the number of data points). 
 

To find the best combination of predictive variables for 
building the final model, six different combinations of    
predictive variables were initially considered, with RFR 
applied to each. 

• The first combination had six predictive variables, 
including four inbound volumes (columns In1 
through In4 in Table 3), intersection type, and lane 
configuration. 

• The second combination had nine predictive varia-
bles, including four inbound volumes (columns In1 
through In4 in Table 3) and three outbound volumes 
(columns Out1 through Out3 in Table 3), intersection 
type, and lane configuration. 

• The third combination had all ten predictive varia-
bles, including four inbound volumes (columns In1 
through In4 in Table3) and four outbound volumes 
(columns Out1 through Out4 in Table3), intersection 
type, and lane configuration. 

• The fourth combination had seven predictive varia-
bles, including four inbound volumes (columns In1 
through In4 in Table 3) and three outbound volumes 
(columns Out1 through Out3 in Table 3). It did not 
include intersection type or lane configuration. 

• The fifth combination had eight predictive variables, 
including four inbound volumes (columns In1 
through In4 in Table 3) and three outbound volumes 
(columns Out1 through Out3 in Table 3) and lane 
configuration. 

• The sixth combination had eight predictive variables, 
including four inbound volumes (columns In1 
through In4 in Table3), three outbound volumes 
(columns Out1 through Out3 in Table3), and intersec-
tion type. 

 

Results 
 

Table 6 shows the R2, MSE, RMSE, MAPE, AIC, and 
BIC results from applying RFR on these six different    
combinations to predict TMs. These figures come from  
predictions on the training dataset. It can be seen that R2 for 

all combinations was around 99%, but reliance on the    
results from training data is not advisable, and the results 
from test data had to be evaluated. Table 7 shows the R2, 
MSE, RMSE, MAPE, AIC, and BIC results coming from 
applying RFR on the six different combinations to predict 
TMs using the test dataset. From Table 7, it is evident that 
the first combination had the lowest R2; and, its AIC and 
BIC were comparatively high, so it was set aside. Now, 
there were five remaining combinations that had R2 values 
that were similar, ranging from 91.50% to 93.40%, which 
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made it hard to decide. However, the primary distinction lay 
in the fact that the second combination exhibited lower  
values of AIC and BIC—around 600,716 and 600,800,   
respectively—on the test dataset, in comparison to the other 
four combinations. Hence, the second combination was  
chosen as the model to proceed with for further analyses. 
 

As mentioned previously, the analysis was intended to be 
conducted under two different scenarios. In Scenario 1, all 
variables were used in their original form without any trans-
formation. In Scenario 2, variables were transformed into 
ratios. The goal was to see how converting traffic volumes 
of each approach to proportions of whole traffic at that   
intersection would affect the functionality of the model. The 
process of converting approach traffic volumes to traffic 
ratios involved the internal relationship between traffic  
volumes of different approaches at each intersection and the 
interdependence between TMs of each approach in the  
model. In these two scenarios, the second predictive varia-
ble combination described earlier was used. Combination 
two, described above, constituted Scenario 1; in Scenario 2, 
the traffic volumes were converted into ratios. In other 
words, the target variables, three TMs, were converted to 
the proportion of each turning movement from the total  
inbound traffic of that approach. Inbound volumes were 
converted to the proportion of inbound traffic for each   
approach from the total inbound traffic to the intersection. 
Outbound volumes were also converted to ratios of        
outbound traffic for each approach to the total outbound 
traffic at that intersection. Table 8 represents an overview of 
the target variables and predictive variables involved in  
Scenario 2. 
 

To assess the performance of several multi-output       
machine learning models on the database, three different 

ML models, including RFR, XGBoost Regressor, and    
ExtraTrees Regressor, were applied to the two scenarios. 
Table 9 represents the outcomes obtained by applying three 
multi-output machine learning models to two defined     
scenarios to predict TMs. The figures in Table 9 were    
derived from predictions on the test dataset. Table 9 shows 
that Scenario 2 had lower R2 values for all three ML tech-
niques compared to Scenario 1. Specifically, Scenario 2 had 
R2 values of 81.35% for RFR, 82.40% for XGBoost Regres-
sor, and 77.96% for ExtraTrees Regressor, whereas Scenar-
io 1 had R2 values of 92.50%, 93.99%, and 88.51% for the 
relevant ML approaches. Converting traffic counts to rates 
may involve connections between traffic volumes of differ-
ent approaches at an intersection in the model. However, the 
investigation demonstrated that this conversion does not 
improve the accuracy of the model. Hence, the focus was 
placed on Scenario 1, while Scenario 2 was disregarded.  

 
Another important result that can be extracted from Table 

9 is that the XGBoost Regressor outperformed the RFR and 
Extra Trees Regressor, due to higher values of R2 and lower 
values of MSE, RMSE, and MAPE. The R2 for the 
XGBoost Regressor was 93.99%, with values of 91.50% for 
the RFR and 88.51% for the ExtraTrees Regressor. On the 
other hand, XGBoost Regressor MSE was 1307, while the 
values for RFR and ExtraTrees Regressor were 1571 and 
1997, respectively. Both RMSE and MAPE also followed 
the same trend. Based on this research, it can be inferred 
that the most effective model for predicting TMs based on 
manual counts is the model built on applying the XGBoost 
Regressor to Scenario 1. Scenario 1 had nine predictive var-
iables, including four inbound volumes (columns In1 
through In4 in Table3) and three outbound volumes 
(columns Out1 through Out3 in Table3), intersection type, 
and lane configuration. 

Combination R2 MSE RMSE MAPE AIC BIC 

FIRST 99.98% 10 2.86 0.23 191,182 191,238 

SECOND 99.96% 15 3.60 0.20 221,935 222,019 

THIRD 99.97% 12 3.56 0.18 206,166 206,259 

FOURTH 99.96% 15 3.56 0.19 223,195 223,260 

FIFTH 99.96% 13 3.00 0.21 213,524 213,599 

SIXTH 99.98% 9 2.66 0.15 183,802 183,877 

Table 6. Comparison of different predictive variable combinations on the training dataset. 

Combination R2 MSE RMSE MAPE AIC BIC 

FIRST 80.98% 4217 64.36 88.64 691,465 691,521 

SECOND 91.50% 1571 39.43 43.33 600,716 600,800 

THIRD 93.40% 1462 37.93 44.38 603,746 603,839 

FOURTH 91.99% 1803 42.05 51.49 621,119 621.184 

FIFTH 92.29% 2105 45.39 42.75 633,938 634,013 

SIXTH 92.77% 1446 37.73 44.63 602,803 634,013 

Table 7. Comparison of different predictive variable combinations on the test dataset. 
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With the ML model represented in this study, engineers 
can accurately estimate the TMs of any three- or four-
legged intersection by using only traffic counts from the 
designated peak hour, the lane configuration of the desired 
approach, and the type of intersection. 
 

Guidance to Practitioners 
 

In this study, a model to estimate TMs for three- and four-
legged intersections was developed. The model was coded 
in the Python programming language. With this model, it 
was possible to estimate the TMs of any desired approach 
using three pieces of information. First was the traffic    
volume of all approaches at that intersection; second was 
the type of intersection; and last was the approach lane   
configuration data. The model developed in this study took 
these data from each approach as input and provided the 
user with an estimated TM for the desired approach. 
 

Discussion 
 

In this study, the authors introduced an ML model to   
predict TMs at signalized intersections. This model was 
based on TM data from 1242 traffic manual counts conduct-
ed at intersections in Ada County, Idaho. Multi-output    
regression ML models were applied to provide a reliable 
estimate of TMs at signalized intersections using a combina-

tion of numeric and descriptive variables, including        
approach volumes, intersection type, and lane configuration 
data. Three ML-based regression models, including Random 
Forest Regressor, XGBoost Regressor, and ExtraTrees   
Regressor, were trained to investigate the relationship    
between approach volumes and the corresponding turning 
movements. In order to assess the performance of the    
model, a number of evaluation metrics were computed,  
including the R2, MSE, RMSE, and MAPE. The outcomes 
of the tests demonstrated that the XGBoost Regressor    
predicted turning movements more accurately with an R2 of 
93.99%. These results demonstrated that the examined 
methods yielded a dependable and efficient model for esti-
mating TMs. Considering that currently the most common 
method for obtaining TMs is still manual counting, the   
suggested approach can be functional in situations where 
conducting a manual count is impracticable, due to cost or 
manpower issues. Additionally, it is advantageous for plan-
ning new intersections when no historical data are available. 
 

The value of this research is highlighted either when  
compared to the earlier studies in this area or methods used 
in practice. This is the first study that attempted to find a 
relationship between TMs and approach volumes that     
involved some descriptive features of intersection in the ML 
model to improve the predictive power of the model by  
capturing different aspects of it. Besides, most of the current 
methods for predicting TMs are based on assumed initial 

Intersection Approach 
Left 
(%) 

Thru 
(%) 

Right 
(%) 

In1 
(%) 

In2 
(%) 

In3 
(%) 

In4 
(%) 

Out1 
(%) 

Out2 
(%) 

Out3 
(%) 

Int 
Type 

Lane 
Config 

Chateau & 
Locust Grove 
PM 

Locust Grove from 
Ustick from North 

1.68 94.70 3.62 35.74 5.04 53.17 6.06 50.58 4.44 40.08 *M 1 

Chateau & 
Locust Grove 
PM 

Chateau from 
Lochness from East 

57.80 7.34 34.86 5.04 53.17 6.06 35.74 4.44 40.08 4.90 *M 0 

Chateau & 
Locust Grove 
PM 

Locust Grove from 
Fairview from South 

6.09 87.65 6.26 53.17 6.06 35.74 5.04 40.08 4.90 50.58 *M 1 

Chateau & 
Locust Grove 
PM 

Chateau from 
Jericho from West 

36.64 8.40 54.96 6.06 35.74 5.04 53.17 4.90 50.58 4.44 *M 0 

Table 8. An overview of scenario 2. 

Model 

Scenario1 
(%) 

Scenario2 
(%) 

Scenario1 
Scenario2 

(%) 
Scenario1 

Scenario2 
(%) 

Scenario1 Scenario2 

R2 MSE RMSE MAPE 

Random Forest Regressor 91.50 81.35 1571 1.04 39 10.19 43 37 

XGBoost Regressor 93.99 82.40 1307 0.98 36 9.89 29 40 

ExtraTrees Regressor 88.51 77.96 1997 1.20 45 10.94 88 53 

Table 9. Comparison models and scenarios according to R2, MSE, RMSE, and MAPE. 

*Minor Arterial 
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TMs, which undergo an iterative process of fine-tuning and 
equilibrium, or a comprehensive procedure for modeling 
transportation planning data. The findings of this study offer 
traffic engineers and transportation planners a simple and 
user-friendly methodology for estimating TMs based on 
approach volumes, lane configuration, and intersection type. 

 
It should be noted that, due to data constraints, the authors 

only considered peak-hour volumes. However, peak-hour 
volumes are frequently utilized for operational analysis, 
optimization, and design at signalized intersections as well 
as for conducting other transportation research, such as traf-
fic impact studies. Future work can involve broadening the 
scope of this research to cover other times of day besides 
peak hours. Another recommendation is to evaluate the 
model using the data obtained from a new source of manual 
data. In theory, this method can be used both in real-time 
and offline. By taking approach volumes and providing 
turning movements, it could offer real-time turning move-
ments if real-time traffic volumes are available. However, 
applying this method in the real world and integrating it 
with traffic signal controllers requires further investigation, 
which could be an extension of this study. Yet another way 
of extending this study is to develop models for               
non-signalized intersections and roundabouts. 
 

References 
 
Alpaydin, E.. (2020). Introduction to Machine Learning 

(Francis Bach, Ed.; 4th ed., Vol. 4). The MIT Press. 
Bélisle, F., Saunier, N., Bilodeau, G. A., & Le Digabel, S. 

(2017). Optimized video tracking for automated vehicle 
turning movement counts. Transportation Research 
Record, 2645(1), 104-112. https://doi.org/10.3141/2645
-12 

Forster, M., & Sober, E. (2011). AIC Scores as Evidence: A 
Bayesian Interpretation. Philosophy of Statistics: Vol-
ume 7 in Handbook of the Philosophy of Science, 7, 535
-549. https://doi.org/10.1016/B978-0-444-51862-
0.50016-2 

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely 
randomized trees. Machine Learning, 63(1), 3-42. 
https://doi.org/10.1007/s10994-006-6226-1 

Ghanim, M. S., & Shaaban, K. (2019). Estimating turning 
movements at signalized intersections using artificial 
neural networks. IEEE Transactions on Intelligent 
Transportation Systems, 20(5), 1828-1836. https://
doi.org/10.1109/TITS.2018.2842147 

Ghods, A. H., & Fu, L. (2014). Real-time estimation of 
turning movement counts at signalized intersections 
using signal phase information. Transportation Re-
search Part C: Emerging Technologies, 47(P2), 128-
138. https://doi.org/10.1016/j.trc.2014.06.010 

Han, J., Kamber, M., & Pei, J. (n.d.). Data Mining Concepts 
and Techniques. In Elsevier Morgan Kaufmann (Vol. 
1). 

Hauer, E., Pagitsas, E., & Shin, B. T. (1981). Estimation of 
turning flows from automatic counts. Transportation 
Research Record, 795, 1-7. 

Jordan, M., Kleinberg, J., & Schölkopf, B. (2006). Pattern 
Recognition and Machine Learning. Springer Science+ 
Business Media. 

Karapetrovic, J., & Martin, P. T. (2021). Estimation of in-
tersection turning movement flows with the TMERT3 
model version: Sensitivity to a widespread detector 
failure. International Journal for Traffic and Transport 
Engineering, 11(3), 442-453. https://doi.org/10.7708/
ijtte2021.11(3).07 

Maher, M. J. (1984). Estimating the turning flows at a junc-
tion: A comparison of three models. Transportation 
Research Board, 25(1), 19-22. 

Mahmoud, N., Abdel-Aty, M., Cai, Q., & Yuan, J. (2021). 
Predicting cycle-level traffic movements at signalized 
intersections using machine learning models. Transpor-
tation Research Part C: Emerging Technologies, 124. 
https://doi.org/10.1016/j.trc.2020.102930 

Mueller, A., & Guido, S. (2016). Introduction to Machine 
Learning with Python: A Guide for Data Scientists 
(Vol. 1). O’Reilly Media. 

Nazari Enjedani, S., & Khanal, M. (2023). Development of 
a Turning Movement Estimator Using CV Data. Future 
Transportation, 3(1), 349-367. https://doi.org/10.3390/
futuretransp3010021 

Nihan, N. L., & Davis, G. A. (1989). Application of predic-
tion-error minimization and maximum likelihood to 
estimate intersection O-D matrices from traffic counts. 
Transportation Science, 23(2), 77-90. https://
about.jstor.org/terms 

Noyce, D. A., Bill, A. R., Chitturi, M. V, & Santiago-
Chaparro, K. R. (2019). Turning Movement Counts on 
Shared Lanes: Prototype Development and Analysis 
Procedures Final Report for NCHRP IDEA Project 
198. www.trb.org/idea 

Noyce, D., Chittori, M., Santiago-Chaparro, K., & Bill, A. 
R. (n.d.). Automated Turning Movement Counts for 
Shared Lanes Using Existing Vehicle Detection Infra-
structure Final Report for NCHRP IDEA Project 177. 

Pratelli, A., Sordi, L., & Farina, A. (2021). Methods to gen-
erate an expected turning traffic flows matrix for road 
junction analysis. International Journal of Transport 
Development and Integration, 5(1), 1-14. https://
doi.org/10.2495/TDI-V5-N1-1-14 

Project Traffic Forecasting Handbook. (2014). Florida De-
partment Transportation. 

Saldivar-Carranza, E. D. (2021). Scalable Operational Traf-
fic Signal Performance Measures from Vehicle Trajec-
tory Data (Thesis). Purdue University. 

Saldivar-Carranza, E. D., Li, H., & Bullock, D. M. (2021). 
Identifying Vehicle Turning Movements at Intersec-
tions from Trajectory Data. IEEE Conference on Intelli-
gent Transportation Systems, Proceedings, ITSC, 2021-
September, 4043-4050. https://doi.org/10.1109/
ITSC48978.2021.9564781 

https://doi.org/10.3141/2645-12
https://doi.org/10.3141/2645-12
https://doi.org/10.1016/B978-0-444-51862-0.50016-2
https://doi.org/10.1016/B978-0-444-51862-0.50016-2
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1109/TITS.2018.2842147
https://doi.org/10.1109/TITS.2018.2842147
https://doi.org/10.1016/j.trc.2014.06.010
https://doi.org/10.7708/ijtte2021.11(3).07
https://doi.org/10.7708/ijtte2021.11(3).07
https://doi.org/10.1016/j.trc.2020.102930
https://doi.org/10.3390/futuretransp3010021
https://doi.org/10.3390/futuretransp3010021
https://about.jstor.org/terms
https://about.jstor.org/terms
http://www.trb.org/idea
https://doi.org/10.2495/TDI-V5-N1-1-14
https://doi.org/10.2495/TDI-V5-N1-1-14
https://doi.org/10.1109/ITSC48978.2021.9564781
https://doi.org/10.1109/ITSC48978.2021.9564781


——————————————————————————————————————————————–———— 

Santhanam, R., Uzir, N., Raman, S., & Banerjee, S. (2016). 
Experimenting XGBoost Algorithm for Prediction and 
Classification of Different Datasets. International Jour-
nal of Control Theory and Applications, 9. https://
www.researchgate.net/publication/318132203 

Santiago-Chaparro, K. R., Chitturi, M., Bill, A., & Noyce, 
D. A. (2016). Automated turning movement counts for 
shared lanes: Leveraging vehicle detection data. Trans-
portation Research Record, 2558, 30-40. https://
doi.org/10.3141/2558-04 

Segal, M. (2003). Machine Learning Benchmarks and Ran-
dom Forest Regression. Technical Report, Center for 
Bioinformatics & Molecular Biostatistics, University of 
California, San Francisco. https://
www.researchgate.net/
publica-
tion/228861739_Machine_Learning_Benchmarks_and_
Random_Forest_Regression 

Shaaban, K., Hamdi, A., Ghanim, M., & Shaban, K. B. 
(2022). Machine learning-based multi-target regression 
to effectively predict turning movements at signalized 
intersections. International Journal of Transportation 
Science and Technology. https://doi.org/10.1016/
j.ijtst.2022.02.003 

Shirazi, M. S., & Morris, B. (2014). Vision-Based Turning 
Movement Counting at Intersections by Cooperating 
Zone and Trajectory Comparison Modules. 2014 17th 
IEEE International Conference on Intelligent Trans-
portation Systems, ITSC 2014, 3100-3105. https://
doi.org/10.1109/ITSC.2014.6958188 

Shirazi, M. S., & Morris, B. T. (2016). Vision-based turning 
movement monitoring: Count, speed & waiting time 
estimation. IEEE Intelligent Transportation Systems 
Magazine, 8(1), 23-34. https://doi.org/10.1109/
MITS.2015.2477474 

Vanderplas, J. T. (2016). Python data science handbook : 
essential tools for working with data. O’Reilly Media, 
Inc. 

Vigos, G., & Papageorgiou, M. (2010). A simplified estima-
tion scheme for the number of vehicles in signalized 
links. IEEE Transactions on Intelligent Transportation 
Systems, 11(2), 312-321. https://doi.org/10.1109/
TITS.2010.2042807 

Virkler, M. R., & Kumar, N. R. (1998). System to identify 
turning movements at signalized intersections. Journal 
of Transportation Engineering, 124(6). 

Yi, P., & Zhang, S. (2017). Development and Field Testing 
of an Automatic Turning Movement Identification Sys-
tem. (Ohio Department of Transportation, State Job 
Number 135141). https://rosap.ntl.bts.gov/view/
dot/36334 

Zheng, J., & Liu, H. X. (2017). Estimating traffic volumes 
for signalized intersections using connected vehicle 
data. Transportation Research Part C: Emerging Tech-
nologies, 79, 347-362. https://doi.org/10.1016/
j.trc.2017.03.007 

Biographies 
 

SOMAYEH NAZARI ENJEDANI is a graduate student 
at Boise State University. Nazari Enjedani may be reached 
at somayehnazarienjedani@u.boisestate.edu 
 

MANDAR KHANAL is a full professor in the Civil  
Department at Boise State University. Dr. Khanal may be 
reached at mkhanal@boisestate.edu 
 
 
 
 
 

——————————————————————————————————————————————————– 

Utilizing Machine Learning Multi-Output Regression Methods to Predict Turning                                                 25 
Movements at Intersections 

https://www.researchgate.net/publication/318132203
https://www.researchgate.net/publication/318132203
https://doi.org/10.3141/2558-04
https://doi.org/10.3141/2558-04
https://www.researchgate.net/publication/228861739_Machine_Learning_Benchmarks_and_Random_Forest_Regression
https://www.researchgate.net/publication/228861739_Machine_Learning_Benchmarks_and_Random_Forest_Regression
https://www.researchgate.net/publication/228861739_Machine_Learning_Benchmarks_and_Random_Forest_Regression
https://www.researchgate.net/publication/228861739_Machine_Learning_Benchmarks_and_Random_Forest_Regression
https://www.researchgate.net/publication/228861739_Machine_Learning_Benchmarks_and_Random_Forest_Regression
https://doi.org/10.1016/j.ijtst.2022.02.003
https://doi.org/10.1016/j.ijtst.2022.02.003
https://doi.org/10.1109/ITSC.2014.6958188
https://doi.org/10.1109/ITSC.2014.6958188
https://doi.org/10.1109/MITS.2015.2477474
https://doi.org/10.1109/MITS.2015.2477474
https://doi.org/10.1109/TITS.2010.2042807
https://doi.org/10.1109/TITS.2010.2042807
https://rosap.ntl.bts.gov/view/dot/36334
https://rosap.ntl.bts.gov/view/dot/36334
https://doi.org/10.1016/j.trc.2017.03.007
https://doi.org/10.1016/j.trc.2017.03.007
mailto:somayehnazarienjedani@u.boisestate.edu
mailto:mkhanal@boisestate.edu


Abstract 
 

Palpation, a fundamental technique in medical examina-
tion, relies heavily on the practitioner’s tactile skills and 
anatomical knowledge. In this paper, the authors present an 
innovative approach for enhancing palpation training and 
practice using augmented reality (AR) technology, specifi-
cally focusing on foot examination. The development of 
expertise in palpation techniques typically requires exten-
sive practice and patient interaction, which can be time-
consuming and may not always provide consistent learning 
experiences for students. To address these challenges, the 
authors developed an augmented reality application        
designed to assist in foot palpation training. The aim of the 
proposed AR application was to provide real-time guidance 
by visually overlaying palpation zones on a scanned image 
of the patient’s foot, thereby supporting the learning process 
for new professionals and students.  
 

In this study, the authors compared the accuracy of locat-
ing the medial cuneiform bone using traditional methods 
versus the proposed AR app. Results from a paired-samples 
t-test (n = 30) demonstrated a statistically significant      
improvement in accuracy when using the AR app             
(M = 4.55 cm, SD = 0.53) compared to traditional methods 
(M = 9.28 cm, SD = 3.24, p < 0.001). The mean improve-
ment of 4.73 cm (95% CI: 3.52 to 5.94) highlights the    
potential of AR technology for enhancing anatomical educa-
tion and improving clinical skills. These findings suggest 
that AR-assisted palpation training could significantly    
enhance the learning experience, potentially leading to   
improved diagnostic accuracy and procedural outcomes in 
clinical settings. 
 

Introduction 

 
The acquisition of proficient palpation skills is a critical 

component of medical education, particularly in areas such 
as podiatry and osteopathic. However, traditional teaching 
methods often struggle to bridge the gap between theoretical 
knowledge and practical application, especially when deal-
ing with complex anatomical regions like the foot. Palpation 
is a critical skill in medical diagnosis and treatment, requir-
ing direct physical contact between the healthcare profes-
sional and the patient (Canton et al., 2024). The accuracy 
and effectiveness of palpation depends largely on the practi-
tioner’s ability to locate and interpret anatomical structures 
through touch. However, developing this expertise is a time-

consuming process that demands extensive practice and 
patient interaction. The challenges associated with acquiring 
proficiency in palpation techniques have long been recog-
nized in medical education. Traditional teaching methods 
often struggle to bridge the gap between theoretical 
knowledge and practical application, particularly in com-
plex anatomical regions such as the foot (Muangpoon, 
Haghighi Osgouei, Escobar-Castillejos, Kontovounisios & 
Bello, 2020). This gap can lead to inconsistencies in diagno-
sis and treatment, especially among novice practitioners and 
students. To address these challenges, this research team 
developed an augmented reality application designed to 
assist in foot palpation. This technology aimed to provide 
real-time guidance by visually overlaying palpation zones 
on a scanned image of the patient’s foot, thereby supporting 
the learning process for new professionals and students. By 
integrating AR into palpation training, the authors sought to 
accelerate the development of muscle memory and improve 
the accuracy of anatomical localization. 
 

Literature 
 

The importance of palpation in medical practice has been 
well-documented across various specialties. Studies have 
shown that accurate palpation skills are crucial for diagnos-
ing musculoskeletal disorders, identifying vascular issues, 
and assessing soft-tissue abnormalities. However, research 
also highlights the significant variability in palpation accu-
racy among practitioners, emphasizing the need for        
improved training methods. Recent advancements in medi-
cal education have seen an increased interest in technology-
enhanced learning. Virtual reality (VR) and augmented real-
ity (AR) have emerged as promising tools for medical train-
ing, offering immersive and interactive experiences that 
complement traditional teaching methods (Solutions, 2023; 
Tene, Vique López, Valverde Aguirre, Orna Puente &    
Vacacela Gomez, 2024).  
 

Several studies have explored the use of AR in anatomy 
education, demonstrating improved spatial understanding 
and knowledge retention among students (Dhar, Rocks, 
Samarasinghe, Stephenson & Smith, n.d.; Suarez-Rivas, 
n.d.). In the context of palpation training, haptic feedback 
systems have been developed to simulate tissue properties 
and provide a more realistic learning experience. However, 
these systems often lack the ability to adapt to individual 
patient anatomies and real-world variations (Sharma, 
Doherty & Dong, 2017). AR technology offers a unique 
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Enhancing Accuracy and Training Medial 

Cuneiform Bone Localization 
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medial cuneiform, apply appropriate pressure during palpa-
tion, and feel the applied pressure. Using SPSS statistical 
analysis package, the researchers conducted a paired-sample 
t-test to compare the performance of the control and experi-
mental groups. This methodology aimed to provide a    
comprehensive evaluation of the AR application’s effective-
ness in enhancing foot palpation skills among novice practi-
tioners and students.  
 

The participants were asked to indicate the palpation zone 
on their feet using their fingers after which the AR system 
identified and recorded the corresponding location. The 
measured difference between the participant-indicated zone 
and the AR-identified zone served as the primary metric. 
However, due to individual physiological variations, no 
standardized mean value exists for the palpation zone. In 
clinical practice, physicians typically rely on experience and 
anatomical knowledge to estimate this location, as it varies 
from patient to patient. Consequently, a traditional measure-
ment mean could not be established in this study. The    
authors further sought to gain insights into both the practical 
benefits and the user experience of integrating AR technolo-
gy into palpation training. 

Figure 2. Locating palpation zone with the AR application. 

solution by overlaying digital information onto the physical 
world, allowing for personalized guidance in real-time 
(Dakeev, Pecen, Yildiz & Luong, 2021; MGH Institute, 
2024). While AR applications have been successfully     
implemented in various medical procedures, such as surgery 
and needle placement, their potential in palpation training 
remains largely unexplored (MGH Institute, 2024; Tokuç & 
Varol, 2023). This gap in the literature presents an oppor-
tunity to investigate the effectiveness of AR in enhancing 
palpation skills, particularly in complex anatomical regions 
like the foot (Condino et al., 2016). 
 

Methodology 
 

In this study, the authors employed a mixed-methods ap-
proach to develop and evaluate an AR application for foot 
palpation training. The methodology consisted of three main 
phases: application development, user testing, and perfor-
mance evaluation. The AR application was developed using 
Unity Game Engine, which allows for real-time scanning 
and overlaying the patient’s foot (Dakeev & Yildiz, 2022). 
Figure 1 shows how the application incorporates an overlaid 
image of foot structures, including bones, muscles, liga-
ments, and key palpation points. 

Figure 1. Overlaid image of a foot with bone structures on a Tablet 
camera. 

 
A sample of 30 participants, including medical students, 

physiotherapy students, and novice practitioners, as well as 
randomly selected students (regardless of their background) 
were recruited for the user testing phase. Researchers asked 
the participants to locate medial cuneiform bone on the foot. 
Figure 2 shows how, after marking the pointed zone, the AR 
application was used to show the correct zone. The         
researchers measured the distance between the marked loca-
tion that the participant showed and the AR application’s 
located zone. Data collection methods included pre- and 
post-training assessments of palpation accuracy, surveys to 
evaluate user experience and perceived effectiveness, and 
observational analysis of the palpation technique. Partici-
pants were assessed on their ability to accurately locate  
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Data Analysis 
 

A paired-samples t-test was conducted to compare the 
accuracy of locating the medial cuneiform bone using tradi-
tional methods and an AR app. Tables 1 and 2 provide the 
descriptive statistics for the paired-sample correlations, 
which revealed that there was a weak negative correlation 
between the traditional method (M = 9.28, SD = 3.24) and 
the AR app method (M = 4.55, SD = 0.53), r =  ̶ 0.047,        
p = 0.805 (two-tailed). This correlation was not statistically 
significant, indicating that performance on one method did 
not reliably predict performance on the other. 
 
Table 1. Paired-sample descriptive statistics to locate the palpation 
zone. 

Table 2. Paired-sample correlations between traditional location 
versus AR application. 

 
Table 3 shows the paired-samples t-test, which revealed a 

statistically significant difference between the traditional 
palpation method and the AR-assisted method,                      
t(29) = 8.003, p < 0.001 (two-tailed). The mean deviation 
was 4.73 cm (95% CI: 3.52 to 5.94), with the traditional 
method showing greater inaccuracy (M = 9.28 cm)        
compared to the AR-guided approach (M = 4.55 cm). These 
values represent the average deviation across all partici-
pants, not individual measurements. The marked reduction 
in deviation from 9.3 cm to 4.5 cm suggests that the AR tool 
significantly improved the accuracy of locating the palpa-
tion zone. Given the absence of a standardized anatomical 
landmark for this procedure, healthcare professionals typi-
cally rely on their clinical experience and subjective judg-

ment to identify the correct location. As a result, there is 
inherent variability in technique and accuracy across practi-
tioners. In this study, the authors aimed to provide a more 
standardized reference for novice learners by using AR 
technology to reduce reliance on years of experience and to 
guide students toward more accurate palpation with reduced 
error margins. 
 

These outcomes provide strong evidence for the effective-
ness of the AR app in improving the accuracy of locating 
the medial cuneiform bone compared to traditional methods. 
The significant decrease in mean distance from 9.28 cm 
(traditional method) to 4.55 cm (AR app method) represents 
a substantial improvement in precision. The lack of signifi-
cant correlation between the two methods suggests that the 
participants’ performance with the traditional method did 
not predict their performance with the AR app. This inde-
pendence between the two approaches highlights the poten-
tial of the AR app to provide consistent benefits across   
various skill levels. The large t-statistic (8.003) and the 
small p-value (< 0.001) indicate that the observed difference 
between the two methods is highly unlikely to have        
occurred by chance. The 95% confidence interval of the 
difference (3.52 to 5.94 cm) does not include zero, further 
supporting the conclusion that the AR app method consist-
ently outperformed the traditional method. These findings 
have important implications for medical education and clini-
cal practice. The AR app demonstrated an advantage in  
improving the accuracy of anatomical localization, which 
could lead to enhanced diagnostic and procedural skills. 
Future research should explore the long-term retention of 
these skills and the transferability of AR-assisted learning to 
other anatomical structures and medical procedures. 
 

Conclusions 
 

In this study, the authors investigated the effectiveness of 
an augmented reality app compared to traditional methods 
in accurately locating the medial cuneiform bone. A paired-
samples t-test showed that the AR application                   
(M = 4.55 cm, SD = 0.53) demonstrated significantly higher 
accuracy in locating the medial cuneiform bone for palpa-
tion compared to the traditional method (M = 9.28 cm,     
SD = 3.24) for randomly selected untrained students with 
different backgrounds. There was a statistically significant 
difference between the two methods (p < 0.001), with a 
mean improvement of 4.73 cm (95% CI: 3.52 to 5.94) when 

 Mean N 
Std. 

deviation 
Std. error 

mean 

Pair 1 
Traditional 9.266 30 3.172 0.579 

AR_APP 4.533 30 0.524 0.095 

  Significance 

 Pair 1 

  N Correlation 
One-

sided p 
Two-

sided p 

Traditional 
& 

AR_APP 
30 -0.047 0.403 0.805 

  
95% Confidence 

interval of the difference 
    Significance 

    Mean 
Std. 

deviation 
Std. error 

mean 
Lower Upper t df 

One-sided 
p 

Two-sided 
p 

Pair 1 
Traditional 
AR_APP 

4.73333 3.23966 0.59148 3.52362 5.94304 8.003 29 < 0.001 < 0.001 

Table 3. Paired-sample t-test. 
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using the AR app. Furthermore, the correlation between 
performances on the two methods was weak and non-
significant (r =  ̶ 0.047, p = 0.805), suggesting that the AR 
app’s benefits were consistent across participants regardless 
of their performance with the traditional method. The     
researchers believe this study provides compelling evidence 
for the superiority of the AR app over traditional methods in 
improving the accuracy of locating the medial cuneiform 
bone. The significant reduction in localization error demon-
strated the potential of AR technology to enhance anatomi-
cal education and clinical skills.  
 

These findings have important implications for medical 
training, potentially leading to improved diagnostic accura-
cy and procedural outcomes in clinical settings. Future   
research should focus on the long-term retention of skills 
acquired through AR-assisted learning, its applicability to 
other anatomical structures, and its integration into broader 
medical education curricula. Additionally, investigating the 
impact of AR-enhanced anatomical learning on clinical  
performance and patient outcomes would further establish 
the value of this technology in healthcare education and 
practice. 
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