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Binder jetting (BJ), as Colton and Crane (https://
doi.org/10.1016/j.addma.2020.101711) describe the pro-
cess, is a low-cost additive manufacturing (AM) process 
that uses inkjet technology to selectively bind particles in a 
powder bed. BJ relies on the ability to control not only the 
placement of binder on the surface but also its imbibition 
into the powder bed. This is a complex process in which 
pico-liter-sized droplets impact powder beds at velocities of 
1–10 m/s. However, the effects of printing parameters, such 
as droplet velocity, size, spacing, and inter-arrival time on 
saturation level (a fraction of pore space filled with binder) 
and line formation (merging of droplets to form a line) are 
unknown. Prior attempts to predict saturation levels with 
simple measurements of droplet primitives and capillary 
pressure assume that droplet/powder interactions are domi-
nated by static equilibrium and neglect the impact of print-
ing parameters.  
 

Colton and Crane analyzed the influence of these parame-
ters on the effective saturation level and conditions for line 
formation, when printing single lines into powder beds of 
varied materials (316 stainless steel, 420 stainless steel, and 
alumina) and varied particle size (d50 = 10–47 µm). Results 
showed that increasing droplet velocity or droplet spacing 
decreased effective saturation, while droplet spacing, veloc-
ity, and inter-arrival time affected line formation. The    
following diagram shows the experimental apparatus and 
connectivity between units. The Newport linear stages are 
controlled in unison to trigger the JetDrive III to actuate the 
print head and deposit lines with controlled droplet spacing. 
The authors varied the inkjet properties (droplet velocity, 
droplet size) using the JetDrive III waveform controls. 

[This image: SEM images of the powder morphology] 
 
In another study by Scime, 
Haley, Halsey, Singh, Spray-
berry, Ziabari, and Paquit 
[Oak Ridge National Labor-
atories, September 2020, 
Pub146907.pdf (ornl.gov)], 
the authors proved that   
image-based defect detection 
coupled with time-series 
data analysis in binder jet 
technology is a very reliable 
methodology for in situ qual-

ity control. Additionally, the authors developed a computer 
vision-based solution to reinforce traceability of the items 
entering the CVI furnace.  

 
Using the software tool named Raven, then, those authors 

tracked and took multiple pictures of the silicon carbide 
parts as they were loaded onto the furnace platform and 
throughout the CVI process. Preliminary experiments    
suggested that the location of a part in the CVI furnace  
affects the silicon carbide infiltration rate and, therefore, the 
amount of silicon carbide deposited. All of this directly  
impacts the density and material properties of the final part. 
These images, analyzed by Raven using computer-vision 
algorithms, allowed technicians to link each part within the 
database. The following figure shows the prototype imaging 
setup. 

 
In this issue of IJME 
(p.20), the  authors of 
this featured article   
developed a model to 
optimize material struc-
ture design, and showed 
that the capability of a 
feed-forward-back prop-
agation neural network 
was a good technique for 
determining the com-

pressive strength of BJ samples. Experimental design tech-
niques were used to design and create three structures: solid 
circular, circular with 1 mm lattice, and circular with 1 mm 
cubical. The model predicted the compressive strength   
given over the range of layer thickness, sintering time, and 
sintering temperature parameters, and could serve as a 
framework to set up the process design parameters to 
achieve the desired output characteristics. 

———————————————–——————————————————————————————————– 
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Abstract 
 

In this paper, the authors present numerical simulations of 
a Probabilistically-Switch-Action-on-Penalty learning    
automaton (PSAPA) in various stationary and                  
non-stationary environments. The PSAPA is a novel, fixed-
structure stochastic automaton (FSSA) framework whose 
analytical model was presented in detail in a previous paper 
on PSAPA (Aggarwal, Liu & Levitin, 2022). The key    
differentiating feature of this automaton is that it allows 
action switching in every state. It was anticipated that this 
feature would attribute PSAPA dynamic properties that 
make certain aspects of its performance superior to other 
FSSA that do not possess this property. 
 

In this study, then, simulations of the PSAPA in compari-
son with other FSSA and variable structure stochastic    
automata (VSSA) were considered in two types of environ-
ments: a stationary environment (with fixed penalty proba-
bilities) and a non-stationary environment, where the penal-
ty probabilities would change in time periodically as a   
sinusoidal function. In both cases, the simulation demon-
strated a dramatic difference in performance for these types 
of learning automata. The PSAPA showed its huge         
advantage in adaptability that could lead to better perfor-
mance for the length of the simulation from 30,000 to 
150,000 steps. Only for very long stationary conditions do 
Tsetlin automata outperform the PSAPA. Also, the PSAPA 
model responded quickly to drastic changes in the environ-
ment, unlike the other automata. In the case of sinusoidal 
modulations, the PSAPA tremendously outperformed other 
types of FSSAs for all modulation frequencies and for all 
depths (D > 3). The performance of the PSAPA does not 
deteriorate with increasing modulation frequency, while 
other FSSA are not resilient to that increase. Also, the 
PSAPA is more adaptive, where it has to select an action 
from more than two actions. 
 

Introduction 
 

The design of the Probabilistically-Switch-Action-on-
Penalty Automata (PSAPA) in the study by Aggarwal, Liu, 
and Levitin (2022) was motivated by the need for design of 
fixed-structure stochastic automata (FSSA) that can possi-
bly perform better than Star-automaton (Economides & 
Kehagias, 2002) and Tsetlin L2,2N (Tsetlin, 1962) in non-
stationary environments. As shown by Aggarwal et al. 
(2022), the PSAPA achieve ε-optimality with increasing 
depth according to a power law, rather than exponentially, 
unlike most learning automata. Thus, the convergence rate 
of the performance as a function of the depth is larger for 

Tsetlin and Star automata than for the PSAPA. In other 
words, for a stationary environment, the minimum number 
of states required to achieve ε values lower than any given 
value, will be smaller for Tsetlin and Star automata than for 
PSAPA. However, one can argue that the PSAPA design 
allows it to demonstrate better adaptability and, hence, per-
formance in other, possibly non-stationary, environments, as 
well as in stationary environments for not extremely long 
periods of time. A detailed description of the design and 
performance analysis in stationary environments, along with 
a discussion of the applications of learning automata, can be 
found in the PSAPA study by Aggarwal et al. (2022). 
 

An FSSA that is ε-optimal tends to occupy the terminal 
states of each branch, and an FSSA that is not ε-optimal 
tends to occupy the initial states in each branch. Thus, the 
behavior of a non- ε-optimal FSSA will not be affected by 
an increase of the depth beyond a certain value since the 
automaton will not fully utilize the newly added states. 
Therefore, the automata used in all the simulations are   
reformulated so that they are ε-optimal and that their perfor-
mance consistently improves with an increase in depth. The 
reformulation is performed by using the penalty-filtering 
technique presented in previous studies (Narendra & 
Thathachar, 2012), where a certain fraction of the penalties, 
selected randomly, are ignored and deemed as rewards. 
These universally ε-optimal versions of pessimistic PSAPA, 
ambivalent PSAPA, and Tsetlin automata, are hereby     
referred to as univ-pess-PSAPA, univ-amb-PSAPA, and 
univ-Tsetlin automaton, respectfully, for the purpose of 
conciseness. The optimistic PSAPA is referred as             
opt-PSAPA. 
 

To assess the performance of different learning automata 
in stationary and non-stationary environments, previous 
researchers primarily considered environments where the 
penalty probabilities were stationary, and the automata were 
reset at different states at the start of the simulation or envi-
ronments with periodically modulating or switching penalty 
probabilities (Narendra & Thathachar, 2012). The average 
penalty and rapidness of response of the different LAs were 
then compared. Simulations were also presented where  
penalty probabilities changed periodically from the highest 
to the lowest mean values. Following a similar approach, 
the aim in this current study was to quantify the perfor-
mance of the PSAPA for two cases: (1) for fixed values of 
penalty probabilities, and (2) for sinusoidal modulation 
(within a broad range of frequencies) of the penalty proba-
bilities. This approach was expected to aid in understanding 
the relationship between the parameters of the different 
FSSA, and their performance in both stationary and non-
stationary environments. First, the transient and steady-state 

——————————————————————————————————————————————–———— 
Prateek S. Aggarwal, Boston University; Chenhui Liu, Boston University; Lev Levitin, Boston University 
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behaviors of univ-Tsetlin automata and PSAPA were    
compared for constant values of penalty probabilities. Then, 
for the univ-Tsetlin, PSAPA, and univ-STAR automata, the 
relationship between the depths of these automata and their 
performance in environments with periodically changing 
penalty probabilities was inspected. 
 

An appropriately designed learning automaton should 
have its performance improve with increasing depth in any 
environment. Note that for all the FSSA discussed here, the 
optimal behavior was achieved only when the depth was 
infinite. From a practical computational standpoint, it is 
quite reasonable to simulate an automaton with a 32-bit 
variable. The number of different states in such an automa-
ton is on the order of 109. Thus, simulating a nearly infinite 
state FSSA is not difficult for practical applications. The 
real challenge is in designing a learning automaton whose 
performance consistently improves with increasing depth in 
any environment. From this viewpoint, a set of experiments 
was performed to understand the transient and steady-state 
characteristics of the different FSSA. All simulations were 
performed in the MATLAB computing environment. 
 

Stationary Environments: 
Simulation and Analysis 
 

Two different setups were used in the case of fixed-
penalty probabilities. In the first setup, the automata       
performed two different actions; at the start of the simula-
tion each automaton occupied the first (initial) state of the 
branches with equal probabilities. This is referred to as the 
equiprobable action simulation. In the second setup, a two-
action environment, all automata initially occupied the final 
(the deepest) state of the branch, which had a higher penalty 
probability. This means that the automata started in the most 
disadvantaged position. This is referred to as the position 
reversal simulation. The goal in both cases was to study the 
performance of the automata in both the transient and the 
steady-state stages of the simulations.  

 
In particular, the  second setup allowed sufficient evalua-

tion time (number of steps) needed for an automaton to 
switch its action in the worst-case scenario. To compare the 
performance of different FSSA, all simulations were con-
ducted for the same depth level, D = 10. All simulations 
were in a two-action environment with fixed penalty proba-
bilities c1 and c2 , where c2 > c1. Each simulation included 
100,000 trials. The fraction of trials P1(n) at any given step, 
n, when the automaton performed the action with the small-
er penalty probability c1 was used as the measure of the au-
tomaton’s performance. 
 

Results for the Equiprobable Action 
Simulation  
 

Denote the probability of being at state (i,d) (i.e., the dth 
state in the ith branch), at instant n as π(i,d)(n), and the proba-

bility of taking the action corresponding to branch i at    
instant n as Pi (n). For fixed-penalty probabilities simulation, 
the FSSA were reset to occupy the initial state in each arm 
with equal probabilities so that π1,1 (0) = π2,1 (0) = ½ and P1 

(0) = P2 (0) = ½. Figure 1 shows the simulation results for 
values of c1 = 0.2, 0.3, 0.4, and c2 = 0.5. Results are plotted 
for different trial lengths to visualize the dynamics at differ-
ent time scales. A step window of 400,000 steps was used in 
Figure 1(a), while a step window of 200 steps was used in 
Figure 1(b). 

(a) Plot of 400 steps. 

(b) Plot of 200 steps at a higher resolution. 
 
Figure 1. Probability, P1, of selection of action 1 in a two-action 
environment with c2 = 0.5. Both plots contain graphs for univ-
Tsetlin automaton and opt-PSAPA with a depth of D = 10. 
 

The results revealed a dramatic difference in the behavior 
of opt-PSAPA and univ-Tsetlin automata. It took about 50 
steps for opt-PSAPA to converge to the steady state, while 
univ-Tsetlin automata did not reach steady state even at 
400,000 steps. In fact, Figure 2 shows that univ-Tsetlin  
automata did not even reach equilibrium (i.e., steady state) 
at 106 steps. As a result, opt-PSAPA outperformed univ-
Tsetlin automata for lengths up to 35,523 steps for c1 = 0.4, 
89,909 for c1 = 0.3, and 143,960 for c1 = 0.2. Thus,           
opt-PSAPA outperformed univ-Tsetlin for all realistic   
number of trials. It is very hard to find real-life scenarios 
where the decision system can wait to process more than 
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35,000 steps. So, for all practical purposes, opt-PSAPA is 
better suited to deliver satisfactory results for real-life    
scenarios. 
 

Figure 1(b) reveals another interesting facet of the behav-
ior of the two FSSA. Note that the 200 steps in the plot of 
Figure 1(b) are just a high-resolution depiction of the behav-
ior of two types of FSSA in the first 200 steps of Figure 1
(a). The plot may wrongly give the impression that the univ-
Tsetlin automaton converges to equilibrium faster than the 
corresponding opt-PSAPA, but at a much lower perfor-
mance level. However, Figure 1(a) shows that, in fact, the 
univ-Tsetln automaton is quite far from the steady state for 
this range of steps, and continues to converge and eventual-
ly surpass opt-PSAPA, albeit after an enormously larger 
number of steps. It highlights the point that it is never advis-
able to assume convergence without thoroughly evaluating 
the full scope of the simulation results. Figure 1(b) clearly 
indicates, though, that the convergence of opt-PSAPA    
requires approximately 50 steps. Figure 2 is the same simu-
lation as in Figure 1, but plotted up to 106 steps. The plot 
with such a large step window reveals that the convergence 
of the univ-Tsetlin automaton with a depth of D = 10     
required approximately one million steps versus the 50 steps 
required by opt-PSAPA. 

Figure 2. Probability, P1, of selection of action 1 in a two-action 
environment with c2 = 0.5. The plot corresponds to 1 million steps 
and contains graphs for univ-Tsetlin automaton and opt-PSAPA 
with a depth of D = 10.  
 

Results for Position Reversal Simulation 
 

As described earlier, for the second fixed-penalty proba-
bility simulation, π2,10 (0) = 1 and P2 (0) = 1. Then, just as 
with the previous simulation, c2 was set to 0.5 for all simu-
lations and different values of c1 were selected for different 
simulations. This simulation was pursued in order to under-
stand how the action-switching capability of opt-PSAPA 
plays a role in determining its performance. Figure 3 shows 
the performance results for the two types of FSSA in the 
position-reversal simulation. Again, P1 is plotted for differ-
ent trial lengths. The results clearly show that the choice of 
the most disadvantaged initial position has little effect on 

the convergence of the PSAPA: it achieves the steady state 
after approximately 80 steps. In contrast, this “reversal” 
initial position has a devastating effect on the univ-Tsetlin 
automaton. Its probability of obtaining a larger reward 
(minimum penalty) P1 remained very close to zero for the 
first 200 steps [Figure 1(b)], and its approach to equilibrium 
was also substantially delayed. 
 

Plots of Figures 3(a) and 3(b) contain graphs for univ-
Tsetlin automaton and opt-PSAPA at a depth of D=10 for 
automata that start with P2(0) = 1 and π2,10 (0) = 1 in. It is 
clear that the time constant for the opt-PSAPA is of the  
order of 30 steps and the time constant for univ-Tsetlin is of 
the order of 200k steps for D=10. In Figure 3(c), the same 
plot of univ-Tsetlin is shown as in Figure 3(b), but with a 
greater P1 resolution, spanning the range of 0 to 1.5x10-3. 
Figure 3(c) reveals the dynamics of univ-Tsetlin automaton 
during the 200 steps. It can be seen that, for the first 17 
steps in any of the 10,000 trials, none of the univ-Tsetlin 
automata switched to action 1. This is the minimum time 
taken by the univ-Tsetlin automaton to traverse branch 2 
before reaching the initial state of branch 1. Even after this 
initial interval, the rise in the fraction of automata switching 
to action 1 remained insignificant—below 0.12% for the 
200 steps. Thus, action switching remains a challenge for 
univ-Tsetlin, as compared to opt-PSAPA. 
 

Non-Stationary Environment: 
Simulation and Analysis 
 

An important characteristic of a non-stationary environ-
ment that affects the performance of any LA is how fast the 
penalty probabilities are changing in time. To evaluate that 
effect, the most elementary situation was considered when 
the penalty probabilities oscillated harmonically within a 
broad range of different frequencies. In the non-stationary 
environment selected in this study, the penalty probabilities 
for two of the multiple actions varied sinusoidally, and at 
opposite phases to each other, around an average value, 
while the penalty probabilities of other actions remained 
constant at the same average value. This allowed assessment 
of the effect of different frequencies and different modula-
tion depths of the sinusoidal variation, as well as to compare 
the performance in two-action environments with the per-
formance in environments with a larger number of actions.  

 
The simulations were done for three different PSAPAs, 

univ-Tsetlin, and univ-STAR automata with several values 
of depth D. Performance measures used in these simulations 
were defined based on the concepts of Perfect Predictor and 
Pure-Chance automata. The Pure-Chance automaton was 
introduced previously as a benchmark for comparison of the 
behavior of different automata in a stationary environment 
(Economides & Kehagias, 2002). The Pure-Chance automa-
ton is defined as an automaton that chooses one of the avail-
able actions randomly with equal probabilities at each step. 
The Pure-Chance automaton provides a lower bound on the 
performance of any intelligent algorithm. 
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(a) Plot of 1 million steps. 

(b) Plot of 200 steps. 

(c) Plot of 200 steps at a higher resolution. 
 
Figure 3. Probability, P1, of selection of action 1 in a two-action 
environment with c2 = 0.5.  
 

The Perfect Predictor automaton (PPA) is defined as an 
automaton that has complete knowledge about the environ-
ment and can select the action with the least penalty proba-
bility at every step. The only hindrance in it getting reward-
ed for 100% of the trials is the stochastic nature of the envi-
ronment. PPA sets an upper bound on the best possible  
performance possible for a learning automaton. In fact, this 
model is usually a very weak upper bound on the perfor-
mance of any FSSA, but it does give insight into the limits 
of how well the different designs can perform. 

Simulation Details for Sinusoidally 
Varying Penalty 
 

Consider a two-action environment where the penalty 
probabilities vary according to Equation 1:  
 
 

(1) 
 
 
where, k is the step number in a sequence of trials (k=1, 2, 
…, N), and f is the frequency (i.e., the number of periods of 
sinusoidal variation during the entire sequence of trials, 
consisting of N steps). 
 

This two-action model is a specific case of a more general 
r-action model. In the r-action model, the penalty probabili-
ties of the first two actions vary sinusoidally and in opposite 
phases around an average value, c, and the penalty probabil-
ities of the other actions remain constant at c. Note that the 
environment model contains two actions with sinusoidally 
varying probabilities to ensure that the set of penalty proba-
bilities remains the same for any two steps that are one-half 
period apart. This condition ensures that the values of the 
output of the experiment, such as the probability of select-
ing the best action at any given step, and the probability of 
selecting a given action at a given step, can be compared 
and interpreted with other steps that are separated by multi-
ples of half a period from the given one. Selection of an 
environment with only a single sinusoidally varying penalty 
probability would not provide this feature to the simulation 
results. Each of the simulations is an ensemble of                
Z = 10,000 independent trial sequences. The performance of 
each LA is evaluated as follows. 
 

Denoted by ρ(k, f, z) the reward obtained by an automaton 
in the trial z (z = 1,2, …, Z) at step k (k = 1, 2, …, N) of the 
experiment performed with modulation frequency f. In fact, 
ρ(k, f, z) is a binary random variable that takes on values 
{0,1} with probabilities ci and 1-ci , respectively, if the LA 
is in branch i at step k. Consider the average given by Equa-
tion 2: 
 

(2) 
 
 

The empirical value of ρ(f), obtained in a simulation,  
experiment can be used as an estimate of the expected value 
of the reward E[ρ(f) ] = 1–M(f), where M(f) is the average 
penalty obtained by a given automaton in a non-stationary 
environment with periodically changing probabilities of 
penalty, according to Equation 1. Note that the empirical 
values ρ(k, f, z) fluctuate quite broadly, depending on the 
entire history of automaton-environment behavior and inter-
action in any trial of the simulation. Therefore, each experi-
ment was repeated Z = 10,000 times with the view to make 
the estimate of ρ(f), as given by Equation 2, closer to its 
expected value 1-M(f). 
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Denoted by ρPP(f) the average reward obtained by the  
Perfect Predictor Automaton and by ρPC(f) the average   
reward obtained by the Pure-Chance Automaton. Then, the 
performance measure Ω(f) for an automaton obtaining the 
average reward ρ(f) is defined by Equation 3: 
 
 

(3) 
 
 

The simulations were performed for a two-action environ-
ment with the value of c = 0.5. The frequency f was varied 
from 3 to 30,000, with 35 approximately regularly spaced 
steps on a log scale, such that f was always an integer. The 
number of steps was N = 100,000 in each of the experi-
ments. The performance, Ω(f), was calculated as a function 
of f, the frequency of penalty probability variation, using 
Equations 2 and 3. To determine the effect of magnitude on 
variation of the penalty probabilities, Ω(f) was computed for 
two values of η, namely, for η = 0.5 and for η = 0.1.      
Comparison of the performance for these two cases should 
indicate the efficacy of the learning automata to track small 
changes in penalty probabilities. In a different experiment, 
simulations for ten-action environments were performed, 
where the penalty probabilities of the other eight actions 
(i.e., c3, c4 … c10) were held constant at c = 0.5. The goal 
was to determine how the presence of multiple (possibly, 
non-optimal) actions confounds the performance level of the 
different learning automata. Although FSSA that are            
ε-optimal remained so, irrespective of the number of      
actions, their performance in a non-stationary environment 
may deteriorate with an increasing number of possible   
actions. 
 

Thus, the performance of each automaton was character-
ized in three different types of environments; namely,       
(a) a two-action environment with sinusoidally varying  
penalty probabilities; (b) a two-action environment where 
the penalty probabilities vary within a smaller range; and, 
(c) a ten-action environment. One may expect that, if an 
FSSA design is effective for these simple non-stationary 
environments, its performance should consistently improve 
with increasing depth D. 
 

Two-Action Environments: 
Performance versus Frequency and Depth  
 

Simulation results for Ω(f) in a two-action environment, 
as described above, are shown for opt-PSAPA and univ-
pess-PSAPA, univ-amb-PSAPA, and univ-Tsetlin automata, 
for the depths D = 3 [Figure 4(a)], D = 10 [Figure 4(b)], and 
D = 50 [Figure 4(c)]. Assume, for convenience, that the 
total time of an experiment was one second and f was meas-
ured in Hertz. It can be seen that the univ-Tsetlin automaton 
for D = 3 [Figure 4(a)] performed better than others in the 
low-frequency range (f < 200 Hz). This value of f corre-
sponds to 500 steps per modulation cycle period. However, 
the univ-Tsetlin performance dropped below 80% of its 

maximum performance (Ω = 77%) by 337 Hz (i.e., 297 
steps/cycle). At the same time, opt-PSAP automata perfor-
mance dropped to Ω = 78.4%, only by 1,628 Hz (61 steps/
cycle). In the same environment, a Pure-Chance automaton 
would always have a percentage reward ρ of 50%, irrespec-
tive of the penalty modulation frequency value. The cutoff 
frequency (i.e., the frequency at which an automaton      
performs worse than Pure-Chance automaton) of univ-
Tsetlin L2,6 was about 1,200 Hz (83.33 steps/cycle), while 
that of opt-PSAP automata was more than 22,400 Hz    
(4.46 steps/cycle). Thus, the PSAPA demonstrated superior 
performance, compared to univ-Tsetlin automata and univ-
STAR automata for all frequencies f  > 200 Hz, and at a 
small depth D = 3. 

    (a) Frequency performance            (b) Frequency performance  
             at a depth of D = 3.                        at a depth of D = 10. 
 

     (c) Frequency performance     (d) Comparison of univ-Tsetlin at  
           at a depth of D = 50.          a depth of D = 3 and univ-Tsetlin  

                                                at a depth of D = 10, with 
                                                       PSAP-opt at a depth of D = 50. 

 
Figure 4. Performance, Ω(f), as a function of frequency. 
 

The drastic difference In behavior between PSAPA and 
other FSSA becomes even more profound for larger depths. 
The depth increase to D = 10 had a positive effect on 
PSAPA, but ruined the performance of the univ-Tsetlin and 
univ-STAR automata. The cutoff frequency for univ-Tsetlin 
and univ-STAR dropped to 200 Hz (500 steps/cycle), while 
for opt-PSAPA it remained above 20,000 Hz (5 steps/
cycle), For depth D = 50, Tsetlin and STAR automata per-
formed about the same as the Pure-Chance automaton for all 
frequencies f > 7 Hz, while opt-PSAPA kept the cutoff point 
at about 20,000 Hz. In fact, the performance of opt-PSAPA 
at low frequencies (up to f = 200 Hz) improved with the 
increase of depth D. 
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Figure 4(d) shows that, while the opt-PSAPA with a 
depth of D = 3 has a higher working frequency range than 
all univ-Tsetlin automata of any depth, the opt-PSAPA of 
depth D = 50 is superior to univ-Tsetlin automata with a 
depth of D ≥ 5 for low as well as high frequencies. Thus, the 
opt-PSAPA design is wholly superior to the univ-Tsetlin 
design in a non-stationary environment. 
 

Figure 5 further illustrates the relationship between     
frequency response and depth for different universally         
ε-optimal automata. One can see from this figure that, while 
the univ-Tsetlin automaton showed superior performance at 
a depth of D = 3, its performance deteriorated considerably 
as depth increased. Thus, the univ-Tsetlin automaton design 
does not fully capitalize on the increase in number of states 
in the automaton, while the opt-PSAPA design is more  
conducive to penalty-modulated environments. Another 
observation was that, for the PSAPA design, the cutoff   
frequency remained almost unchanged with increasing 
depth, which seemed to be a distinctive property specific to 
the PSAPA design. 

    (a) Percentage performance           (b) Percentage performance  
            for optimistic-PSAP.                      for univ-PSAP-amb. 

    (c) Percentage performance           (d) Percentage performance  
            for univ-PSAP-pess.                         for univ-Tsetlin. 
 
Figure 5. Percentage performance as a function of frequency for 
the different ε-optimal automata. 
 

Two-Action Environment: 
10% Modulation Amplitude  
 

Figure 6 shows simulation results for a two-action envi-
ronment with η = 0.1: for the opt-PSAPA [Figure 6(a)], the 
univ-amb-PSAPA [Figure 6(b)], the univ-pess-PSAPA 

[Figure 6(c)], and the univ-Tsetlin [Figure 6(d)] automata 
for depths D = 3, D = 10, and D = 50. It can be seen that opt
-PSAPA again had the best performance, while univ-Tsetlin 
had much worse performance characteristics. In fact, a univ-
Tsetlin automaton with a depth of D = 10 already had a 
nearly Pure Chance performance. This performance level 
was substantially worse than the case for η = 0.5 [Figure     
5(d)] in the previous section. It becomes clear that the univ-
Tsetlin automaton performance worsened in an environment 
producing small and slowly varying changes in penalty 
probabilities. Thus, the utilization of additional states by the 
univ-Tsetlin automaton design was even poorer for such 
environments. In this regard, the opt-PSAPA design was 
more conducive to penalty-modulating environments with 
low-modulation amplitudes, since its performance contin-
ued to show improvement similar to the kind of improve-
ment it showed in a high-penalty modulation-amplitude 
environment with increasing depth. Again, the PSAPA   
design ensured that the cutoff frequency of the frequency 
response remained unchanged with increasing depth,      
irrespective of the penalty-modulation amplitude. 

    (a) Percentage performance           (b) Percentage performance  
            for optimistic-PSAP.                      for univ-PSAP-amb. 

    (c) Percentage performance          (d) Percentage performance  
             for univ-PSAP-pess.                        for univ-Tsetlin. 
 
Figure 6. Percentage performance as a function of frequency for 
depth values of D = 3, 10, and 50, while the penalty probabilities 
modulate with η = 0.1. 
 

Ten-Action Environment: 
Performance versus Frequency and Depth 
 

Figure 7 shows the simulation results for a ten-action  
environment, as described earlier: for Æ-opt, univ-pess-
PSAPA, univ-amb-PSAPA, and univ-Tsetlin automata for 
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D = 10 [Figure 7(a)] and D = 50 [Figure 7(b)]. Note that the 
performance of the Perfect Predictor automaton should not 
be affected by the number of actions available. 

(a) Percentage performance at a depth of D = 10. 

(b) Percentage performance at a depth of D = 50. 
 
Figure 7. Percentage performance as a function of frequency for 
the different ε-optimal automata in a ten-action environment, as 
described in section 4C.1. 
 

The presence of many actions affected the LA perfor-
mance negatively. Nevertheless, it can be seen that perfor-
mance of PSAPA improved with increasing depth for the 
range of low frequencies, while keeping the cutoff frequen-
cy almost unchanged at about f = 10,000 Hz. The Tsetlin 
automaton performance deteriorated to a Pure Chance level 
for almost the entire range of frequencies. Thus, the PSAPA 
design continued to capitalize on increasing depth in the ten
-action environment, while the performance of univ-Tsetlin 
automaton versus depth got worse in the ten-action environ-
ment, when compared to the two-action environment. 
 

Conclusions and Future Work 
 

In non-stationary environments, simulation results of   
two-action and ten-action environments were presented in 
this paper. Note that the state of the automaton prior to   
entering the stationary environment was carefully selected 

to reflect the impact of penalty switching on the behavior of 
the automaton. Penalty switching simulations revealed the 
fast convergence rate as well as the quick-action switching 
property of PSAPA in comparison to other FSSA. These 
simulations clearly established the benefits of using PSAPA 
in real-life situations, since they require an incomparably 
smaller number of steps to converge to the steady state than 
the univ-Tsetlin automaton, and generally perform better 
than univ-Tsetlin automaton for a large range of steps. In 
fact, univ-Tsetlin automaton took an unrealistic number of 
steps to outperform PSAPA. 
 

Position reversal simulations presented in this paper   
further accentuated the difference in the convergence speed 
of PSAPA versus univ-Tsetlin automata. The motivation for 
position reversal simulations was also derived from real-
life, human decision-making behavior. In many scenarios, 
one finds that people who are extremely sure about a partic-
ular decision can struggle when the environment suddenly 
changes and they need to switch their decision. On the other 
hand, other people find switching their decisions when 
faced with a changing environment to be much less taxing 
and they evolve quickly in a transient environment. Thus, 
learning automata models discussed in this paper could play 
a significant role in explaining differences in behaviors of 
different individuals in changing environments.  
 

The sinusoidally modulated penalty-probability simula-
tions indicated that the performance of univ-STAR and  
univ-Tsetlin automata deteriorated substantially in simple,     
non-stationary environments with the increase in depth. On 
the other hand, the PSAP automata showed a nearly       
constant high-frequency response for increased depth, and 
an improved low-frequency response. Thus, although the 
response of PSAPA may be worse than Tsetlin automata at 
very low depths, PSAPA is a more favorable candidate for 
an automaton that capitalizes on the increase of the number 
of states to improve performance. 
 

This trend in performance is even more pronounced when 
the modulation amplitude fluctuations are small, or when 
environment provides many actions to choose from. In the 
multi-action environment, although the opt-PSAPA perfor-
mance deteriorated slightly with the maximum operating 
frequency dropping from 300 Hz in a two-action environ-
ment to 100 Hz in a ten-action environment, the deteriora-
tion was not as severe as for the univ-Tsetlin automaton, 
which stopped responding to the modulations in the penalty 
probabilities entirely. All these observations indicate the 
strength of the PSAP framework in non-stationary environ-
ments. Another strength of the PSAPA design is the degree 
of flexibility in the assignment of the action-switching prob-
abilities. For the classical FSSA, action switching happens 
only in a few of the automata states and, therefore, action-
switching probabilities are hard to control, since they are 
only implicitly related to the state-transition probabilities. 
However, the explicit attribution of one state-switching 
probability to action switching for every state helps the  
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automaton designer control the action-switching probability 
in the PSAPA framework. This flexibility creates many 
more design possibilities for future research. 
 

There exists a general notion in FSSA research that the 
parameter D can be fine-tuned to provide the best tradeoff 
between optimality and speed of response to non-stationary 
environments. This notion is promulgated by the observa-
tion that the performance of classical FSSA designs in     
non-stationary environments degrades drastically with in-
creasing depth (Economides & Kehagias, 2002). Based on 
simulations in this study, non-stationary environment     
performance degradation with depth is not necessary for 
every FSSA design. Further research in the field of FSSA 
should focus on identifying FSSA designs that do not suffer 
from degradation in performance with the depth D, especial-
ly since, as mentioned in the previous paragraph, it is possi-
ble to simulate infinite-state FSSA that are optimal for   
stationary environments by taking into consideration the 
finiteness of the number of steps in real-life scenarios. 
 

The action-switching capability in every state for a 
PSAPA makes it comparable to VSSA in terms of its action
-switching capability. In a VSSA, action switching can  
occur at any time, since the VSSA design does not commit 
to any one action but instead picks the next action from the 
basket using probability-based weighting. The performance 
of PSAPA will be compared with different VSSA designs in 
future studies. It needs to be determined whether the simula-
tions in simple, non-stationary environments presented in 
this paper can be used to comprehend the behavior of these 
different learning automata in complex, non-stationary as 
well as game-theoretic environments. 
 

In the past, simulation results of opt-PSAPA working in 
scheduling of multiple devices using a single channel in an 
ad-hoc network (Aggarwal & Liu, 2005) were presented. 
With a clearer understanding of the behavior of PSAPA 
through the two papers presented here, investigation of  
further applications of PSAPA are planned in the future. In 
future studies, the authors intend to apply these novel     
designs of LA to deep learning and real-life challenging 
problems, such as training deep neural networks and cluster-
ing (Guo, Li, Qi, Guo & Xu, 2020; Hasanzadeh-Mofrad & 
Rezvanian, 2018), financial portfolio management (Sbruzzi, 
Leles & Nascimento, 2018), adaptive recommender systems 
(Ghavipour & Meybodi, 2016), resource-efficient cloud 
computing and cost-efficient resource allocations (Yazidi & 
Hammer, 2018), wireless network design and management 
(Misra, Chatterjee & Guizani, 2015), stochastic queuing 
systems (Vahidipour & Esnaashari, 2018), machine vision 
(Damerchilu, Norouzzadeh & Meybodi, 2016), and optimi-
zation of cooperative tasks (Zhang, Wang & Gao, 2021), 
where efficient LA with fast convergence rates and assured 
ε-optimality or real-time reaction for each iteration are   
required. 
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Abstract  
 

Grover’s algorithm is a category of quantum algorithms 
that can be applied to many problems through the exploita-
tion of quantum parallelism. The amplitude amplification in 
Grover’s algorithm is T = O(√N). In this paper, a quantum 
circuit will be constructed for amplitude amplification such 
that the time complexity is T = O(1). 
 

Introduction 
 

Quantum computing is a field of computing that leverages 
the principles of quantum mechanics (Nielsen & Chuang, 
2010; Rieffel & Polak, 2011; Johnston, Harrigan & Gimeno
-Segovia, 2019; Hidary, 2019; Aaronson, 2013). Traditional 
computers use bits as the fundamental unit of information, 
which can exist in one of two states: 0 or 1. Quantum    
computers, on the other hand, use qubits, which can exist in 
multiple states simultaneously. Quantum computing has 
strange phenomena known as superposition and entangle-
ment.  
 

Grover’s algorithm (Grover, 1996) is one of the most  
famous quantum algorithms and provides a quadratic     
increase in speed over the best classical algorithms for   
unstructured search problems [i.e., from T = O(N) to           
T = O(√N)]. It was proposed by Grover (1996) and is a   
fundamental algorithm in the field of quantum computing. 
Grover’s algorithm can be applied to find a specific item in 
an unsorted list, and its efficiency arises from the exploita-
tion of quantum parallelism and quantum interference.   
Furthermore, it is a category of algorithms that can be    
applied to many problems, such as SAT (Berti, 2022) and 
Subset Sum (Shirgure, 2024). Both SAT and Subset Sum 
stop in exponential time with respect to the size of the prob-
lem in classic computers. The latest system, run by Google, 
has a total of 70 operational qubits (Nield, 2024). 
 
Grover’s algorithm (Grover, 1996) is: 

• Initialization 
• Oracle for 
• Amplitude Amplification 
• Measurement 

 
where, specifically: 

• Initialization means start with a superposition of all 
possible states then, if there are N = 2n possible    
solutions, where n is the number of qubits, the super-
position is created over N states. 

• Oracle means introduce an Oracle gate that identifies 
the target solution. 

• Amplitude amplification means apply a series of 
quantum operations that amplify the amplitude of the 
marked state and suppress the amplitudes of the other 
states. 

• Repeat amplification means that amplifications are 
repeated for a certain number of iterations. 

• Measurement means that the quantum state is meas-
ured and, with high probability, the correct solution is 
obtained. 

 
In Grover’s algorithm, the key is Oracle and amplitude 

amplification. Amplitude amplification is the constructive 
and destructive interference that occurs during the ampli-
tude amplification step. The amplitudes of incorrect states 
experience destructive interference, reducing their probabil-
ities, while the amplitude of the correct state experiences 
constructive interference, increasing its probability. There 
have been many attempts to improve Grover’s algorithm. In 
a study by Brassard, Hoyer, Mosca, and Tapp (2022), the 
authors let α be the probability of a marked state in the   
initial state, and let the amplitude amplification process be 
composed of building an initial state, measuring the output, 
and checking the validity of the marked state, then the    
process was expected to repeat 1/α times, on average, before 
a solution was found. 

 
Clearly, if the initial state was restricted to an equal super-

position of all states, then α = 1/N and the algorithm had    
O(N), thus the algorithm had to modify the initial state. The 
restriction of an equal superposition of all states implies that 
the initial superposition had a time complexity of O(1); 
without this condition, the initial superposition can have a 
much higher time complexity (Liu, 2024). Soni and Rasool 
(2021) made the comparative analysis between Grover’s 
algorithm and its variants; all the variants had T = O(√N). 
Boyer, Brassard, Hoeyer, and Tapp (1998) proposed a    
simple formula for the probability of success after any given 
number of iterations of Grover’s algorithm (Boyer et al., 
1998). Zalka (1999) showed that Grover’s algorithm cannot 
be parallelized better by assigning different parts of the 
search space to independent quantum computers. This    
current study differs from the others noted above, as the 
proposed algorithm was T = O(1). 
 

In this paper, then, the author will: 1) construct a quantum 
circuit for amplitude amplification using Grover’s algorithm 
such that the time complexity is T = O(1); 2) introduce         
X = {0,1}d space and the notation for superposition vectors; 3) 
describe the well-known Oracle assumption; and, 4) list the 
well-known gate equations used in this paper. A simple  
example will be used to show the design. 
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Basic Notation 
 

Throughout this paper: 
n is the number of qubits; 
N = 2n  is the number of states; 
L ≤ N  is the number of items in an unsorted list; 
M  is the unsorted list. 
 

Standard notations will be used, meaning the symbol, X, will 
be overloaded for both the Instance Space name and Gate 
name. An Instance Space, X = {0, 1}n, is a set of all instances 
given in Equation 1: 
 

(1) 
 

An instance of X is x = 00 … 0, or, 0 … 01, … , and |X| = 2n
. 

An instance, x, is a binary string that can be converted into a 
decimal number using Equation 2: 
 

(2) 
 

An instance, x, can be the qubits, and can appear as a binary 
string or a decimal number. An example is given in Table 1. 
 
Table 1. n = 3 qubit states, which could be either binary or decimal. 

The classical reference for quantum Grover’s algorithm is 
the linear search with a time complexity given by Equation 
3: 

(3) 
 
In Grover’s algorithm, the starting superposition of all possible 
states by Equation 4 and is always represented by Equation 5: 

 
 

(4) 
 
 
 

(5) 
 
 

Here, a(x) in Equation 4 are the amplitudes. Equation 5 
comes from the product in Equation 6: 
 

(6) 
 
where, the qubits are given by Equation 7: 

 
 
 

(7) 
 
 
 

Equation 5 is the starting superposition state (i.e., at the 
beginning of circuits in this paper, the following section in 
Equation 8 will be omitted in the design): 
 

  (8) 
 
where, H is the Hadamard gate. 
 

The time complexity for Equation 5 is O(1). Note that 
although there are n qubits and each qubit will go through 
Equation 8, the n steps proceed in parallel so that the time 
for all qubits together in Equation 7 is O(1). For the same 
reason, the superposition of ψ in Equation 6 from n qubit, 
{…, x2, x1, x0}, is also O(1). 
 

The Well-known Oracle Assumption 
 

In Grover’s algorithm the Oracle example means to 
search through the unsorted list and amplify the probability 
of finding the target state(s) upon measurement. In this  
particular example, the Oracle’s role is to mark the target 
number, which is given. For example, let n = 3, and let a 
search target be, |5⟩ = |101⟩, from an arbitrary random list,      
M = {3, 4, 6, 0, 1, 2, 7, 5}. Since the state |101⟩ is given, the 
Oracle simply marks the |101⟩ state. Grover’s algorithm is a 
category of quantum algorithms that can be applied to many 
problems. In general, the Oracle does not need to “know” 
the solution in the classical sense (Nielsen & Chuang, 2010; 
Rieffel & Polak, 2011; Johnston et al., 2019; Hidary, 2019; 
Aaronson, 2013). Instead, it is provided with a black-box 
function that can identify the solution(s) without explicitly 
knowing what they are. This black box evaluates whether a 
given state represents a solution and marks it accordingly. 
 

The basic assumption of the Oracle is not to reveal the 
solution but rather to provide a quantum operation that   
efficiently marks the solution state(s) within the superposi-
tion of states. This marking process is essential for subse-
quent steps in amplitude amplification, which enhances the 
probability of measuring the solution state upon measure-
ment. Again, the significance of the Oracle lies in its ability 
to mark the solution state(s) within a superposition of states 
efficiently, without explicitly knowing the solution before-
hand. In other words, the definition of the Oracle operation 
is to efficiently identify the solution state(s) within the 
quantum superposition without requiring explicit knowledge 
of the solution beforehand. 
 

Consider the following example: you have a box of 100 
different types of candies (superposition), which are equally 

x2 x1 x0 |x2 x1 x0⟩ =|x⟩ 

0 0 0 |000⟩ = |0⟩  

0 0 1 |001⟩ = |1⟩  

…    

1 1 1 |111⟩ = |7⟩  

{ }0 00,0 01,0 10,0 11,X =

{ }0,1,2,3, 1X N= -

( ) ( )2nT O N O= =

( )
1
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a x xy
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likely to appear (1%). There is a cavity (Oracle gates) in the 
bottom of the box. If you open this box (measurement), you 
could get one candy of a random type (i.e., 1% probability 
for each type). You begin to shake the box (quantum paral-
lelism) and a small candy (oracle-vector) falls out of the box 
from the cavity. This particular type of candy can pass 
through the cavity, because of its shape and size (oracle 
gates). For the same reason, other types of candies cannot 
fall through. Even if it is out of the box, the candy (oracle-
vector) is still entangled with the other 99 types of candies, 
so that if you open the box (measurement), the chance for 
this candy that previously fell out (oracle-vector) to appear 
would still be 1%.  
 

In other words, the black box can identify the solution(s) 
without explicitly knowing what they are, because of low 
probability. Therefore, the Oracle’s goal is not to reveal the 
solution but rather to provide a quantum operation that 
marks the solution state(s) within the superposition of states 
efficiently. At this point, you would have to spray red ink on 
the candy that fell out (oracle-vector) to mark it, at which 
point the Oracle’s job ends. In this paper, Equation 19    
represents this candy (oracle-vector). 
 

The Gate Equations 
 

All of the gate equations used in this paper are well known 
(Nielsen & Chuang, 2010; Rieffel & Polak, 2011; Johnston 
et al., 2019; Hidary, 2019; Aaronson, 2013). The gates are X, 
Z, Controlled Z, and Hadamard (optional). The Pauli gate X is 
represented by Equation 9. Figure 1 shows this gate. 
 
 

(9) 
 

Figure 1. Pauli X Gate (Not Gate, and Bit-flip Gate). Reprinted with 
permission. 
 

Equation 10 indicates that |+⟩ is an eigenvector of X; in other 
words, |+⟩ is measurable along the X direction with a probabil-
ity of 100% for the eigenvalue of 1. Similarly, |−⟩  is measurable 
along the X direction with a probability of 100% for the      
eigenvalue −1.  
 

(10) 
 

The Pauli X gate is also a “Not” gate in the  Pauli Z direc-
tion, represented by Equation 11: 
 

(11) 

Equation 11 will be used for flipping the control qubits. The 
Pauli gate Z will be used to rotate a qubit from |+⟩  to  |−⟩  in 
Equation 12: 

(12) 
 

The Hadamard gate (H gate) can be used to change base 
vectors in Equation 13: 
 
 

(13) 
 
 

Throughout this paper, for simplicity, the measurable varia-
bles are the Pauli X matrix (i.e., the measurement is along the 
X-direction). This measurement direction can be changed from 
X to Z by Equation 13. The Controlled Z gate is given by 
Equations 14-16: 
 

(14) 
 
 

(15) 
 
 

(16) 
 

Equations 14, 15, and 16 are the main equations used in this 
paper. Figure 2 shows the Controlled Z gate (CNot, Controlled 
Not). 

Figure 2. Controlled Z gate. Reprinted with permission. 
 

T = O(1) Circuit Design 
 

Given an unsorted list in Equation 17, and assuming that this 
list can be encoded by n qubits, the measurement-vector is  
defined by Equation 18. The Oracle black box marks the target 
number with n qubits, the oracle-vector, which is the output of 
the black box in equation 19: 
 

(17) 
 
 

(18) 
 
 

(19) 

0 1

1 0
X
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= ê ú
ë û

,X X+ñ = +ñ -ñ = - -ñ
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0 1

1 0
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XH X H

+ñ = ñ -ñ = ñ
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The circuit will have 2n qubits: n qubits in the oracle-vector, 
which come out of the Oracle black box, and n qubits in the 
measurement-vector. The oracle-vector in Equation 19 repre-
sents the control qubits. The measurement-vector in Equation 
18 represents the measurement qubits. Equation 20 pairs the 
two groups of qubits so that the control qubits can be applied to 
Z gates to control measurement qubits. 
 

(20) 
 

The general design will be given in the next section. In this 
section, a simple example will be used to show the circuit   
design. The design is given in Figure 3.  

Figure 3. An example of O(1) Circuit Design. The picture is made by 
the author with basic gate components taken from Wikipedia with 
permission. 
 

A simple example is finding a target, 5, from M = {3, 4, 6, 0, 
1, 2, 7, 5}. The Oracle will mark target, |5⟩ = |101⟩, which is 
given in this example. The amplitude amplification is to apply 
a series of quantum operations that amplify the amplitude of 
the marked state and suppress the amplitudes of the other 
states. In the following, the measurement direction is Pauli X. 
At Step 0 in Figure 3, the oracle-vector is: 
 
 
 

The superposition qubits, based on Equation 5, are: 
 
 

At Step 1 (after X gate in Figure 3), using Equation 11, the 
oracle-vector is: 
 
 
 

Note that the X gates flipped the control qubits from 101 to 
010. This step selects the control qubit so that only the middle 
qubit is chosen. This will prepare the next step, which will 
change the measurement-vector from + + + to + − +, where     
7 (+ + +) is the initial state and 5 (+ − +) is the target state. 
Again, Pauli X is the measurement direction. At Step 2 (after 
Controlled Z gate in Figure 3), using Equations 14-16, the       
Z gate only changed the middle qubit. From Equation 12, the 
measurement qubits are: 
 
 
 

At this point, note that Z gate rotated the x1 qubit from        
x1 = |+⟩ to x1 = |−⟩. All three qubits are the eigenvectors of the 
Pauli X matrix, see Equation 10; so, if the measurement-vector 
is measured at this point, the only outcome is 101. At Step 3, 
take a measurement; the probability P (|101⟩) =1 and the target, 
5, is identified. Using another example, assume that the prob-
lem is finding a target, 2, from M = {3, 4, 6, 0, 1, 2, 7, 5}.        
 
At Step 0,  
 
 
 
 
 
At Step 1,  
 
 
 
 
At Step 2,  
 
 
 
 
At Step 3, take a measurement; the probability P (|010⟩)  =  1 
and the target, 2, is identified. 
 

• Comment 1: Although the quantum state in Equation 
18 is measured with a high probability to obtain the 
correct solution, if the quantum state in Equation 19 
is measured, it has a very low probability of obtain-
ing the correct solution. In fact, Equation 19 has a 
distribution of Equation 5. Thus, amplitude amplifi-
cation is necessary. Oracle and amplitude amplifica-
tion fulfill different roles. 

• Comment 2: Equation 14 allows a change in the meas-
urement direction from X to Z by inserting H gates at 
the end of Figure 3 for x so that the measurement direc-
tion is not important theoretically, although it could be 
very important in implementation of the circuit. 

( ) ( ) ( ){ }1 1 1 1 0 0, , , , , ,n nox o x o x o x- -=

{ }2 1 01 , 0 , 1o o o o= = ñ = ñ = ñ

{ }2 1 0, ,x x x x= = +ñ = +ñ = +ñ

{ }2 1 00 , 1 , 0o o o o= = ñ = ñ = ñ

{ }2 1 0, ,x x x x= = +ñ = -ñ = +ñ

{ }
{ }
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2 1 0

0 , 0 1 , 0

, ,

o o o o

x x x x
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{ }2 1 01 , 0 , 1o o o o= = ñ = ñ = ñ
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• Comment 3: The amplitude amplification time is signif-
icantly reduced, at the cost of n additional qubits in 
Equation 19, as compared to Grover’s algorithm. 

 

General Design and Modified Search 
Algorithm 
 

The algorithm proposed in this paper is: 
• Initialization 
• Oracle 
• O(1) Amplitude Amplification 
• Measurement 

 
Figure 3 can be repeated for an arbitrary number of qubits, 

which is Figure 4. The input for Figure 4 is Equation 20, which 
consists of the oracle-vector in Equation 19 and the measure-
ment-vector in Equation 18. The oracle-vector is the output of 
the Oracle black box, which is in the state of superposition and 
entanglement and, thus, its correct measurement probability 
is small. 

Figure 4. The O(1) circuit design for amplitude amplification. The 
input is Equation 20, which consists of the oracle-vector in Equation 
19 and the measurement-vector in Equation 18. The measurement is 
along the Pauli X direction. The image was created by the author with 
basic gate components taken from Wikipedia, with permission. 

The time complexity for the design in Figure 4 is clearly      
O(1), because of the parallel gates. Let the above algorithm be 
applied to the following unsorted search: 

• the initialization given in Equation 5 is O(1); 
• the Oracle is O(1), because it simply passes the target 

through the Oracle’s black box;  
• the amplitude amplification is O(1), which is the      

purpose of this paper; and, 
• the measurement is O(1).  

 
So, the unsorted-list search has a time complexity of O(1). 

 

Discussion 
 

In computer science and computational complexity theory 
(Arora & Barak, 2009; Papadimitriou, 1994; Garey & John-
son, 1979; Sipser, 2012), P and NP are classes of decision 
problems. P = Polynomial Time and NP = Nondeterministic 
Polynomial Time. P = NP is one of the most famous       
unsolved problems in computer science and mathematics. 
There is no proof that P = NP, and the prevailing belief 
among most experts is well known: P < NP. 
 

Quantum computing leverages the principles of superpo-
sition and entanglement. An O(1) step in a quantum      
computer can be simulated by a classical computer in O(2n) 
steps, where n is the number of qubits. This is because of 
Equation 5, the classical time complicity is O(N) = O(2n). 
Conversely, in some situations, O(2n) steps in a classical 
computer can be simulated in a quantum computer in O(1) 
steps. This provides a potential for an O(2n) increase in 
speed in time complexity. This is the potential power of 
quantum parallelism. 
 

If an O(2n) speed could be applied to the NP computation 
class, then the time complexity of an NP problem would run 
in polynomial time. This would have significant implica-
tions, as it would imply that many computationally difficult 
problems—such as the traveling salesman problem, the 
Boolean satisfiability problem, etc.—could be solved in a 
quantum computer with polynomial times. If the algorithm 
(summarized in the section on General Design and Modified 
Search Algorithm) is applied to an NP problem, the time    
complexity of NP problems is reduced to the time complexity 
of the Oracle black box:  

• the Initialization is O(1); 
• the amplitude amplification is O(1), which is the      

purpose of this paper; and, 
• the measurement is O(1).  

 
In terms of implementation of the algorithms, the current 

limitations in quantum computing hardware are on the order of 
100 qubits. The latest system, run by Google, has a total of 70 
operational qubits (Nield, 2024). This means that the applica-
bility of the proposed algorithms for solving various problems 
is quite possible. 



——————————————————————————————————————————————–———— 

 

Conclusions 
 

In this paper, the author proposed a quantum circuit for 
the amplitude amplification in Grover’s algorithm such that 
the time complexity was T = O(1), resulting in a significant 
reduction in the amplitude amplification time. 
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Abstract 
 

Among additive manufacturing processes, such as binder 
jet 3D printing, manufacturing can fabricate complex     
geometrical parts with no support structures without       
employing heat during the part building process. It is of 
great interest to many engineering applications—such as 
biomedical, aerospace, automobile industries. However, the 
mechanical properties of printed materials vary depending 
on process parameters and conditions; hence, there is a need 
to tune the process parameters and conditions for optimal 
characteristics. In this current study, the authors developed a 
feed-forward-back propagation artificial neural network 
model to quantify the relationship between three parameters 
and compressive strength. The model was developed based 
on experimental data and was validated with known data. 
The authors feel that the model can be a useful tool for   
predicting and increasing design and manufacturing       
efficiency. 
 

Introduction 
 

Binder jet additive manufacturing technology was origi-
nally developed at MIT in 1990 and commercialized in 
2010 (Gibson & Stucker, 2010). This technology is capable 
of printing a variety of materials including metals, sand, and 
ceramics. Binder jetting is an additive manufacturing     
process in which a liquid binding agent is selectively depos-
ited on powder particles. The print head strategically drops 
layers of the binder into powder, which are then bonded 
together to form a 3D product. The process involves bind-
ing, curing, de-powdering, sintering, and finishing. The 
main technique of manufacturing using binder jet additive 
manufacturing is as follows: a) the CAD file is sliced into 
layers and an STL file is generated; b) each layer begins 
with a thin distribution of powder spread over the surface of 
a powder bed; c) using a technology similar to ink-jet print-
ing, a binder material selectively joins particles where the 
object has to be formed; d) a piston, that supports the    
powder bed and part in progress, lowers so that the next 
powder layer can be spread and selectively joined; e) this 
layer-by-layer process is repeated until the part is complet-
ed; f) following a heat treatment, unbound powder is      
removed and the metal powder is sintered together. 
 

In this study, the authors considered the output character-
istics of compressive strength along with radial and longitu-
dinal shrinkage rates. These were chosen from the binder 
jetting application perspective in bone scaffold engineering, 

as the complex bone structure produced should be dimen-
sionally accurate with compressive strength. The fish-bone 
diagram of Figure 1 shows the process parameters that   
affect the output characteristics of samples of binder jet  
additive manufacturing. The parameters include powder 
size, layer thickness during binding, part orientation in the 
bed, drying time during binding, heater power, roller speed, 
curing temperature, curing time, sintering time, sintering 
temperature, and sintering atmosphere. Any variation in 
these parameters changes the output properties, which make 
the relationship between input process parameters and    
output properties very complicated. Hence, there is a need 
to tune the process parameters to achieve a controlled and 
stable process. 

Figure 1. Fishbone diagram representing various parameters 
involved in the process. 
 

Some experimental work in process parameters and prop-
erty relationships have been presented in the literature. 
Torres, Sandback, and Cai (2018) studied some of the build-
ing design parameters, such as the effect of temperature to 
the tensile strength of PLA material for solid samples. To 
reflect the structure effects in material design, Vangapally, 
Agarwal, Sheldon, and Cai (2017) studied the effect of   
lattice arrangement and process parameters on dimensional 
and mechanical properties. Due to the complexity of the 
influence of a large number of building factors to the final 
material properties, studies on different factors are also 
available. For example, a number of studies were found on 
the binder setting saturation value, layer thickness, and the 
location of made-up parts (Yao & Tseng, 2002; Hsu & Lai, 
2010; Suwanprateeb, Thammarakcharoen, Wasoontararat & 
Suvannapruk, 2012).  
 

Also discerned from these prior studies was the fact that 
practical parts can be made with different materials; in addi-
tion to polymer and plasters, metals and alloys were among 
the popular choices. Investigations into the effects of similar 
design parameters with metal alloys were carried out as 
well. In the study by Tang, Zhou, Hoff, Garon & Zhao 
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(2016), the authors focused on the mechanical properties of 
SS316 samples made by binder jetting with default process 
parameters, whereas Cai, Vangapally, and Zhao (2019) 
compared process parameters such as temperature and parti-
cle size to the product properties of SS316 recently used for 
controlled operations. Research on other alloys, such as 
bronze infiltrated stainless steel, was presented by Doyle, 
Agarwal, Sealy, and Schull (2015) related to the effects of 
layer thickness and orientation of the parts using binder 
jetting. 
 

Apart from studying the process-property relationship, it 
is very important to establish a quantitative relationship 
between process parameters and properties to minimize the 
cost of experiments. Physics-based modeling is almost   
impossible to utilize in 3D printing, as it involves powder-
binder reaction, curing and sintering. Numerical models 
can, however, be effective in finding the appropriate param-
eters with respect to desired output characteristics. Artificial 
neural networks are  a well-known method for use as a   
numerical model based on experimental data; hence, such a 
numerical model was developed in this current study for the 
3D additive printing process. Figure 2 shows the schematic 
representation of a neural network generating output values 
based on input parameters being fed into it. An artificial 
neural network is a system of mathematical equations work-
ing on data and attempting to approximate the human brain. 
Neural networks consist of neurons connecting each other 
with respective weights and passing the information. 

Figure 2. Neural network schematic representation. 
 

The neural network method has been applied in the study 
of many relatively complicated systems, such as in the study 
by Cundari and Moody (1997) in which the authors       
compared neural network models to quantum mechanical 
models for predicting the mechanical properties of inorganic 
systems and concluded that neural networks give more   
accurate predictions. In neural network methods, the feed-
forward-back propagation network is a popular choice. For 
example, Asada, Nakada, Matsumoto, and Uesaka (1997) 
used a feed-forward-back propagation network to predict 
the superconducting transition temperature of material as a 
function of chemical composition. Vermeulen, Morris, 
deWeijer, and VanderZwaag (1996) used it to predict the 
finishing temperature of rolling mill as a function of 
processing parameters. In addition, other researchers have 
used it to study different materials; for example, to predict 

the fatigue life of unidirectional composites (Al-Assaf & 
Kadi, 2001), the use of ceramic materials as a function of 
composition (Scott, Coveney, Kilner, Rossiny & Alford, 
2007). 
 

Though many studies considered neural networks in 
manufacturing processes, few used them for the additive 
manufacturing process. Little was done on neural network 
modeling of additive manufacturing processes. In this 
current study, the authors aimed to develop a predictive 
model using the feed-forward-back propagation artificial 
neural network for the jet binding manufacturing process. A 
predictive model was designed to define the relationship 
between process parameters and compressive strength using 
the experimental data. The feed-forward-back propagation 
neural network was used to develop a predictive model that 
established the relationship between process parameters and 
desired output characteristics. 
 

Experimental Design 
 

In the experimental design, stainless steel 316 powder 
with a particle size of 30 µm was used. The material was 
obtained from Ex-One and used with no further treatment. 
Table 1 shows the chemical composition of stainless steel 
powder. 
 
Table 1. Chemical composition of SS31 (wt%). 

A full factorial design of experiments was used to test all 
the possible combinations in current research with three 
parameters and two levels each, 23 = 8 experiments to be 
conducted. Table 2 represents the total experiments consid-
ered in the study. 
 
Table 2. Full factorial experimental plan: low level is represented 
as 0 and high level as 1. A (low- 50 µm, high- 100 µm), B (low-    
2 hours, high- 4 hours), C (low- 1120°C, high- 1180°C). 
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1 0 0 0 

2 0 0 1 

3 0 1 0 

4 0 1 1 

5 1 0 0 

6 1 0 1 

7 1 1 0 

8 1 1 1 

C Mn P S Si Cr 
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2.00 
max 
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Figure 3 shows the samples that were created following 
the design plan. Three types of solid structures were used in 
this current study: a) circular; 2) 1 mm circular lattice; and, 
3) 1 mm cubical lattice structured. All eight experiments for 
each type of structure were conducted; Figure 3(b) shows 
the setup. The desired output characteristics for compressive 
strength were recorded as input to the numerical neural  
network model. (More details can be found in the previous 
work done by Cai et al., 2019.) 

(a) Binder jet additive manufactured samples 
with various structures. 

(b) Sample testing MTS setup. 
 
Figure 3. Three types of solid structure samples created following 
the study’s design plan and which were used in the study. 
 

Neural Network Model Design 
 

Artificial neural networks (ANN) are preferable tools 
compared to other available data modeling tools, as they are 
capable of mapping complex, non-linear relationships    
between input factors and output characteristics. With train-
ing, a neural network with known data can provide approxi-
mate output results with unseen data, which makes the tech-
nique useful for predictive applications. In the neural     
network method family, the feed-forward-back propagation 
neural network is the simplest and most efficient ANN in 

use today, and is found in applications for developing    
predictive experimental models. The feed-forward-back 
propagation neural network with sigmoid activation func-
tion was considered in this current study for designing the 
model. 
 

Figure 4 represents the architecture of the neural network 
used in this study, where A is layer thickness, B is sintering 
time, C is sintering temperature, O is compressive strength, 
Σ represents summation, F(x) is the activation function, and 
b1 and b2 are bias. There are three different layers in neural 
networks. The left-most layer is the input layer. Input     
parameters are fed into the neural network through this  
layer. The middle is the hidden layer. This layer connects 
the input and output layers; it is called hidden, as its values 
are not observed in the training set. The right-most layer is 
the output layer. In this layer, all of the hidden neurons  
produce an output. In feed forward, neurons in the input 
layer are connected to neurons in the hidden layer, whereas 
neurons in the hidden layer are connected to the output  
layer. Back propagation is a training method in which    
neurons adjust their weight to achieve the target output. The 
network contains three layers with a total of 8 nodes, of 
which 4 are hidden nodes, 3 are input nodes, and 1 is an 
output node. Other symbols/parameters defined in the   
model are listed below. 
 
Xi = input values fed to neural network through input 

node i 
W1ij = weights connecting input-hidden nodes, where i 

represents input node and j represents hidden node 
W2jk = weights connecting hidden-output nodes, where j 

represents hidden node and k represents output 
node 

b1 = bias at hidden node 
b2 = bias at output node 
F(x) = activation function 
δk = error information at output node 
δj = error information at hidden node 
ΔW1 = delta weights at input-hidden layer 
ΔW2 = delta weights at hidden-output layer 
Zj = hidden node 
Yk = output node 
The sigmoid function is used as the activation function for 
this model: F(x) =1/(1+ⅇ^(-x)) 
 

For the training, the feed-forward-back propagation    
process was used. In the feed-forward process, the random-
numbered weights for the hidden input and hidden output 
layers are initialized first. Then the inputs are transferred to 
nodes in the hidden layers, where the summation of input 
values with respective node weights take place and are then 
transferred to the next layer and applying the activation 
function, as shown in Equations 1 and 2: 
 

(1) 
 
 

(2) 

1 1in i ij iZ X W b= * +å
( )in inY F Z=
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Figure 4. Neural network schematic representation. 
 

The values at the hidden nodes get transferred to the   
output nodes, where they get multiplied by the respective 
weights before applying the activation function to produce 
an output using Equations 3 and 4: 
 

(3) 
 
 

(4) 
 

In the feed-forward process, errors and weights at differ-
ent notes are calculated and updated. The error or margin is 
calculated by comparing the target value with the output 
value of the developed model by using Equation 5: 
 

(5) 
 

The error information at the output is found using     
Equation 6: 

            (6) 
 

The error information at the hidden unit is calculated  
using Equation 7: 
 

    (7) 
 

The weights, updating at the hidden input layer, are   
calculated using Equations 8 and 9: 
 

(8) 
 
 

(9) 
 

The weights, updating the hidden output layer, are found 
using Equations 10 and 11: 

(10) 
 
 

(11) 
 

The compressive strength value is normalized so that all 
the values are in the range of 0 to 1, using the Equation 12: 
 

(12) 
 
 
where, Yi represents the compressive strength of each exper-
imental run i (1 to 8). 
 

Figure 5 shows the training process and parameters     
involved at each step. The neural network was trained such 
that error between the desired output and the actual output 
was less than 0.05. 

Figure 5. Flowchart showing the entire training process and the 
parameters involved. 
 

After successful training, the network was tested using 
new data sets for its performance. Then the value obtained 
using the network was denormalized to find the predicted 
value as determined by Equation 13. With it, the difference 
between the predicted and actual values could be analyzed. 
 

(13) 
 

Results and Discussion 
 

Experimental analysis was performed to determine the 
effect and significance of layer thickness, sintering time, 
and sintering temperature on compressive strength. The 

( ) ( )( ) ( ) max min minpredicted network valueY Y Y Y Yé ù= * - +ë û

2 2out in jk jY Y W b= * +å

( )outOutput F Y=

( )2
Target-Outpute =

( )'
k outeF Yd =

( )' 2j in k jkk
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1 k jW ZdD =
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collected experimental data were used to the developed a 
neural network model for predicting compressive strength, 
given the inputs of layer thickness, sintering time, and    
sintering temperature. Three cases were conducted. In the 
first case, the data used for the neural network were from 
compression testing of a solid structure. In the second case, 
the data used were from compression testing of a 1-mm 
circular lattice structure. In the third case, the data used 
were from compression testing of a 1-mm cubical lattice 
structure. The neural network used a back-propagation algo-
rithm for training, a sigmoid function as activation function, 
where the network had one hidden layer. 
 
Solid Circular Structure 
Table 3 displays the data for the solid circular structure; the 
data indicate that the compressive strength of the samples 
fabricated using the eight experimental settings were nor-
malized. The feed-forward-back propagation network was 
trained with seven datasets, leaving behind the one data set 
of experiment 7 for testing network performance. 
 
Table 3. Inputs A (layer thickness), B (sintering time), C (sintering 
temperature), along with the normalized predicted output of    
compressive strength in the range of 0 to 1 for the solid circular 
structure. 

Figure 6 shows the error graph and the different learning 
rates for the neural network model used during training; 
Figure 6(a) show the error graph using the error values   
obtained from each iteration, where the necessary number of 
iterations required to reach the goal was approximately 
7500—high iterations signify the acuteness of the carried 
calculations. From 15 to 7500 iterations, the error was 
changing in decimal places. A method was developed such 
that the neural network stopped training once the error   
between network output and actual output was less than an 
absolute value of 0.05. Different learning rates were       
presented to the network from 0.1 to 2; Figure 6(b) shows 
training error plotted against learning rate. The maximum 
error in training allowed was an absolute value of 0.05. The 
optimum learning rate for minimum error was found to be 

0.6 in the training phase for the network. The network was 
tested for a target value of 0.470 and the value obtained 
from the network was 0.488, which indicates good perfor-
mance prediction. 

(a) Training error versus number of iterations. 

(b) Performance of network architecture for different learning 
rates. 

 
Figure 6. Neural network model during training of the solid 
circular structure. 
 
Circular Lattice Structure 
The same feed-forward-back propagation network used for 
predicting the compressive strength of solid was used for 
training and testing the compressive strength of the 1-mm 
circular lattice structure. Table 4 shows that the compressive 
strengths of the samples fabricated using the eight experi-
mental settings were normalized. Data obtained from exper-
iment two were used for network testing, while other      
remaining data were used to train the network. 
 

Figure 7 shows a plot of the error graph and the different 
learning rates for the model during training. Figure 7(a) 
shows the error graph of the values obtained in each itera-
tion, where the necessary number of iterations to reach the 
goal was approximately 200,000. From 100 to 199,000 iter-
ations, the error was changing in decimal places; hence, the 
straight line. Figure 7(b) shows the presentation of the dif-
ferent learning rates to the network from 0.1 to 2, where 
training error is plotted against learning rate. The maximum 
error in training allowed had an absolute value of 0.05. The 
optimum learning rate for minimum error was found to be 2 
in the training phase for the network. The network was    
tested for a target value of 0.650, and the value obtained 
from the network was 0.678. 

  

 
A 

(Layer 
thick-
ness) 

 
B 

(Sintering 
time) 

 
C 

(Sintering 
Temp) 

 
Y 

(Comp. 
Strength, 

MPa) 

 
 

Output 
(O) 

1 0 0 0 745.5 0.351 

2 0 0 1 1780.5 0.899 

3 0 1 0 1811.0 0.915 

4 0 1 1 1972.0 1.000 

5 1 0 0 82.9 0.000 

6 1 0 1 879.5 0.422 

7 1 1 0 978.5 0.474 

8 1 1 1 1083.5 0.530 

Maximum value in Y column 1972.0   

Minimum value in Y column 82.9   
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Table 4. Inputs A (layer thickness), B (sintering time), C (sintering 
temperature), along with the normalized predicted output of 
compressive strength in the range of 0 to 1 for the 1-mm lattice 
structure. 

(a) Training error versus number of iterations. 

(b) Performance of network architecture for different learning rates 
of the 1 mm circular lattice structure. 

 
Figure 7. Neural network model during training of the circular 
lattice structure. 
 
Cubical Lattice Structure 
Table 5 shows that the compressive strength of the 1-mm 
cubical lattice-structured samples fabricated using the eight 
experimental settings were normalized along with their  
inputs. Data obtained from experiment six were used for 
testing the network, while remaining data were used to train 
the network, as in the previous case. 

Table 5. Inputs A (layer thickness), B (sintering time), C (sintering 
temperature), along with the normalized predicted output of 
compressive strength in the range of 0 to 1 for the cubical 1-mm 
lattice structure. 

Figure 8 shows a plot of the error graph and the different 
learning rates for the model using the cubical structure dur-
ing training. Figure 8(a) shows the error graph of the values 
obtained in each iteration, where the necessary number of 
iterations to reach the goal was approximately 7500. From 
75 to 7500 iterations, the error was changing in decimal 
places; hence, the straight line. Figure 8(b) shows the 
presentation of the different learning rates to the network 
from 0.1 to 2, where training error is plotted against learn-
ing rate. The maximum error in training allowed had an 
absolute value of 0.05. The optimum learning rate for mini-
mum error was found to be 2 in the training phase for the 
network. The network was tested for a target value of 0.250, 
and the value obtained from the network was 0.276. 
 

Model Validation  
 

The authors compared this current model with similar 
studies found in the literature; the results are presented here. 
In the validation, the study used was the neural network 
model for predicting the hardness of shielded-metal          
arc-welded joints, given the inputs of current, voltage, weld-
ing speed, and magnetic field (Singh, Gupta & Sarkar, 
2013). Table 6 provides a comparative analysis of predictive 
resultant data to the experimental results, along with work 
found in the literature. The difference between the experi-
mentally tested HRC hardness and predicted hardness using 
the    current model is also represented in the table. The au-
thors observed that the current neural network model agreed 
very well with the work and experimental data found in the 
literature. The minimum difference between the experi-
mental value and the value predicted using current model 
was 0.04 % and the maximum difference was 8.9%. The 
simple average among all seven data sets was 3.82%, which 
demonstrated some improvement to the referenced 4.95%. 
The small difference was believed to be the different archi-
tecture used by the reference model and the current neural  
network model. 
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(Sintering 
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Output 
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1 0 0 0 160.3 0.150 
2 0 0 1 654.3 0.651 
3 0 1 0 739.9 0.738 
4 0 1 1 998.6 1.000 
5 1 0 0 12.8 0.000 
6 1 0 1 303.3 0.295 
7 1 1 0 229.3 0.220 
8 1 1 1 545.5 0.540 

Maximum value in Y column 998.6   
Minimum value in Y column 12.8   
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Output 
(O) 

1 0 0 0 154.5 0.151 
2 0 0 1 545.2 0.564 
3 0 1 0 612.3 0.635 
4 0 1 1 958.3 1.000 
5 1 0 0 11.6 0.000 
6 1 0 1 250.9 0.253 
7 1 1 0 253.2 0.255 
8 1 1 1 326.4 0.333 

Maximum value in Y column 958.3   
Minimum value in Y column 11.6   
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(a) Training error versus number of iterations. 

(b) Performance of network architecture for different learning rates 
of the 1 mm cubical lattice structure. 

 
Figure 8. Neural network model during training of the cubical 
lattice structure. 
 
Table 6. Comparison and validation of the current neural network 
model. 

Model Prediction and Potentials  
 

The data obtained for the above three experimental struc-
ture cases were used as inputs to the current neural network 
to predict compressive strength. The feed-forward-back 
propagation network was trained with seven datasets; one 
data set of experiment result was used for prediction 
comparison analysis for testing the network performance. 

Upon reaching the normalized prediction, meeting the    
defined computational accuracy, the normalized compres-
sive strength was denormalized for each of the three cases. 
The prediction was further compared with the experimental 
measured results. Table 7 shows the experimental compres-
sive strength of the three different structures obtained from 
physical experimentation and the predicted value output 
from the numerical neural network model. 
 
Table 7. Neural network results for different structures. 

The predicted values were found to be in good agreement 
with the experimental resultant data, with the maximum 
difference being 2.75%. The values obtained using the   
neural network were slightly greater than the values       
obtained using experimentation. It should also be noted that 
the performance of the network could be somewhat more, 
perhaps even quite a bit more robust with additional sets of 
experimental training input data. The percentage difference 
between a target value and its prediction can be even closer, 
as the network gets more data for training. Also, the perfor-
mance of the model may be improved further either by 
changing the number of hidden nodes used in the study or 
by using a different architecture in future studies. The    
current neural network model was expected to be helpful in 
identifying the set of parameters to achieve the desired  
compressive strength, thereby eliminating the extensive 
time and effort required in experimentation. 
 

The model may be used to develop feed forward artificial 
neural networks using a back propagation training algo-
rithm, if needed. Data normalization prior to training is  
crucial for obtaining good results as well as to increase the 
speed of calculations (Nguyen, Yang, Bae & Choi, 2009). 
Network architecture can have a significant effect on      
prediction results. Thus, it would be a good practice to rely 
on the number of input and output parameters to decide the 
architecture of a feed forward neural network, the number 
of hidden layers, and hidden nodes in the structure. Once 
the architecture has been chosen, a training algorithm and 
an activation function need to be selected, which is similar 
to this current study, which used a back propagation algo-
rithm with a sigmoid activation function. With the normal-
ized input values, target values, network architecture, and 
activation function, the model can be developed according 
to the training algorithm. 

  

Experi-
ment Hard-

ness 
(HRC) 

Prediction 
value from 

the literature 
(Singh et al., 

2013) 

Prediction 
value 
using 

current 
model 

Difference 
% 

1 91 85.6 90.96 0.04 

2 86 85.1 93.7 8.9 

3 89 85.4 93.84 5.4 

4 89 85.2 87.6 1.54 

5 81 84.8 82.64 2.02 

6 78 84.6 82.8 6.1 

7 79 83.9 81.04 2.58 

Average Difference 4.95 3.82 

Structure 
Experimental 
Compressive 

Strength (MPa) 

Predicted 
Compressive 

Strength (MPa) 
Difference (%) 

Solid 978.5 1005.5 2.75 

1mm 
Circular 654.3 681.5 4.15 

1mm 
Cubical 250.9 273.9 9.16 
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Conclusions  
 

Experimental design techniques were used to design and 
create the three structures in this study: solid circular, circu-
lar with 1 mm lattice, and circular with 1 mm cubical. MTS 
material testing was performed and experimentation data 
were corrected. A feed-forward-back propagation neural 
network with sigmoid activation function was developed. 
The neural network, with one hidden layer, used a back 
propagation algorithm as the training algorithm and a     
sigmoid function as an activation function. The model was 
validated using data published in literature. Furthermore, 
experimental data of the three different structures were used 
as input to the model. Performance analysis of the devel-
oped neural network model using the experimental data was 
performed. The authors found that the model prediction 
agreed with the experimental results. The developed model 
predicted the compressive strength given over the range of 
layer thickness, sintering time, and sintering temperature 
parameters, and could serve as framework to set up the  
process design parameters to achieve the desired output 
characteristics.  
 

The model was developed for the purpose of material 
structure design optimization. Due to the complexity of 
multi-parameter multi-level effects on material properties, 
conducting a large number of experiments to get meaningful 
results was a challenge. The study showed, though, that the 
capability of a feed-forward-back propagation neural      
network was a good technique for determining the compres-
sive strength of binder jetting samples. The analysis       
revealed the application of neural networks in material   
science and engineering, particularly in additive manufac-
turing. The authors saw additional benefits and applications; 
for example, it can be very efficient, if many factors are 
involved in a complex process in which the factors play 
roles at different levels. Broad applications of the model, in 
additional to material structure designs, can be found, espe-
cially for those involving multi-parameter multi-level    
complex studies in areas such as medical, engineering, or 
even business. In those studies, a large number of trial-and-
error data were typically needed to get meaningful results. 
However, neural networks would help with better design 
solutions, providing direction and better results, thereby 
saving large investments of effort, time, and cost needed for 
conducting large arrays of experiments. 
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Abstract 
 

Additive manufacturing using Fused Deposition Model-
ing/ Fused Filament Fabrication (FDM/ FFF) technology is 
one of the most common methods for 3D printing of parts 
using filaments. MakerBot Method X was used to print 
BASF Ultrafuse 316L stainless steel filaments. Bending and 
tensile testing samples were 3D printed horizontally and 
vertically at raster angles of 0°, 30°, and 45°. The impact of 
raster angle on the apparent density and the mechanical 
properties were studied in this work. It was preferred to 
print the samples vertically at 45° to get the highest value of 
the modulus of elasticity. The results showed that there was 
a significant impact of the raster angle on the apparent   
density of the green and sintered parts; printing horizontally 
improved the tensile strength of the material at different 
raster angles, while printing vertically gave higher flexural 
strength. 
 

Introduction 
 

Additive manufacturing is one of the operations used to 
make parts layer by layer instead of cutting materials to 
shape the part made as in machining processes. In the last 
two decades, industry has used additive manufacturing   
extensively in making complicated parts for use in different 
applications, such as biomedical implants, heat engines, and 
other applications that need complicated and strong parts 
with intricate details (Obeidat, Nervis & Ma, 2022). As with 
many other manufacturing processes, 3D printing technolo-
gy entails different defective parts that impact the part’s 
properties, such as mechanical properties. Different printing 
parameters need to be controlled to make parts within the 
standards needed. Many researchers have studied those  
factors. Kedziora, Decker, Museyibov, Morbach, Hohmann, 
Huwer, and Wahl (2022) stated that the tensile and fatigue 
strength of BASF Ultrafuse 316L stainless steel printed by 
Free Fused Fabrication (FFF) technology is lower than that 
of ones made using Selective Laser Melting (SLM) technol-
ogy, which makes the 316L stainless steel made by FFF 
technology unsafe for structural applications. Tosto, Tirillò, 
Sarasini, Sergi, and Cicala (2022) used the design of experi-
ments (DOE) technique to study the impact of nozzle     
temperature, layer thickness, and flow rate on the tensile 
and bending properties of the 316L stainless steel printed 
using FDM technology.  

Ferretti, Leon-Cardenas, Ciotti, Santi, Donnici, and Friz-
ziero (2021) studied the   impact of the slicing parameters, 
specifically the line width on the number and volume     
percentage of the defects in the 3D-printed parts in the FDM 
technology. Quarto, Carminati, and D’Urso (2021) used 
Analysis of Variance (ANOVA) to investigate the effect of 
different printing factors, such as nozzle temperature, on the 
density and shrinkage of the 316L stainless steel 3D printed 
using FDM technology. Their results showed no effect of 
nozzle temperature on bulk density. Spiller, Kolstad, and 
Razavi (2022) investigated the    impact of various printing 
parameters, such as layer thickness and nozzle temperature, 
on the mechanical properties of 316L stainless steel. They 
reported that the strength of the sintered parts is low      
compared to conventional 316L stainless steel. Ortega 
Varela de Seijas, Bardenhagen, Rohr, and Stoll (2023)   
proposed a method that employs induction current to sinter 
the 316L stainless steel parts produced by FDM technology. 
They reached a density of 99.8% with a soaking time of 
about six minutes. Liu, Wang, Lin, and Zhang (2020) inves-
tigated the mechanical properties of    3D-printed 316L 
stainless steel, using FDM technology to print the parts. 
Their results showed that the material’s yield strength, ulti-
mate tensile strength, and elongation at break were lower 
than those of the AISI and SLM counterparts. Farashi and 
Vafaee (2022) conducted a meta-analysis on the effects of 
extruding temperature and printing speed on printed materi-
als’ tensile strength and other mechanical properties.  

 
After searching through 560 studies, they concluded that a 

high extruder temperature has a positive effect on the     
material, while an increased printing speed has a negative 
effect. Ryder, Lados, Iannacchione, and Peterson (2018) 
fabricated ABS-420 stainless steel system composites from 
scratch to conduct tests on the material. They tested       
ABS-420 SS with 10 wt.%, 15 wt.%, 23 wt.%, and base 
ABS. They conducted tensile tests at two different raster 
angles—0/90 and 45/-45—oriented horizontally and verti-
cally. Their results showed that the metal concentration past 
15% weakened the material’s mechanical properties signifi-
cantly compared to the properties of base ABS. They also 
learned that horizontally printed samples tested better than 
their vertical counterparts. Ferretti et al. (2021) investigated 
the correlation between line width and volume of defects in 
an FDM-printed component. Kurose, Abe, Santos, Kanaya, 
Ishigami, Tanaka, and Ito (2020) studied the influence of 
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layer directions on 316L stainless steel parts by observing 
the effect of binder domains in filaments. Lebedev, Gefle, 
Amitov, Zhuravlev, Berchuk, and Mikutskiy (2018) tested 
and discussed the mechanical properties of several PLA-
based composites. They discovered that the elongation at 
break and yield strength of the 3D-printed PLA composites 
decreased by 15-60% compared to the hot-pressed samples. 
Liu, Zhang, Li, Si, Peng, and Hu (2017) studied several 
samples of FDM parts using the Taguchi method. They  
considered deposition orientation, layer thickness, deposi-
tion style, raster width, and raster gap as the main parame-
ters and put them against three strength indices: tensile, 
flexural, and impact. Santamaria, Salasi, Bakhtiari, Lead-
beater, Iannuzzi, and Quadir (2022) studied the impact of 
the sintering process on the microstructure and mechanical 
properties of the 3D-printed 316L stainless steel. Kuo, Wu, 
Li, and Wu (2019) studied the optimal process parameters 
to minimize the warpage of ABS prototypes. More specifi-
cally, they tested different temperatures at which the nozzle, 
bed, and chamber could optimally perform. Abouzaid,   
Bassir, Guessasma, and Yue (2021) discussed the observa-
tions of FDM and some optimal parameters to use when 
printing. They discussed the mechanical properties and how 
certain parameters of the printing job affect the final prod-
uct, such as building orientation, raster angle, layer thick-
ness, and printing temperature.  
 

Li, Yu, Yang, and Shen (2020) utilized acoustic emission 
to detect distortion in FDM samples in real-time. Novakova-
Marcincinova, Novak-Marcincin, Barna, and Torok (2012) 
explored all the uses for FDM in the real world, discussing 
different methods, materials, applications, and more. They 
focused on the process used to create material with metal 
particles and how they can be densified through de-binding 
and sintering. Hassan, Farid, Tosi, Rane, and Strano (2021) 
implemented tests on sintered 316L stainless steel parts to 
find the effects of three printing parameters: extrusion    
velocity, layer height, and orientation. de Oliveira Fiuza, 
Ribeiro da Rocha, Torres dos Santos, Rodrigues da Silva, 
Augusto Couto, Camilli Bottene, and Alves dos Santos 
(2021) explored the effects of parameters on FDM-printed 
parts such as temperature, deposition speed, layer height, 
and infill pattern. They found that temperature was a major 
quality factor. Excess temperature creates excess material 
through fluidity, and insufficient temperature causes a lack 
of adhesion and lower flowability. The objective of this 
current study was to investigate the impact of the printing 
direction and raster angle on the part density and the      
mechanical properties of 316L stainless steel 3D-printed 
parts using FDM/ FFF technology. 
 

Materials and Methods: Parts Fabrication 
 

In this current study, the parts were made using the FFF/
FDM process along with a MakerBot Method X 3D printer. 
The process started by creating a CAD model using comput-
er-aided design (CAD) software and then converting this 
file into an .stl format that is compatible with these types of 

printers. A filament comprised of a blend of 80% 316L 
stainless steel powder and 20% resin was used. This       
filament had a diameter of 1.75 mm. The authors fabricated 
and tested the tensile specimens in accordance with ASTM 
E8 guidelines and bending specimens in compliance with 
ASTM E290 standards. Using ADMET, model 1032FGR- 
50K-B equipment of 50 Klbf, tensile and bending tests were 
performed. The building plate was prepared by scraping any 
residues from previous prints and then adding Magigoo Pro 
Metal 3D Bed Adhesion Solution for BASF Ultrafuse 316L. 
Figure 1 shows that this printer had two extruders; one for 
building material (316L stainless steel) and the other for 
support material. The authors then operated a single lab 
extruder, primarily intended for handling metals. For the 
fabrication of tensile and bending samples, Figure 2a shows 
that they were printed in two orientations: horizontal and on 
their edges. The printing parameters included the following: 
layer thickness set at 0.2 mm and 0.1 mm, extrusion temper-
ature at 245℃, chamber temperature maintained at 85℃, 
infill percentage of 100% using a linear pattern, and a travel 
speed of 250 mm/s. To investigate how raster angles at 0°, 
30°, and 45° affect the mechanical properties and density of 
the printed and sintered samples, the authors employed 
these various raster angles. After the printing process, the 
parts were de-bound and sintered to test their mechanical 
properties. 

Figure 1. MakerBot Method X 3D printer. 
 

Materials and Methods: De-Binding and 
Sintering Process 
 

The samples were sent to DSH Technologies, LLC, for 
the thermal de-binding and sintering process. The dimen-
sions and the densities were measured for the green parts 
and the sintered parts. The authors then performed tensile 
and bending testing on the sintered samples. Figure 3 shows 
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some of the broken samples (after tensile testing), as well as 
how three samples—at different printing parameters—were 
printed and sintered for each geometry. In the tensile test, 
samples printed at 0.2 mm layer thickness and 0.1 mm layer 
thickness were tested. At each of those layer thicknesses, 12 
samples were printed, six of which were printed horizontal-
ly with the other six printed vertically. Of the six samples, 
two were printed at each of the raster angles: 0°, 30°, and 
45°. Figure 3 further shows how the dimensions and the 
densities were then measured for the green and sintered 
parts for each geometry. The dimensions were measured 
using a regular caliper, while the density was measured  
using the Archimedes method. A Torbal AGCN220 Internal 
Calibration Analytical Balance, 220g x 0.0001g, was used 
in the process in addition to a Torbal Density Kit for AGCN 
scales. 

(a) Orientation of the bending samples. 

(b) Raster angles (0°, 30°, and 45°). 
 
Figure 2. Fabrication of tensile and bending samples, printed 
horizontally and on edge. 

Figure 3. 316L stainless steel tensile testing samples after failure. 

Results and Discussion 
 

As mentioned previously, density was measured using the 
Archimedes method, while apparent density was calculated 
using Equation 1. Figure 4 shows the apparent density of the 
green parts printed horizontally and vertically (on edge) at 
raster angles of 0°, 30°, and 45°, and at layer thicknesses of 
0.2 mm and 0.1 mm. 
 

(1) 
 
 
ρa = apparent density of the part 
ρwt = water density at the measurement temperature 
md = dry mass of the part 
mw = wet mass of the part 
 

The results showed that there was a density difference for 
the green parts between all the samples, especially at a   
raster angle of 45° when the samples were printed at a layer 
thickness of 0.2 mm. Tables 1a and 1b show the green parts’ 
density change percentages for vertical and horizontal print-
ing at different raster angles. It was found that the range of 
that difference in density was between 2.6% at 0° (at a layer 
thickness of 0.1 mm) and -25% at 45° (at a layer thickness 
of 0.2 mm), when compared between vertical and horizontal 
printing at different layer thicknesses. To measure the densi-
ty of the green samples provided in Tables 1a and 1b, six 
samples were printed at the 0.2 mm layer thickness and  
another six at the 0.1 mm layer thickness. 
 

One sample was printed vertically and the other was 
printed horizontally at each layer thickness for raster angles 
of 0°, 30°, and 45°. The same number of samples were used 
at a layer thickness of 0.1 mm. Figure 4 shows the samples 
used to calculate the apparent density of the green parts. The 
same procedure was performed for the sintered samples in 
Tables 2a and 2b. Figure 5 shows the samples used to calcu-
late the apparent density of the sintered samples. The     
authors compared the twelve sintered samples with twelve 
green samples for density measurement purposes. 
 

The 95% confidence interval error bars of Figure 4 show 
no or low overlap between the calculated apparent density 
values reported for the green samples. Figure 5 shows that 
the apparent density of the sintered parts was affected by the 
raster angle. When comparing horizontal printing with verti-
cal printing (assuming the horizontal printing was the base 
for comparison), the highest density difference (3.7% at a 
layer thickness of 0.2 mm) occurred when the raster angle 
was 0°. On the other hand, the highest density difference 
was seen at 6.18% with a raster angle of 30° when the layer 
thickness was 0.1 mm. Figure 5, along with Tables 2a and 
2b further show that printing at raster angles of 30° and 45° 
vertically and horizontally impacted the apparent density of 
the sintered parts. 
 

d
a wt

d w

m

m m
r r=

-
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Table 1a. Density changes of the green parts with a layer thickness 
of 0.2 mm. 

Table 1b. Density changes of the green parts with a layer thickness 
of 0.1 mm. 

Table 2a. Density changes of the sintered parts with a layer 
thickness of 0.2 mm. 

Table 2b. Density changes of the sintered parts with a layer 
thickness of 0.1 mm. 

Figure 4. Apparent density of the green parts. 

Figure 6 shows the tensile strength of the sintered samples 
printed horizontally and vertically at a layer thickness of 0.1 
mm. A significant impact of the building direction (vertical 
or horizontal) on the tensile strength was also observed. In 
all of the cases, printing horizontally resulted in a higher 
tensile strength than printing vertically at all raster angles: 
0° (17% - 27%), 30° (20% - 25%), and 45° (around 20%). 
This is because, when printed horizontally, the surface area 
at each layer was bigger, which would improve the packing 
of the samples on top of each other because of the high 
cooling rate. Equation 2 explains that by increasing the  
surface area, the cooling rate increases. 

Figure 5. Apparent density of the sintered parts. 
 

(2) 
 
where, Q is the rate of heat transfer (in watts); h is the    
convective heat transfer coefficient [W/(m²·°C)]; A is the 
surface area through which heat is being transferred (m²); 
and, ΔT is the temperature difference between the object’s 
surface and the surrounding air (°C). 
 

The samples printed horizontally had a high surface area 
from the top (printing direction) compared to the samples 
printed on edge. This explains a high cooling rate when 
printed horizontally. Figure 6 further shows that there was 
an impact of the raster angle on the tensile strength of the 
material. The percentage decrease in the tensile strength was 
between 2.47% and 4.75%, when printed horizontally com-
pared to printing at 0°. Tensile strength would increase by 
4.3% at 45°, when printed vertically at a layer thickness of 
0.1 mm. Figure 7 shows the impact of the building direction 
and raster angle on the modulus of elasticity, when printed 
at a layer thickness of 0.1 mm. 
 

In all of the cases except one (at 30°), printing horizontal-
ly resulted in a higher modulus of elasticity than printing 
vertically at 0° (9% - 29%), 30° (-6% - 5.8%), and 45°    
(8% - 24 %). The results show that the modulus of elasticity  
increased when the samples were printed horizontally; thus, 
to get the highest value of the modulus of elasticity, it is 
preferably to print the samples horizontally at 45 to get the 
highest value of the modulus of elasticity. The value      
obtained was about 4.50 GPa, while the highest value     
obtained if printed vertically at 30 to get the highest value of 

 

Raster angle 
(°) Horizontal Vertical Density change 

(%) 

0 4.73 4.86 2.78 

30 4.58 4.79 4.56 

45 4.49 3.36 -25.15 

Density (g/mL) at 0.2 mm layer thickness    

 

Raster angle 
(°) Horizontal Vertical Density change 

(%) 

0 4.62 4.74 2.62 

30 4.486 4.70 4.88 

45 4.53 4.51 -0.53 

Density (g/mL) at 0.1 mm layer thickness    

 

Raster angle 
(°) Horizontal Vertical Density change 

(%) 

0 7.44 7.16 -3.74 

30 7.38 7.49 1.49 

45 7.26 7.39 1.80 

Density (g/mL) at 0.2 mm layer thickness    

 

Raster angle 
(°) Horizontal Vertical Density change 

(%) 

0 7.59 7.47 -1.67 

30 7.55 7.08 -6.18 

45 7.33 7.21 -1.62 

Density (g/mL) at 0.1 mm layer thickness    

/Q hA T= D
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the modulus of elasticity was about 4.35 GPa. All the values 
of the modulus of elasticity obtained were higher if printed 
horizontally at different angles except for one (at 30°). If the 
parts were printed horizontally, there was a smaller number 
of layers, which led to a lower probability of layers slipping, 
compared with the case if printed on the edge with a higher 
number of layers. That led to higher tensile strength, as  
explained in Figure 6, and higher modulus of elasticity, as 
explained in Figure 7. Figure 8 shows that printing horizon-
tally resulted in higher tensile strength for all raster angles 
(up to 25% improvement at 0°, up to 46% at 30°, and up to 
25% at 45°). Figure 9 shows that printing horizontally at 0° 
changed the modulus of elasticity by +19% at 0°,                
(-13% to 55% at 30°), and (2% to -42% at 45°). 

Figure 6. Tensile strength at different raster angles printed 
horizontally and vertically at a layer thickness of 0.1 mm. 

Figure 7. Modulus of elasticity at different raster angles printed 
horizontally and vertically at a layer thickness of 0.1 mm. 
 

Figure 10 shows the flexural strength at different raster 
angles printed horizontally and vertically at a layer thick-
ness of 0.2 mm. Printing vertically gives higher flexural 
strength and shows a significant difference compared to 
printing horizontally. The range of improvement was from 
16% at 0° to 76% at 45°. Printing vertically on edge means 
more layers, which means when applying the bending test 
more interlaminar resistance to get the layers apart. That is 
why the flexural strength was higher in that direction. 

Figure 8. Tensile strength at different raster angles printed 
horizontally and vertically at a layer thickness of 0.2 mm. 

Figure 9. Modulus of elasticity at different raster angles printed 
horizontally and vertically at a layer thickness of 0.2 mm. 

Figure 10. Flexural strength at different raster angles printed 
horizontally and vertically at a layer thickness of 0.2 mm. 
 

Conclusions 
 

In this study, the researchers studied the effect of building 
direction on the apparent and relative density and the     
mechanical properties of 3D-printed parts using FDM tech-
nology at different raster angles. Tensile strength, modulus 
of elasticity, and flexural strength were studied. The results 
showed that there was a significant effect of the printing 
direction (horizontal or vertical) and the raster angle on the 
apparent density of the sintered parts, while there was no 
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significant effect on the apparent density of the green    
samples. In all cases, printing horizontally resulted in a 
higher tensile strength than printing vertically at all raster 
angles: 0° (17% - 27%), 30° (20% - 25%), and 45° (around 
20%). The results showed that printing horizontally        
improved the modulus of elasticity of the material at differ-
ent raster angles, while printing vertically resulted in higher 
flexural strength. 
 

Future Research 
 

The authors are in the process of micro-machining the 
same samples printed in this current study to evaluate the 
impact of raster angle and building direction on the rough-
ness of the machined 316L stainless steel printed using 
FDM technology. 
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The INTERNATIONAL JOURNAL OF MODERN    
ENGINEERING is an online/print publication designed for 
Engineering, Engineering Technology, and Industrial Tech-
nology professionals. All submissions to this journal, sub-
mission of manuscripts, peer-reviews of submitted docu-
ments, requested editing changes, notification of acceptance 
or rejection, and final publication of accepted manuscripts 
will be handled electronically. The only exception is the 
submission of separate high-quality image files that are too 
large to send electronically. 
 

All manuscript submissions must be prepared in        
Microsoft Word (.doc or .docx) and contain all figures, im-
ages and/or pictures embedded where you want them and 
appropriately captioned. Also included here is a summary of 
the formatting instructions. You should, however, review 
the sample Word document on our website (http://ijme.us/
formatting_guidelines/) for details on how to correctly for-
mat your manuscript. The editorial staff reserves the right to 
edit and reformat any submitted document in order to meet 
publication standards of the journal. 
 

The references included in the References section of 
your manuscript must follow APA-formatting guidelines. In 
order to help you, the sample Word document also includes 
numerous examples of how to format a variety of scenarios. 
Keep in mind that an incorrectly formatted manuscript will 
be returned to you, a delay that may cause it (if accepted) to 
be moved to a subsequent issue of the journal. 
 
 
1. Word Document Page Setup: Two columns with ¼" 

spacing between columns; top of page = ¾"; bottom of 
page = 1" (from the top of the footer to bottom of 
page); left margin = ¾"; right margin = ¾". 

 
2. Paper Title: Centered at the top of the first page with a 

22-point Times New Roman (Bold), small-caps font. 
 
3. Page Breaks: Do not use page breaks. 
 
4. Figures, Tables, and Equations: All figures, tables, 

and equations must be placed immediately after the first 
paragraph in which they are introduced. And, each must 
be introduced. For example: “Figure 1 shows the opera-
tion of supercapacitors.” “The speed of light can be 
determined using Equation 4:” 

5. More on Tables and Figures: Center table captions 

above each table; center figure captions below each 
figure. Use 9-point Times New Roman (TNR) font. 
Italicize the words for table and figure, as well as their 
respective numbers; the remaining information in the 
caption is not italicized and followed by a period—e.g., 
“Table 1. Number of research universities in the state.” 
or “Figure 5. Cross-sectional aerial map of the forested 
area.” 

 
6. Figures with Multiple Images: If any given figure 

includes multiple images, do NOT group them; they 
must be placed individually and have individual minor 
captions using, “(a)” “(b)” etc. Again, use 9-point TNR. 

 
7. Equations: Each equation must be numbered, placed in 

numerical order within the document, and introduced—
as noted in item #4. 

 
8. Tables, Graphs, and Flowcharts: All tables, graphs, 

and flowcharts must be created directly in Word; tables 
must be enclosed on all sides. The use of color and/or 
highlighting is acceptable and encouraged, if it provides 
clarity for the reader. 

 
9. Textboxes: Do not use text boxes anywhere in the doc-

ument. For example, table/figure captions must be reg-
ular text and not attached in any way to their tables or 
images. 

 
10. Body Fonts: Use 10-point TNR for body text through-

out (1/8" paragraph indention); indent all new para-
graphs as per the images shown below; do not use tabs 
anywhere in the document; 9-point TNR for author 
names/affiliations under the paper title; 16-point TNR 
for major section titles; 14-point TNR for minor section 
titles. 

 
 
 
 

11. Personal 
Pronouns: Do not use personal pronouns (e.g., “we” 
“our” etc.). 

 
12. Section Numbering: Do not use section numbering of 

any kind. 
 
13. Headers and Footers: Do not use either. 
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14. References in the Abstract: Do NOT include any ref-
erences in the Abstract. 

 
15. In-Text Referencing: For the first occurrence of a giv-

en reference, list all authors—last names only—up to 
seven (7); if more than seven, use “et al.” after the sev-
enth author. For a second citation of the same refer-
ence—assuming that it has three or more authors—add 
“et al.” after the third author. Again, see the sample 
Word document and the formatting guide for references 
for specifics.  

 
16. More on In-Text References: If you include a refer-

ence on any table, figure, or equation that was not cre-
ated or originally published by one or more authors on 
your manuscript, you may not republish it without the 
expressed, written consent of the publishing author(s). 
The same holds true for name-brand products. 

 
17. End-of-Document References Section: List all refer-

ences in alphabetical order using the last name of the 
first author—last name first, followed by a comma and 
the author’s initials. Do not use retrieval dates for web-
sites. 

 
18. Author Biographies: Include biographies and current 

email addresses for each author at the end of the docu-
ment.  

 
19. Page Limit: Manuscripts should not be more than 15 

pages (single-spaced, 2-column format, 10-point TNR 
font). 

 
20. Page Numbering: Do not use page numbers.  
 
21. Publication Charges: Manuscripts accepted for publi-

cation are subject to mandatory publication charges. 
 
22. Copyright Agreement: A copyright transfer agree-

ment form must be signed by all authors on a given 
manuscript and submitted by the corresponding author 
before that manuscript will be published. Two versions 
of the form will be sent with your manuscript’s ac-
ceptance email.  
 
Only one form is required. Do not submit both forms! 
 
The form named “paper” must be hand-signed by each 
author. The other form, “electronic,” does not require 
hand signatures and may be filled out by the corre-
sponding author, as long as he/she receives written per-
mission from all authors to have him/her sign on their 
behalf. 

23. Submissions: All manuscripts and required files and 
forms must be submitted electronically to Dr. Philip D. 
Weinsier, manuscript editor, at philipw@bgsu.edu. 

 
24. Published Deadlines: Manuscripts may be submitted 

at any time during the year, irrespective of published 
deadlines, and the editor will automatically have your 
manuscript reviewed for the next-available issue of the 
journal. Published deadlines are intended as “target” 
dates for submitting new manuscripts as well as revised 
documents. Assuming that all other submission condi-
tions have been met, and that there is space available in 
the associated issue, your manuscript will be published 
in that issue if the submission process—including pay-
ment of publication fees—has been completed by the 
posted deadline for that issue.  

 
Missing a deadline generally only means that your 
manuscript may be held for a subsequent issue of the 
journal. However, conditions exist under which a given 
manuscript may be rejected. Always check with the 
editor to be sure. Also, if you do not complete the sub-
mission process (including all required revisions) with-
in 12 months of the original submission of your manu-
script, your manuscript may be rejected or it may have 
to begin the entire review process anew. 
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